Jozef Šamaj • Jay J. Thelen (Editors)

Plant Proteomics

Jozef Šamaj Jay J. Thelen (Editors)

Plant Proteomics

With 32 Figures, 7 in color and 13 Tables

Dr. Jozef Šamaj Institute of Cellular and Molecular Botany Rheinische Friedrich-Wilhelms-University Bonn Department of Plant Cell Biology Kirschallee 1 D-53115 Bonn Germany

Institute of Plant Genetics and Biotechnology Slovak Academy of Sciences Akademicka 2 95007 Nitra Slovak Republic Dr. Jay J. Thelen University of Missouri-Columbia Department of Biochemistry Columbia, MO 65211

Library of Congress Control Number: 2007929273

ISBN-13 978-3-540-72616-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science + Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Editor: Dr. Christina Eckey, Heidelberg Desk Editor: Anette Lindqvist, Heidelberg

Production: SPi Typesetting: SPi

Cover Design: WMXDesign Gmbh, Heidelberg

Printed on acid-free paper 149/3152-HM 5 4 3 2 1 0

Editors

Jozef Šamaj

Jay Thelen

Jozef Šamaj received his Ph.D. degree in Plant Physiology from the Comenius University in Bratislava, Slovakia. He completed three post-doctoral programmes supported by Eurosilva, the Alexander von Humboldt Foundation, and the EU Marie Curie Programme in the highly regarded laboratories of Alain Boudet in Toulouse, Dieter Volkmann in Bonn, and Heribert Hirt in Vienna. He worked on the cell biology of somatic embryogenesis, lignification in tree species, arabinogalactan proteins, the cytoskeleton, and signalling proteins. Jozef Šamaj has co-edited three books and co-authored more than 75 research papers, reviews, and book chapters. He is a senior lecturer and group leader at the Institute of Cellular and Molecular Botany in Bonn, Germany, and senior researcher at the Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia. His current research is focussed on the role of signalling components and the cytoskeleton in relation to the vesicular trafficking during plant development and stress responses using integrated cell-biological and functional proteomics approaches.

vi Editors

Jay Thelen received his B.Sc. degree in Biology and Biochemistry from the University of Nebraska-Lincoln in 1993. He earned his Ph.D. from the University of Missouri-Columbia (UMC) studying the structure and regulation of plant mitochondrial pyruvate dehydrogenase complexes under the guidance of Douglas Randall. In 1999 he started a 3-year postdoctoral position in John Ohlrogge's lab at Michigan State University investigating the plastid acetyl-CoA carboxylase protein complex. He returned to UMC in 2002 as the Associate Director of a campus Proteomics Center. In 2004, he was promoted to Assistant Professor in the Biochemistry Department, a position he currently holds. He has authored or co-authored 35 research and review articles since 1994. His research interests are centered around the regulation of plant metabolism, particularly carbon assimilation in oilseeds, and multienzyme metabolic complexes. He is currently studying seed filling in numerous crop oilseeds, using various quantitative proteomics approaches. He is also investigating global phosphoprotein networks involved in seed development and is developing improved strategies for quantitative proteomics.

Contents

Pro	eface.	xvi	ii	
Lis	st of A	Abbreviations xiz	X	
1.	Introduction to Proteomics: a Brief Historical Perspective on Contemporary Approaches			
	1.1	Introduction	1	
	1.2	Protein Separation and Detection for Proteome Investigations	2	
		1	2	
		· · · · · · · · · · · · · · · · · · ·	3	
		0	3	
		<i>y</i>	4	
	1.3	8	5	
		1.3.1 Peptide Mass Fingerprint Protein Identification	6	
		Identification	6	
	1.4	8 11	8	
		33	8	
		1.4.2 Chemical Labeling Approaches		
		\mathcal{Z}^{-1}	9	
	1.5		9	
	Refe	erences	0	
2.	_	h-Resolution Two-Dimensional Gel Electrophoresis:	1	
		iam J. Hurkman and Charlene K. Tanaka	+	
	2.1	Introduction	5	
	2.2	Protein Extraction	7	
		2.2.1 Total Proteomes	7	
		2.2.2 Subproteomes	8	

viii Contents

	2.3 2.4 2.5 2.6 Refe	Protein Solubilization. Protein Detection Comparative Proteomics Conclusions rences.	20 21 22 24 24		
3.	3. An Introduction to Proteomics Data Analysis				
	3.1 3.2 3.3 3.4 3.5 Refe	Introduction Search Software X!-Tandem Informatics Considerations Relation Database Management of Large Scale Proteomics Data	29 31 31 38 39 39		
4.		sphoproteomics in Plantsio de la Fuente van Bentem, Thomas S. Nühse, and Heribert Hirt	41		
	4.1 4.2	Introduction	41		
	4.3	Components of Plant Signalling Pathways	42		
		Phosphorylation Sites	44		
		Phosphoproteomic Analysis	45		
	4.4	Sites using IMAC Coupled to MS Technology Technologies Applicable to Studying Changes	46		
		in the Phosphoproteome	47		
	4.5	Plant Phosphoproteomics in the Future	48		
		rences	50		
5.	_	n-Throughput Identification of Plant Protein			
		ase Substrates	53		
	5.1	Introduction	53		
	5.2	Protein Microarray Technology	55		
		5.2.1 History of Microarrays	55		
		5.2.2 Types of Protein Microarrays	57		
	5.3	for Phosphorylation Studies	57		
		of Potential Protein Kinase Substrates	59		
	5.4	Potential Substrates of Arabidopsis MPK3 and MPK6	62		

Contents ix

		5.4.1 Brief Bibliographic Overview of MAPK Pathway	62
	5.5 Refe	and MPK6 Substrates Conclusions and Future Prospects prences	64 65 65
6.	Path Step	overy via Proteomics of a Novel Cell Signalling way in Plants Involving Extracellular ATP then Chivasa, William J. Simon, John M. Hamilton, the Lindsey, and Antoni R. Slabas	71
	6.1 6.2	Introduction Proteomics of the ECM 6.2.1 The Plant ECM 6.2.2 Extraction of Plant ECM Proteins 6.2.3 Identity of ECM Proteins	72 72 72 73 73
	6.3	Unravelling New Biological Functions of the Apoplast	75 75 77 78
	6.4	Physiological Significance of Extracellular ATP Depletion-Induced Death	79
	6.5 6.6 Refe	by External ATP How Does Extracellular ATP Function? Conclusions and Future Studies prences	80 81 83 84
7.		eal Proteomics	87
	7.1 7.2 7.3 7.4	Introduction: Genomic and Proteomic Analyses A Typical Procedure for Proteomic Analysis Mass Spectrometry and Proteomic Analysis Expression Profiles of Cereal Proteins. 7.4.1 2-DE-Based Profiling. 7.4.2 Shotgun Profiling. 7.4.3 Quantitative Profiling 7.4.4 Subcellular Localization of Cereal Proteins	87 89 89 90 90 92 93
	7.5	Post-Translational Modifications of Cereal Proteins	94 94 95 97
	7.6	Protein-Protein Interactions in Cereals	97 98 98

x Contents

		7.6.3 Blue Native-/SDS-PAGE/MS of Protein Complexes7.6.4 Protein Interaction Analysis Using	98
		Chromosome-Deletion Lines	99
	7.7	Proteome Informatics	101
	7.8	Perspectives	101
	Refer	ences	102
8.		ent Status of Arabidopsis Thaliana Proteomics	105
	8.1	Current Status of Arabidopsis Proteomics	105
	8.2		108
	8.3	Establishing Protein/Protein Interactions.	110
	8.4	Revealing Proteome Dynamics by Relative	
	0	and Absolute Protein Quantification	111
	8.5	Towards a Complete Proteome Map for Arabidopsis	113
	8.6	Conclusions	114
		ences.	115
	110101		110
9.	Zhent	omics of Medicago truncatula	121
	9.1	Introduction	121
	9.2	Proteomics: an Important Tool in Dissecting	
	0.2	<i>C C</i> ,	123 125
	9.3	Proteomics of <i>M. truncatula</i>	
		9.3.1 Proteomics of M. truncatula: Microbe Interactions	126
	0.4	9.3.2 Proteomics of M. truncatula: Tissues	129
	9.4	Future Perspectives	132
	Refer	ences	133
10.	Duoto	omics of Seed Development	
LU.		Iseed Crops	137
		•	13/
	Marti	n Hajduch, Ganesh Kumar Agrawal, and Jay J. Thelen	
	10.1	Introduction	138
	10.2	Two-Dimensional Electrophoresis to Profile Protein	
		Expression During Seed Filling in Soybean	139
	10.3	Proteomic Analysis of Seed Filling in Rapeseed	142
	10.4	Comparison of Carbon Assimilation During Seed	
		Filling in Soybean and Rapeseed.	143
	10.5	Proteomics of Mature Soybean Seed.	146
	10.6	Organelle and Tissue Specific Proteomics – Towards	1.0
	10.0	"In-Depth" Oilseed Proteome Characterization	148

Contents xi

	10.7	Presence of Functionally Diverse Phosphoproteins in Developing Rapeseed.	149
	10.8	Conclusions and Future Perspectives	151
	Refer	ences	151
11.	Prote	come Analysis of <i>Nicotiana tabacum</i>	
		ension Cultures	155
		Laukens, Noor Remmerie, Thomas De Vijlder, Henderickx, and Erwin Witters	
	11.1	Introduction	
		11.1.1 The Tobacco BY-2 Cell Suspension	
	11.2	11.1.2 Analytical Work Flow Considerations	137
	11.2	of Tobacco Cell Suspension Proteomes	158
		11.2.1 Tobacco BY-2 Proteome: a Reference Map	
		11.2.2 The Tobacco Phosphoproteome: Effects	
		of Bacterial Lipopolysaccharides	160
	11.3	Proteome Analysis of Tobacco BY-2 Plastids	161
	11.4	Blue-Native/SDS PAGE Analysis of Tobacco	
		BY-2 Protein Complexes	
	11.5	Identification of Tobacco Proteins	
	11.6	Data Integration	
	Keler	ences	167
12.	Cell V	Wall Proteome	169
	-	ges Boudart, Zoran Minic, Cécile Albenne,	
	Herve	é Canut, Elisabeth Jamet, and Rafael F. Pont-Lezica	
	12.1	Introduction: Cell Wall Proteins Before Proteomics	170
	12.2	The Surprising Variety of Cell Wall Proteins.	170
		12.2.1 Glycoside Hydrolases	
		12.2.2 Proteases	
		12.2.3 Lectins	176
		12.2.4 Protein Inhibitors of Cell Wall Modifying	176
	12.2	•	176
	12.3	Proteomics as an Efficient Way to Depict Cell Wall Protein Structure	177
		12.3.1 N-Glycosylation	177
		12.3.2 Proline Hydroxylation and O-Glycosylation	178
		12.3.3 Addition of GPI Anchors	179
		12.3.4 Phosphorylation	179
	12.4	Emerging Functions for Cell Wall Proteins	180
	12.5	Conclusions	181
	Refer	rences	182

xii Contents

13.	Plasma Membrane Proteomics				
	13.1 13.2	Introduction	186 188 188 188 189 191		
	13.3	Protein Separation	193 193 194		
	13.4 13.5	Protein Digestion for MS-Analysis	194 195 195		
		with Specific Properties			
14		Conclusions and Future Perspectives			
14.	The Proteomes of Chloroplasts and other Plastids				
	14.1 14.2 14.3 14.4 14.5	Introduction . Proteome Catalogues . 14.2.1 The Thylakoid Membrane System . 14.2.2 The Envelope Membrane System . 14.2.3 The Stroma . 14.2.4 Plastoglobules . 14.2.5 Whole Organelles . Protein Targeting Issues . Comparative Proteomics . Multiprotein Complexes and Protein Modification .	209 209 211 212 214 214 216 219		
		Concluding Remarks	221		
15.	The Plant Mitochondrial Proteome				
	15.1 15.2	Introduction			

Contents xiii

	15.3	Experimental Analysis of the Proteome	
	15 4	and Future Plans	224
	15.4	Advances in Predicting the Remaining Proteome	234
	15.5	Beyond the List of the Proteome to its Regulation	
		and Function	
		15.5.1 Post-Translational Modifications	236
		15.5.2 Phosphorylation	
		15.5.3 Oxidation	238
	15.6	Non-Covalent Interactions Within the Proteome	239
	15.7	Conclusion	241
	Refere	nces	241
16.	Proteo	omic Analysis of the Plant Nucleolus	247
		Koroleva, Peter McKeown, Alison Pendle, and Peter Shaw	
	16.1	Introduction	247
	16.2	Proteomics Techniques used for Plants	249
	16.3	Purification of Nucleoli	
	16.4	Isolation and Analysis of Arabidopsis Nucleolar	
	1011	Proteins	
	16.5	Analysis of Post-Translational Protein Modifications	253
	16.6	Quantification Techniques	
	10.0	16.6.1 In Vivo Isotope Labelling: SILAC	
		• •	257
		16.6.2 In Vitro Isotope Labelling	
	167	16.6.3 Comparison of Quantification Methods	258
	16.7	Proteomic Analysis of Nuclear Protein Complexes	
		16.7.1 TAP Tag Strategy and Variations	258
		16.7.2 TAP Tag Purification of Nuclear Transport	
		Factor	259
	16.8	Reliability of Proteomic Data	
	16.9	Data Analysis and Databases	263
	16.10	Future Perspectives	265
	Refern	ices	266
17.	Pollen	and Pollen Tube Proteomics	270
	Tong C	Chen, Xiaoqin Wu, Yanmei Chen, Nils Böhm,	
	Jinxing	g Lin, and Jozef Šamaj	
	17.1	Introduction	271
	17.2	Procedure for Pollen Proteomic Analysis	272
	17.3	Proteomics Focused on Pollen Development	273
		17.3.1 Angiosperm Pollen Proteomes	
		17.3.2 Proteomic Analysis of Gymnosperm Pollen	
		and Pollen Tube Development	277
	17.4	Conclusions and Future Perspectives	
	Refere	•	281

xiv Contents

18.			nics Upon Fungal Attack	283		
	18.1	Introdu	ction	283		
	18.2	Types o	of Plant–Fungi Interactions	285		
		18.2.1	Mutualistic Plant–Fungi Interactions			
			with Microsymbionts	285		
		18.2.2	Parasitic Plant–Fungi Interactions – Infection			
			Strategies of Fungal Pathogens			
		18.2.3	Model Plant/Fungi Pathosystems			
	18.3		ungal Side" – Proteomics of Fungal Pathogens			
		18.3.1	Fungal and Oomycete Effector Proteins			
		18.3.2	Pathogen-Associated Molecular Patterns			
	18.4		lant Side" – Plant Proteomics Upon Fungal Attack	293		
		18.4.1	Inducible Defence-Related Proteins and their			
			Occurrence in Infected Plants	294		
		18.4.2	Induction of Systemic Acquired Resistance			
			by Fungal Pathogens	297		
		18.4.3	Mapping of Protein Phosphorylation Patterns			
			Triggered by Fungal Pathogens or Elicitors	298		
	18.5		on of Defence-Related Proteins in Non-Pathogenic			
			tions			
	18.6		sions and Future Perspectives			
	Refer	ences		302		
19.	Meta	bolic Int	tricacies of the Symbiotic Association			
			pean and Bradyrhizobium japonicum:			
	A Proteomic Outlook					
			Sarma, Nathan W. Oehrle, and David W. Emerich			
	19.1		ction			
	19.2		otic Nitrogen Fixation			
	19.3		ondrial Proteomics			
	19.4		Cytosol Proteomics			
	19.5		osome Proteomics			
	19.6		pid Proteomics			
	19.7		egrated Proteomic View of the Soybean Nodule			
	Refer	ences		322		
20.	Prote	omes in	Arbuscular Mycorrhizal Symbiosis	326		
	Eliane Dumas-Gaudot and Ghislaine Recorbet					
	20.1	Introdu	ction	326		
	20.2		in AM Symbiosis Towards Simultaneous			
			cs" Strategies	328		

Contents xv

		20.2.1 Combining Protein, Transcript and Metabolite	
		Extractions for Investigation of AM Root/Fungus	
		Interaction	328
		20.2.2 Experimental Plant Design	331
	20.3	Proteome Profiling During AM Symbiosis	331
		20.3.1 Proteomics of Total Proteins	334
		20.3.2 Sub-Cellular Proteomics	335
	20.4	Further Insights	337
	20.5	Conclusions and Future Perspectives	338
	Refer	ences	339
21.		t Proteome Responses to Abiotic Stress	346
	21.1	Introduction	347
	21.2	Water Deficit	347
	21.3	Salt Stress	351
	21.4	Cold Stress	354
	21.5	Heat Stress	356
	21.6	High Light	357
	21.7	Metal Stress and Herbicides	358
	21.8	Conclusions	360
	Refer	ences.	361
Inda			365

Preface

Plant proteomics is a relatively new research field focused on the large-scale functional analysis of proteins extracted from intact plants, particular plant organs, tissues, individual cells, subcellular organelles and/or separated suborganellar structures. Rapidly increasing numbers of excellent publications on plant proteomics, both in primary and applied research, demonstrate the imense potential and importance of this research field for current and future plant science. One of the main aims of plant proteomics is to study the assembly and functional interactions of plant proteins. Proteins often function as molecular machines organized into multiprotein complexes localized within specialized subcellular compartments. Enormous methodological and technical developments have moved recent proteomics towards the large-scale study of post-translational modifications of proteins involved in cellular signalling (regulated by reversible phosphorylation), protein turnover (ubiquitinylation) and membrane association (palmitoylation and myristylation).

This book highlights this rapid progress in plant proteomics with emphasis on model species, subcellular organelles as well as specific aspects such as signalling, plant reproduction, stress biology and/or pathogen/symbiotic interactions between plants and microorganisms. Additionally, brief historical overviews on plant proteomics and two-dimensional gel electrophoresis as well as an introduction to bioinfomatics are provided here. Thus, this monograph represents a synthesis of the most current knowledge in this field, including the most important biological aspects as well as new methodological approaches such as high-resolution twodimensional electrophoresis, protein microchips, MudPIT (multidimensional protein identification technology), fluorescent DIGE (difference gel electrophoresis) alone and/or in combination with stable isotope reagents such as ICAT (isotopecoded affinity tag) and iTRAQ (isobaric tag for relative and absolute quantitation), which allow relative protein quantification. The reader is provided with an up-to date view on plant proteomes in carefully selected model plant species such as Arabidopsis, cereals, legumes and oil seed plants. One chapter focuses on the cell division model represented by suspension cultured tobacco BY-2 cells. Several chapters are devoted to the proteomics of plant organelles and compartments. Among the latter, special attention is paid to the cell wall, plasma membrane, plastids, mitochondria and nucleolus. Two chapters focus on proteomic approaches used to study plant reproduction, namely pollen proteomics and the proteomics of xviii Preface

seed development in oilseed crops. Finally, four chapters describe proteomes during pathogenic and symbiotic interactions between plants and microrganisms, and during plant stress responses. Regarding future perspectives, it is very important that diverse integrated approaches including advanced proteomic techniques combined with functional genomics, bioinformatics, metabolomics and/or with advanced molecular cell biology are nicely presented in several chapters. Thus, this book not only covers the rapid progress in the field of plant proteomics but also delivers this recent knowledge to a broad spectrum of readers including advanced students, teachers and researchers.

At this point I would like to thank my co-editor Jay Thelen and all the authors for their great job and excellent contributions to this book. Last but not least, my special thanks goes to my family, my wife Olinka and sons Matejko and Tomáško, for their encouragement and patience with me during this book project.

Bonn, April 2007

Jozef Šamaj

List of Abbreviations

Chapter 1

PAGE polyacrylamide gel electrophoresis SDS-PAGE sodium dodecyl sulfate polyacrylamide

gel electrophoresis

LC liquid chromatography 2-D two-dimensional

IPG immobilized pH gradient
IEF isoelectric focusing
CBB Coomassie Brilliant Blue
ESI Electrospray Ionization

MALDI Matrix Assisted Laser Desorption Ionization

TOF Time of Flight

PMF peptide mass fingerprinting EST expressed sequence tag ICAT Isotope-Coded Affinity Tag

MS Mass spectrometry

Chapter 2

2-DE Two-dimensional gel electrophoresis

MS mass spectrometry IPG immobilized pH gradients

NEPHGE non-equilibrium pH gradient electrophoresis mABC1 mitochondrial ATP-binding cassette protein 1 SB 3-10 N-decyl-N, N-dimethyl-3-ammonio-1-propane

sulfonate

TBP tributyl phosphine

DIGE difference gel electrophoresis

MALDI Matrix-assisted laser desorption/ionization

TOF Time of flight
CID collision-induced
IEF isoelectric focusing

SDS-PAGE sodium dodecyl sulfate polyacrylamide

xx List of Abbreviations

gel electrophoresis

EST expressed sequence tag
CBB Coomassie Brilliant Blue

Chapter 3

CID collision-induced dissociation
PTM post-translational modification
GPM global proteome machine

Chapter 4

MAPK mitogen-activated protein kinase

MAPKKKs MAPK kinase kinases MAPKKs MAPK kinases

PP2C Protein Ser/Thr phosphatase 2C
DsPs Ser/Thr/Tyr phosphatases
PTP protein Tyr phosphatase
MS mass spectrometry

LC-MS liquid chromatography-mass spectrometry
IMAC immobilised metal ion affinity chromatography

SCX strong cationic exchange SRPK SR protein-specific kinase

SILAC Stable Isotope Labelling by Amino acids

in Cell culture

TiO₂ Titanium dioxide EST expressed sequence tag

Chapter 5

2-DE two-dimensional gel electrophoresis

MS mass-spectrometry
UPA universal protein array
PMAs protein microarrays
AMAs antibody microarrays
RPMAs reverse protein microarrays
HMG high mobility group

ACS-6 1-aminocyclopropane-1-carboxylic acid synthase-6

MKS1 MAPK substrate 1

VSP1 vegetative storage protein1

Pro-Q DPS ProQ-Diamond phosphoprotein strain

 $CK2\alpha$ casein kinase 2α

MPK mitogen-activated kinase

PKA Protein kinase A

Chapter 6

ECM extracellular matrix
ER endoplasmic reticulum

List of Abbreviations xxi

GAPDH glyceraldehyde-3-phosphate dehydrogenase 2D-DiGE 2-dimensional difference gel electrophoresis

2-DE 2-dimensional gel electrophoresis

MS mass-spectrometry
GFP green fluorescent protein

FB1 fumonisin B1

Chapter 7

2-DE 2-dimensional gel electrophoresis

BN-PAGE blue native-polyacrylamide gel electrophoresis

CK 2α casein kinase 2α

DIGE difference gel electrophoresis

DLC diamond-like carbon coated stainless steel

ESI electrospray ionization

FT Fourier transform ion cyclotron resonance

GFP green fluorescent protein ICAT isotope-coded affinity tag

IMAC immobilized metal affinity chromatography

IT ion tran

iTRAQ isobaric tag for relative and absolute quantitation

LC liquid chromatography

MALDI matrix-assisted laser desorption ionization

MS mass spectrometry

SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel

electrophoresis

PTM post-translational modification

Q quadrupole

TAP tandem affinity purification

TOF time-of-flight

2-DE two-dimensional electrophoresis

Chapter 8

MS mass-spectrometry

MALDI matrix-assisted laser desorption ionization

Q quadrupole TOF time-of-flight

ESI electrospray ionization

eSLDB eukaryotic sub-cellular localisation database SUBA subcellular location database for Arabidopsis

proteins

GFP green fluorescent protein

AMPDB Arabidopsis Mitochondrial Protein Database

IMAC metal ion affinity chromatography

TRX thioredoxin

TAP tandem affinity purification

xxii List of Abbreviations

TEV tobacco etch virus ICAT isotope-coded affinity tag

iTRAQ isobaric tag for relative and absolute quantitation SILAC stable isotope labeling with amino acids in cell culture

MRM multiple reaction monitoring

HPLC high performance liquid chromatography

LC liquid chromatography

Chapter 9

2-DE two-dimensional electrophoresis

Mb Megabase

EST expressed sequence tag TC tentative consensus parts per million ppm **IEF** isoelectric focusing AM arbuscular mycorrhizal dai days after inoculation PR pathogenesis-related ABA abscisic acid Ado-Met S-adenosyl-Met

LEA late embryogenesis abundant A. euteiches Aphanomyces euteiches

NSF N-ethylmaleimide-sensitive fusion

ABA abscisic acid
G. mosseae Glomus mosseae
G. intraradices Glomus intraradices

iTRAQ isobaric tags for relative and absolute quantitation

ICAT isotope-coded affinity tags IPG immobilized pH gradient

LC-MS/MS liquid chromatography coupled to tandem mass

spectrometry

MALDI TOF-MS matrix assisted laser desorption/ionization

time-of-flight mass spectrometry

MS mass spectrometry
MS/MS tandem mass spectrometry
M. truncatula Medicago truncatula

MudPIT multidimensional protein identification technology

pI isoelectric point

PMF peptide mass fingerprinting PR pathogenesis-related

RuBisCO ribulose 1,5-bisphosphate carboxylase/oxygenase

S. meliloti Sinorhizobium meliloti.

Chapter 10

WAF weeks after flowering

List of Abbreviations xxiii

2-DE two-dimensional gel electrophoresis
PTM post-translational modifications
PMF peptide mass fingerprint
TC tentative consensus
IPG immobilized pH gradient

MALDI-TOF Matrix Assisted Laser Desorption

Ionization-Time of Flight

EST expressed sequence tag
SSP seed storage proteins
LOX lipoxygenases
SuSy sucrose synthase
SBP sucrose-binding protein
PEP phosphoenolpyruvate

PDC pyruvate dehydrogenase complex FBA fructose bisphosphate aldolase

RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase

3-PGA 3-phosphoglycerate

GAPDH glyceraldehyde-3-phosphate dehydrogenase

PGK phosphoglycerate kinase
PGM phosphoglucomutase
PGI phosphoglucose isomerase
TPI triose-phosphate isomerases

iPGAM 2,3-bisphosphoglycerate-independent

phopsphoglycerate mutase

PK pyruvate kinase **LEA** late embryogenesis **IEF** isoelectric focusing TAG triacylglycerol ER endoplasmic reticulum BiP luminal binding protein MS/MS tandem mass spectrometry **CBB** Coomassie Brilliant Blue

Chapter 11

EST expressed sequence tag
BY-2 Bright Yellow-2

2-DE two dimensional gel-electrophoresis PTM post-translational modification

MS mass spectroscopy
PMF peptide mass fingerprint
DiGE difference in gel electrophoresis

iTRAQ isobaric tags for relative and absolute quantification

LC liquid chromatography IPG immobilised pH gradient

SDS-PAGE sodium dodecyl sulfate polyacrylamide

xxiv List of Abbreviations

gel electrophoresis

IEF isoelectric focusing

LC-ESI-Q-TOF MS liquid chromatography—electrospray

ionisation-quadrupole-time-of-flight mass

spectrometry

MALDI matrix-assisted laser desorption/ionization

MS/MS tandem MS

LPS lipopolysaccharides

RuBP ruthenium II tris bathophenanthroline disulfonate

ROS reactive oxygen species

BN blue native

RuBisCO ribulose 1,5-bisphosphate carboxylase/oxygenase

Chapter 12

CWP cell wall protein
HRGPs Hyp-rich glycoproteins
H/PRPs Hyp/Pro-rich proteins
GRPs Gly-rich proteins
GH glycoside hydrolases

XTH xyloglucan endotransglucosylase/hydrolases

PMEs pectin methylesterases
LRX leucine-rich repeat-extensins
AGPs arabinogalactan proteins
MS mass spectrometry

PTM post-translational modifications CWME cell wall modifying enzymes

CWMEI inhibitors of cell wall modifying enzymes

PG polygalaturonase

XEGIPs xyloglucan endoglucanase inhibiting proteins

GPI glycosylphosphatidylinositol

MALDI-TOF Matrix-assisted laser desorption/ionization-time

of flight

TDIF tracheary differentiation inhibitory factor

PGIPs inhibitors of polygalacturonases

PMEI Inhibitor of PME

Nt-CIF inhibitor of tobacco invertase ER endoplasmic reticulum

Chapter 13

MS mass spectroscopy

RLKs receptor-like protein kinases

IEF iso-electrofocusing

CTAB cationic trimethyl ammonium bromide

BN-PAGE blue-native electrophoresis

MuDPIT multidimensional protein identification technique

List of Abbreviations xxv

MALDI matrix assisted laser desorption/ionisation

ESI electrospray ionisation

PI-PLC phosphatidylinositol phospholipase C

IMAC immobilised metal ion affinity chromatography

LDS lithium dodecyl sulphate

LOPIT localisation of organelle proteins by isotope

tagging

GPI glycosylphosphatidylinositol

iTRAQ isobaric tags for relative and absolute

quantification

ER endoplasmic reticulum

2-DE two-dimensional gel electrophoresis

16-BAC benzyldimethyl-n-hexadecylammonium chloride

CNBr cyanogen bromide GO gene ontology

DIGE difference in gel electrophoresis

ESTs expressed sequence tags

Chapter 14

MS mass spectroscopy

PTM post-translational modification
TIC Translocon at the Inner envelope

membrane of Chloroplasts

TOC Translocon at the Outer envelope membrane

of Chloroplasts

2-DE two-dimensional gel electrophoresis

TAT twin-arginine translocation

TPR tetratricopeptide
PPR pentatricopeptide

PAP plastid lipid-associated protein

ER endoplasmic reticulum

ceQORH chloroplast envelope quinone oxidoreductase

homologue

IEP32 inner envelope protein of 32 kDa

CAH1 carbonic anhydrase 1
Clp caseinolytic protease
IEF isoelectric focusing

Chapter 15

BSA bovine serum albumin PVP polyvinylpyrrolidone

FW fresh weight

PAGE Polyacrylamide gel electrophoresis

IEF isoelectric focusing

SDS-PAGE sodium dodecyl sulfate PAGE

xxvi List of Abbreviations

MS mass spectrometry

BN blue native

TOM translocase of the outer membrane

HSPs heat shock proteins
CMS cytoplasmic male sterility
PTM post-translational modification
PDC pyruvate dehydrogenase complex

TCA cycle tricarboxylic acid cycle
AOS active oxygen species
ROS reactive oxygen species
HNE 4-hydroxy-2-nonenal

TRX thioredoxin

Y2H yeast two-hybrid technique

FRET fluorescence resonance energy transfer
BRET bioluminescence resonance energy transfer

GRAVY grand average of hydrophobicity

Chapter 16

NoLS Nucleolar localisation sequences

PLRV potato leaf-roll virus GFP green fluorescent protein

2-DE 2D polyacrylamide gel electrophoresis

LC liquid chromatography
MS mass spectrometry
Mr relative molecular mass
DiGE difference gel electrophoresis

MuDPIT multidimensional protein identification technique MALDI matrix assisted laser desorption/ionisation

ESI electrospray ionisation

MS/MS tandem MS TOF time-of-flight

FT-ICR-MS Fourier-transform ion-cyclotron resonance mass

spectrometer

snRNP small nuclear RNP

PTMs Post-translational modifications
GPI glycosylphosphatidylinositol

SILAC Stable Isotope Labelling by Amino acids in

Cell culture

ICAT isotope coded affinity tagging

LOPIT Localisation of organelle proteins by isotope tagging

ER endoplasmic reticulum

ITRAQ Isobaric tag for relative and absolute quantification

TAP tandem affinity purification

TEV tobacco etch-virus

CBP calmodulin-binding protein

List of Abbreviations xxvii

EF elongation factor
EST expressed sequence tag

Chapter 17

PTMs Post-translational modifications

MS mass spectrometry

MS/MS tandem mass spectrometry

2-DE two-dimensional gel electrophoresis

GO gene ontology

EST expressed sequence tag

Q quadrupole

ESI electrospray ionisation MALDI-TOF matrix assisted laser

desorption/ionisation-time-of-flight

Chapter 18

PAMPs pathogen-associated molecular patterns

PRs pathogenesis-related proteins SAR systemic acquired resistance ROS reactive oxygen species PR pathogenesis-related SA salicylic acid JA jasmonic acid ethylene

ET ethylene MS mass spectrometry

AM arbuscular mycorrhizal 2D-LC two dimensional liquid chromatography

MS/MS tandem mass spectrometry

Nep1 necrosis- and ethylene-inducing peptide

HR hypersensitive response

MAPKs mitogen-activated protein kinases

EST expressed sequence tag
CSI cross-species identification

AVR avirulence R resistance

RLP receptor-like protein
CITRX Cf-9-interacting thioredoxin

NBS-LRR nucleotide binding site leucine-rich repeat

GIP glucanase inhibitor proteins

PI protease inhibitors TGases transglutaminases

CBEL cellulose binding elicitor lectin
PAMP pathogen-associated molecular pattern

NLPs Nep1-like proteins
CBD cellulose-binding domain

xxviii List of Abbreviations

PRLs PR-like proteins

PAL phenylalanine ammonia-lyase

TMV tobacco mosaic virus
FHB Fusarium head blight
SOD superoxide dismutase

HRGP hydroxyproline-rich glycoprotein SAR systemic acquired resistance

Chapter 19

2-DE two-dimensional electrophoresis

MALDI matrix assisted laser desorption ionisation

PMF peptide mass fingerprinting

CDPK calmodulin-like domain protein kinase NDPK Nucleoside diphosphate kinase

Chapter 20

AM arbuscular mycorrhizal

1D-SDS PAGE one dimensional sodium dodecyl sulfate

polycacrylamide gel

2-DE two-dimensional gel electrophoresis

LC liquid chromatography

ESI-MS/MS electrospray ionisation tandem mass spectrometry ESI-Q-TOF electrospray ionisation quadrupole time of flight

ESTs expressed sequence tags
GPI glycosylphosphatidylinositol

HPLC high performance liquid chromatography

IPG immobilized pH gradient

MALDI-TOF matrix assisted laser desorption ionisation

time of flight

PCR polymerase chain reaction PM plasma membrane RNAi RNA interference

TILLING targeting induced local lesions in genomes

PMF peptide mass fingerprint MS/MS tandem mass spectrometry

HPLC high performance liquid chromatography DIGE 2-D difference gel electrophoresis

ICAT isotope coded affinity tag

MUDPIT multidimensional protein identification technology

RNAi RNA interference

Chapter 21

MS Mass spectrometry

MALDI-TOF matrix assisted laser desorption ionisation

time of flight

List of Abbreviations xxix

ABA Abscisic acid

RuBisCO ribulose 1,5-bisphosphate carboxylase/oxygenase

HSP heat shock protein

2-DE two-dimensional electrophoresis

PR pathogenesis-related

ASR ABA/stress/ripening responsive protein

COMT caffeate-O-methyltransferase
SAM S-adenosyl-L-methionine
QTLs quantitative trait loci
PQL protein quantity locus
LEA late embryogenesis abundant
CV coefficient of variation
ROS reactive oxygen species

DIGE Difference in-gel electrophoresis

PMF peptide mass fingerprint
EIFs eukaryotic initiation factors
SOD superoxide dismutase

PG plastoglobule
PC phytochelatin
GSH glutathione
BN Blue native

GST Glutathione S-transferase

Chapter 1 Introduction to Proteomics: a Brief Historical Perspective on Contemporary Approaches

Jay J. Thelen

Abstract The field of proteomics has experienced numerous milestones over the course of the past 35–40 years. As an introductory chapter to this larger review text on plant proteomics, this article provides a cursory historical perspective on protein separation and identification techniques widely used in plant biochemistry laboratories today. In the past 10 years alone, advancements in techniques such as two-dimensional gel electrophoresis, mass spectrometry, and mass spectral data mining have made previously intractable proteomics problems almost routine by today's standards. In analyzing these various proteomics approaches I also discuss and project their utility for the next generation of proteomics research.

1.1 Introduction

Proteomics, or the high-throughput identification and analysis of proteins, is an emerging field of research facilitated by numerous advancements over the past 35–40 years in protein separation, mass spectrometry, genome sequencing/annotation, and protein search algorithms. Recognizing this trend in the physical and life sciences, the term "proteome" was first used by Wilkins et al. (1995) to describe the protein complement to the genome. Since the first use of this term its meaning and scope have narrowed. The host of post-translational modifications, alternative splice products, and proteins intractable to conventional separation techniques has each presented a challenge towards the achievement of the classic definition of the word (Chapman 2000; Westermeier and Naven 2002; Wilkins and Gooley 1998). The broad dynamic range of protein expression has also contributed to difficulties in efforts towards identifying every protein expressed in the life cycle of any given organism (Corthals et al. 2000). For example, identification of every protein expressed in plant leaves would never reveal proteins that are specifically expressed

Jay J. Thelen: University of Missouri-Columbia, Department of Biochemistry, Columbia, MO 65211, E-mail: thelenj@missouri.edu

J.J. Thelen

in roots. Despite these limitations, hundreds if not thousands of proteins can be resolved, profiled and identified using the latest methods – a remarkable achievement given the recent genesis of this discipline.

The purpose of this chapter is to briefly introduce and provide a historical perspective on established proteomics concepts and methods that are being used in many plant biology laboratories today to comparatively profile protein expression and identify proteins. I will also attempt to provide a perspective on the future outlook of each of these approaches. This introduction will hopefully be useful for non-experts in the field of proteomics as an aid to comprehension of most of the terminology and jargon used in this highly technical field of life sciences research. The varied approaches to proteomics research can be generally classified as having one of two major objectives: (1) protein or peptide separation, and (2) identification and characterization of resolved proteins or peptides, typically by mass spectrometry. I will address these two aspects of proteomics research in the first two sections in this introductory chapter and then discuss general strategies for quantitative protein profiling.

1.2 Protein Separation and Detection for Proteome Investigations

Currently, there are three preferred methods for separation of complex protein or peptide samples: (1) denaturing polyacrylamide gel electrophoresis (PAGE) also referred to as sodium dodecyl sulfate polyacrylamide (SDS-PAGE); (2) two-dimensional (2-D) gel electrophoresis; and (3) liquid chromatography (LC) a general term that includes all forms of ion exchange, affinity, and reversed-phase chromatography (Hunter et al. 2002). There are of course other forms of protein separation, including preparative isoelectric focusing (protein separation according to native charge) and native or bluenative PAGE, to name but a few alternative techniques. Due to space constraints however, only SDS-PAGE and 2-D gel electrophoresis will be discussed here.

1.2.1 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

No protein separation technique is more widely used than SDS-PAGE, first reported by Laemmli in 1970. It would not be an exaggeration to state that nearly all contemporary laboratories performing life sciences research employ this technique. The widespread use of SDS-PAGE to separate proteins according to size can be attributed to its ease, reproducibility, and modest consumable and instrument expenses. Although an easy technique to perform, the resolving power of SDS-PAGE is somewhat limited. Mass spectrometry (MS) analysis of any single discreet SDS-PAGE protein band from a complex protein sample consistently reveals multiple proteins, frequently greater than ten (Phinney and Thelen 2005). However, for highly enriched

samples of low complexity (<10 unique proteins) SDS-PAGE may be suitable. In general, accurate quantitative analysis of SDS-PAGE protein bands from a complex sample is not feasible as the volume of any band is the collective composition of each unique protein in that band. However, as a pre-fractionation technique for alternative quantification strategies including chemical labeling (using stable isotope conjugates; Ramus et al. 2006) and perhaps label-free quantification using recently developed software tools (SIEVE, DeCyder MS), SDS-PAGE may find a new niche as a rapid, reproducible separation technique prior to MS quantification.

1.2.2 Two-Dimensional Gel Electrophoresis

Around the time at which SDS-PAGE was introduced, O'Farrell applied isoelectric focusing (IEF) to protein samples prior to SDS-PAGE to pioneer the concept of two-dimensional (2-D) gel electrophoresis (O'Farrell 1975). Although extremely powerful in its resolving capabilities, this method suffered from reproducibility issues owing to the casting, focusing, and extrusion of the fragile tube gels used for IEF. Over the years this procedure has been improved through the introduction in 1978 (Görg et al. 1978) and recent commercialization (Görg et al. 2000) of the immobilized pH gradient (IPG) strip, to replace IEF tube gels, which has resulted in a major resurgence in this technique.

Reproducibility, sample loading and resolution for 2-D gel electrophoresis have significantly improved with the introduction of the IPG strip in conjunction with commercial Peltier-cooled programmable focusing units for IEF (Görg et al. 2000). These advancements have made 2-D electrophoresis an attractive method for the separation of complex protein samples. Besides the impressive separation capabilities, another reason 2-DE is frequently preferred to LC-based approaches for protein separation is that a reproducible 2-DE proteome reference map is a static, visual entity. A fully annotated 2-DE reference map for a specific organ, tissue, cell, or organelle of interest is a valuable tool that can save time and money when 'landmarking' differentially expressed proteins in response to a treatment, mutation, or transgene introduction. Although 2-D electrophoresis suffers from well-publicized limitations, such as under-representation of membrane proteins (Wilkins et al. 1998; Santoni et al. 2000), this time-honored method is presently one of the preferred approaches for quantitative characterization of complex protein samples. The popularity of 2-DE will no doubt continue with recent technical developments such as sensitive and quantitative pre- and post-electrophoretic stains for total proteins, as well as phospho- and glycoproteins, as discussed herein.

1.2.3 Extracting Proteins From Plant Samples

Performing 2-D electrophoresis with plant samples can be a challenging endeavor, in part due to the high carbohydrate:protein ratio in most plant tissues. Direct grinding of samples in IEF extraction media, while generally sufficient for non-plant