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Supervisor’s Foreword

Phase transitions as a result of symmetry breaking occurs are classified into several
classes (universality class) depending on the type of symmetry and the spatial
dimension. This classification has been done for many systems in equilibrium, and
various textbooks are published. Now, when a symmetry spontaneously breaks in
systems out of equilibrium, there are not so many examples studied concretely.
Under such circumstances, Springer Thesis by Taiki Haga provides us a new phase
transition in a disordered system driven by an external force.

The most striking result is that the quasi-long-range order appears in a
three-dimensional system. This phenomenon is not clearly observed for equilibrium
systems, and may be specific to systems out of equilibrium. The idea is simple.
Some disorder destroys the phase order of the XY model in three dimensions, while
an external driving restores the order. As a result, the system behavior is expected to
be equivalent to that of pure XY model in two dimensions. This may be a sort of
dimensional reduction for disordered nonequilibrium systems, which is his pro-
posal. Of course, sufficient evidence is needed to assert qualitatively new properties
of quasi-long-range order in three dimensions. He succeeded in raising its credi-
bility by conducting numerical experiments and by performing the intensive
renormalization group analysis.

This theoretical analysis is quite tough. Indeed, for stochastic dynamics out of
equilibrium, the renormalization group for the disordered system are formulated in
a non-perturbative way. In order to complete it, it is necessary to deeply understand
the contemporary development of the renormalization group, because the calcula-
tion requires advanced skills everywhere. Here, in this Springer Thesis, the
renormalization group analysis for the disordered system and non-perturbative
formulation are reviewed. These explanations and their concrete calculations are
quite instructive. They also compile complicated calculations intelligently and give
useful topics for future research.

v



Readers of this Springer Thesis can learn the most advanced knowledge on the
phase transition out of equilibrium. I am sure that graduate students in theoretical
physics as well as researchers can enjoy reading this Springer Thesis.

Kyoto, Japan
December 2018

Prof. Shin-ichi Sasa
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Chapter 1
Introduction

1.1 Physics of Phase Transitions

Our naive intuition says that systems composed of simple constituents are also sim-
ple. In other words, the behavior of complex systems is trivially predictable from
the property of their elements. This reasonable belief had been widely accepted
by ancient people before the era of Descartes and Newton. Therefore, they relied
on supernatural principles to explain the origin of “irreducible complexity” in our
world, such as life. However, we today recognize that this intuition is incorrect and
the whole system can have properties which its parts do not have. No matter how
complicated living things seem to be, they are ultimately composed of atoms which
obey a simple dynamical rule. This is one of the most remarkable and profound facts
in the world. Then, we are naturally led to a question how rich macroscopic physics
emerges from a simple microscopic principle, or more naively,why our universe is so
complicated despite of the simpleness of the fundamental law. To answer this chal-
lenging question is the goal for those who are working in condensed matter physics,
statistical physics, and biological physics. Unfortunately, our current understanding
concerning this problem is very limited.

As an elementary step toward clarifying themechanism underlying the emergence
of macroscopic physics, we restrict our attention to the simplest phenomena which
are easy for mathematical modeling and analysis. It is phase transition [1, 2]. When
one continuously changes external parameters, such as temperature and pressure,
the macroscopic state of many-body systems can discontinuously change at some
critical point. Examples include liquids to solids transitions in interacting particle
systems, and para-to ferromagnetic transitions in magnetic systems. Although these
phenomena are ubiquitous in our daily life, it is highly nontrivial task to understand
their mechanism from a microscopic dynamical rule. Note that the property of the
interactions among microscopic constituents, such as molecules or spins, do not
change at the transition point. Therefore, phase transition is one of the simplest
emergent phenomena that cannot be explained only from the nature of the individual
parts composing the systems.
© Springer Nature Singapore Pte Ltd. 2019
T. Haga, Renormalization Group Analysis of Nonequilibrium
Phase Transitions in Driven Disordered Systems, Springer Theses,
https://doi.org/10.1007/978-981-13-6171-5_1
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2 1 Introduction

Phase transition is a consequence of the competition between interaction and fluc-
tuation. Systems with large degrees of freedom tend to be “ordered” in the ground
state, where the interaction energy is minimized. For example, interacting particles
form into a crystal and spin systems settle in a completely ordered ferromagnetic
or anti-ferromagnetic state at zero temperature. If the interactions between the con-
stituents are simple, the ground states of the systems composed of them are also
trivial. There is no interesting structure in the ground state. We now ask what hap-
pens when such interacting systems are stirred by fluctuations? There are two distinct
types of fluctuations, time-dependent and time-independent fluctuations. The typical
example of the former type is thermal fluctuation, which originates from the dynam-
ics of microscopic degrees of freedom ignored in the effective description of the
system. One can also consider nonthermal time-dependent fluctuation. For example,
suppose that amacroscopic dissipative system, such as fluids and granular systems, is
randomly agitated by an external agent. As a more subtle type of fluctuation, there is
one resulting from the uncertainty principle in quantum systems, i.e., quantum fluc-
tuations. In this section, let us concentrate on systems driven by thermal fluctuations.
Note that fluctuations do not have any remarkable features themselves, and they are
often described by Gaussian white noise, which is the simplest stochastic process.
What is surprising in many-body physics is that the competition between simple
interactions and random fluctuations yields a wide variety of nontrivial structures
and complicated dynamics.

The intuitive explanation of phase transitions is simple. When the fluctuation is
quite small, the structure of the ground state is hardly affected and the system remains
ordered. However, if the fluctuation prevail over the interaction, the order is destroyed
and a disordered phase (high-temperature phase, paramagnetic phase) is realized. To
clarify the mathematical structure underlying these phenomena, we introduce an
analytically tractable model; an N -component spin system with ferromagnetic inter-
action. Let Si = (S1i , . . . , S

N
i ) be a spin variable at site i in the D-dimensional hyper

cubic lattice. The norm of each spin is fixed at unity: |Si |2 = 1. The Hamiltonian is
given by

H({Si }) = −J
∑

〈i j〉
Si · S j −

∑

i

h · Si , (1.1)

where 〈i j〉 indicates the nearest-neighbor sites and J is a positive constant. h is a
uniform external field. TheHamiltonian is invariantwith respect to the global rotation
of the spins in the absence of the external field. Obviously, this Hamiltonian attains
its minimum when all spins are completely ordered. It is convenient to introduce
a continuous version of this spin model. Let φ(r) = (φ1(r), . . . , φN (r)) be an N -
component real vector field. The simplest Hamiltonian with the O(N ) rotational
symmetry is given by

H[φ] =
∫

dD r
[∑

α

1

2
K |∇φα(r)|2 +U (ρ(r)) − h · φ(r)

]
, (1.2)
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where K is a positive constant and ρ(r) = |φ(r)|2/2 is the field amplitude. The
choice of the local potential U (ρ) is arbitrary as long as it is lower bounded, for
example, we have

U (ρ) = rρ + gρ2, (1.3)

with a positive constant g. The first term in Eq. (1.2) denotes an elastic energy, which
favors uniform configurations, and the second term determines the amplitude of the
field. If U (ρ) has its minimum at a nonzero value, the ground state of this model is
a completely ordered ferromagnetic state. We call the model defined by Eq. (1.1) or
(1.2) the O(N ) model. It is worth to note that the continuous model Eq. (1.2) can be
considered as a long-distance description of the lattice model Eq. (1.1). Namely, the
field φ(r) corresponds to a coarse-grained spin variable:

φ(r) = l−D
∑

i∈Cr

Si , (1.4)

where Cr is a hyper-cube with length l centered at r . The coarse-graining scale l is
chosen such that it is much smaller than the correlation length, but Cr still contains
many spins. For N = 1 this model is called the Isingmodel, for N = 2 the XYmodel
and for N = 3 the Heisenberg model.

The equilibrium dynamics are described by the following equation of motion:

∂tφ
α = −δH[φ]

δφα
+ ξα. (1.5)

The time-dependent Gaussian random noise ξ(r, t) satisfies

〈ξα(r, t)〉 = 0,

〈ξα(r, t)ξβ(r ′, t ′)〉 = 2T δαβδ(r − r ′)δ(t − t ′), (1.6)

where T is a temperature. The physical meaning of Eq. (1.5) is as follows; the
first term of the right-hand side represents the force that reduces the energy and
the second term is the thermal fluctuation. At zero temperature, the system relaxes
toward its ground state, while at finite temperature, it reaches a statistically steady
state characterized by the Boltzmann-Gibbs distribution,

PG[φ] = e−βH[φ]

Z
, (1.7)

where β = 1/T is the inverse temperature and

Z =
∫

Dφe−βH[φ] (1.8)
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is the partition function. The average of an arbitrary physical quantity A[φ] in the
steady state is given by

〈A[φ]〉 =
∫

DφA[φ]PG[φ]. (1.9)

To calculate the average Eq. (1.9) is highly nontrivial and there are only a few exactly
solvable examples. Various theoretical methods to approximately evaluate Eq. (1.9)
have been developed, such as mean-field theory, high temperature expansion, spin-
wave approximation, and renormalization group (RG) theory.

The ground state of the O(N ) model is a completely ordered state. When the
spatial dimension of the system is higher than the so-called lower critical dimen-
sion Dlc, the ordered phase is stable against small thermal fluctuations. For the Ising
model (N = 1), Dlc = 1, and for N ≥ 2, Dlc = 2. The important difference between
the cases that N = 1 and N ≥ 2 is the absence or presence of massless modes. For
N ≥ 2, there are infinitely many ground states which are continuously connected by
the global rotation of the spins. Due to this degeneration, the system has infinites-
imally low energy excitations, which are called massless or Goldstone modes. At
two dimensions, such excitations destroy the ordered phase at any finite temperatures
(Mermin-Wagner theorem). Above the lower critical dimension, there is a long-range
ordered (LRO) phase at low temperatures, wherein the equal-time correlation func-
tion C(r ′ − r) = 〈φ(r ′) · φ(r)〉 attains a nonzero constant M2 in the long-distance
limit |r ′ − r| → ∞. The magnetization M decreases with temperature, and eventu-
ally it vanishes at some critical temperature Tc. In the high-temperature phase, the
correlation function decays exponentially,C(r) ∼ e−|r |/ξc , where ξc is the correlation
length. Near the critical point between two phases, the system exhibits anomalous
behaviors, such as the divergence of the correlation length and the characteristic
time-scale. These critical phenomena are characterized by the critical exponents and
scaling functions, which are known to be independent of the microscopic detail of
the system. This remarkable universality can be explained by the RG theory.

Let us briefly sketch the concept of the RG theory [1–4]. The partition function
Eq. (1.8) contains all fluctuations with the momentum (wavenumber) 0 ≤ |q| ≤ 	,
where 	 is an ultra-violet cutoff corresponding to the inverse of the lattice constant.
In the RG theory, one follows the evolution of the effective Hamiltonian when high
energy fluctuations are successively integrated out. We split the field φ into slowly
and rapidly varying contributions,φ = φL + φS , whereφL contains longwavelength
modes with |q| < k and φS contains short wavelength modes with k < |q| < 	. The
effective Hamiltonian H̃k for the slowly varying component is defined by

e−H̃k [φL ] =
∫

DφS e−H[φL+φS ], (1.10)

where the inverse temperature β is absorbed into the Hamiltonian. While in the
original model the length is measured in units of the lattice constant 	−1, in the
coarse-grained model described by H̃k the length should be measured in units of
k−1. This redefinition of the cutoff 	 → k leads to the rescaling of the parameter
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in H̃k . When k is chosen to be close to 	, the successive application of the above
transformation yields a continuous flow in the parameter space of the Hamiltonian.
The thermodynamic phases (long-range ordered or disordered phase) and the critical
point are characterized by a fixed point, at which the flowof the effectiveHamiltonian
vanishes. For example, the long-range ordered and disordered phases correspond
to the zero and infinite temperature fixed points, respectively. Between these fixed
points, there is a nontrivial fixed point that controls the critical behavior. The critical
exponents and scaling functions can be obtained from the structure of the RG flow
near the fixed point. The important point is that the nature of the fixed point is
independent of the microscopic detail of the system. Therefore, the critical behaviors
in a wide variety of systems can be classified into a few universality classes which
depend only on symmetry and spatial dimension.

In general, the RG transformation Eq. (1.10) cannot be performed exactly, thus we
need some approximations. In many cases, the perturbative method would be useful,
where the nonlinear term in the effective Hamiltonian is treated as a perturbation. It
is justified when the coefficient of the nonlinear term evaluated at the fixed point is
quite small. This condition is satisfied near the upper critical dimension, above which
the nonlinear term becomes irrelevant. Although the perturbative RG approach has
enjoyed considerable success, one should keep in mind that it fails for some types of
systems. Interacting systems with quenched disorder are remarkable examples that
the perturbative RG fails, as we will discuss later.

1.2 Phase Transitions in Disordered Systems

In the previous section, we discussed phase transitions in interacting systems driven
by time-dependent fluctuations. Next, let us consider what happens when time-
independent and spatially randomfluctuations are exerted on the systems.This type of
fluctuations is called quenched disorder. The precisemeaning of “time-independent”
is that the disorder does not change on the typical time scales in which we are
interested. For example, suppose ferromagnetic materials with defects or impurities,
which do not move on the time scale of the flip of individual spins. Obviously, the
effect of the quenched disorder to destroy the ordered state is much stronger than
that of the thermal fluctuations. Since all specimens in experiments inevitably con-
tain impurities or defects, it is important from technical viewpoint to investigate the
effect of the quenched disorder. In addition, it is also an intriguing problem from
theoretical perspectives to consider what type of phase transitions and critical phe-
nomena can emerge from the competition between the interaction and the quenched
disorder.

In this section, we introduce some well-studied models of disordered systems and
discuss their properties. From a simple phenomenological argument, we first deter-
mine the lower critical dimensions for these models. We next show that the standard
perturbative approach leads to a beautiful conclusion; dimensional reduction, which
states that the critical behavior of disordered systems in spatial dimension D is the


