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Preface

The present second edition substantially augments the first edition of the book
(Non-equilibrium Evaporation and Condensation Processes. Analytical Solutions,
Springer, 2018) by the author. Non-equilibrium evaporation and condensation
processes play an important role in a number of fundamental and applied problems.
When using laser methods for processing of materials, it is important to know the
laws of both evaporation (for thermal laser ablation from the target surface) and
condensation (for interaction with the target of an expanding vapor cloud). Some
accident situations in energetic industry develop from a sudden contact of bulks of
cold liquid and hot vapor. Shock interaction of two phases produces a pulse rar-
efaction wave in vapor accompanied by an abrupt variation of pressure in vapor and
intense condensation. Spacecraft thermal protection design calls for modeling of
depressurization of the protection cover of nuclear propulsion units. To this end,
one should be capable of calculating the parameter of intense evaporation of the
heat-transfer medium as it discharges into vacuum. Solar radiation on a comet
surface causes evaporation of its ice core with formation of the atmosphere.
Depending on the distance to the Sun, the intensity of evaporation varies widely and
can be immense. The process of evaporation, which varies abruptly in time, has a
substantial effect on the density of the comet atmosphere and the character of its
motion.

The specific feature of intense phase transitions is the formation of the
non-equilibrium Knudsen layer near the surface. In this setting, the standard gas-
dynamic description within the Knudsen layer becomes illegitimate: the phe-
nomenological parameters of the gas, as determined by statistical averaging rules,
cease to have their macroscopic sense. Under non-equilibrium conditions, the
joining conditions of the condensed and gaseous phases turn out to be much more
involved than those adopted in the equilibrium approximation. From consistent
consideration of molecular-kinetic effects on the phase boundary, one can get
important non-trivial information about the thermodynamic state of vapor under
phase transitions.
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An important problem of safety assurance in nuclear power plants is the cal-
culation of the process of discharge of the heat-transfer medium through pipeline
ruptures. This can be accompanied by explosive boiling of superheated liquid
resulting in substantial restructuring of the flow structure. The explosive boiling
regime is manifested most vividly when the liquid attains the limit thermodynamic
temperature (the spinodal temperature). This is accompanied by homogeneous
nucleation (fluctuation generation of vapor bubbles in the mother phase).

Despite the fluctuation character of nucleation and short lifetime of vapor
bubbles, the phenomenon of gaseous (vapor) bubbles in liquid has many mani-
festations: underwater acoustics, sonoluminescence, ultrasonic diagnosis, reduction
of friction by surface nanobubbles, and nucleate boiling. In applications pertaining
to the physics of boiling, it is required to know the dependence of the growth rate of
a vapor bubble on a number of parameters: thermophysical properties of liquid and
vapor, capillary, viscous, and inertia forces, and molecular-kinetic laws on the
phase boundary.

Modern progress in microelectronics and nanotechnologies calls for a further
analysis of the behavior of the phase boundary in microscopic objects, and in
particular, the behavior of the liquid–gas boundary. Here, of great value is the study
of the joint action of intermolecular and surface forces, which control the motion of
evaporating microscopically thin films.

Cooling of heated surfaces by droplet jets is widely spread in various engi-
neering applications: energy industry, metallurgy, cryogenics, space engineering,
and firefighting. The progress in this area is hindered by insufficient comprehension
of all the phenomena accompanying the impingement of a jet on a surface. The key
problem here is the study of the interaction of liquid droplets with rigid surface.

Exotic non-equilibrium effects accompany the boiling of liquid helium in the
state of superfluidity, which is a macroscopic quantum state. Of fundamental
interest here is the analysis of thermodynamic principles of superfluid helium from
two alternative positions: the macroscopic approach, which is based on the
two-fluid model, and the microscopic analysis, which depends on the quantum-
mechanical model of quasiparticles.

Of special interest is also the physical concept of pseudoboiling, which describes
the laws of heat exchange in the range of supercritical pressures of a single-phase
liquid. The model of pseudoboiling enables one to calculate the heat exchange with
turbulent flow in a channel of medium with highly variable thermophysical
properties.

The present book is solely concerned with analytical approaches to statement
and solution of problems of the above sort. The analytical approach is capable of
providing a solution to the mathematical model of a physical problem in the form of
compact formulas, expansions into series, and integrals over a complete family of
eigenfunctions of a certain operator. The study involves the application of the
available methods and discovery of new methods of solutions of a given mathe-
matical model of a real process, as given as a differential or integral equation or a
system of differential or integro-differential equations. The resulting analytical
relation provides an adequate description (even for a simplified model) of the
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essence of a physical phenomenon. From analytical solutions, one is capable to
understand and represent in a transparent form the principal laws, especially in the
study of a new phenomenon or a process. This is why analytical methods are
always employed on the first stage of mathematical modeling. Analytical solutions
are also used as test models for validation of results of numerical solutions.

In Chap. 1, the molecular-kinetic theory is looked upon as a link between the
microscopic and macroscopic levels of the description of the structure of the
material. Historical aspects of the creation by Ludwig Eduard Boltzmann of his
seminal equation are discussed; we also dwell upon the discussions following this
discovery. We give a precise solution to the Boltzmann equation in the case of
space homogeneous relaxation. Applied problems of intense phase transition are
discussed. The problem of specifying boundary conditions on the phase interface
of the condensed and gaseous phases is discussed. Methods of the kinetic analysis
of the evaporation and condensation processes are discussed.

Chapter 2 is concerned with non-equilibrium effects on the phase interface. We
give the conservation equations of molecular flows of mass, momentum, and
energy and describe the classical problem of evaporation into a vacuum. Actual and
extrapolated boundary conditions are analyzed for the gas-dynamic equations in the
external domain. It is shown that in the non-equilibrium Knudsen layer (adjacent to
the phase boundary), the velocity distribution function of molecules can be con-
ventionally split into two parts. We also discuss the problem of determination of the
accommodation coefficients of mass, momentum, and energy. We present the
fundamentals of the linear kinetic theory. Approximate kinetic models of the strong
evaporation problem are described.

Chapter 3 is devoted to the approximate kinetic analysis of strong evaporation.
On basis of mixing model, we give analytical solutions for temperatures, pressures,
and mass velocities of vapor and match them with the available numerical and
analytical solutions. The mechanism of reflection of molecules from the
condensed-phase surface is analyzed. The effect of the condensation coefficient on
the conservation equations of molecular flows of mass, momentum, and energy, and
also on the thermodynamic state of the resulting vapor is studied. “Thermal con-
ductivity in target–intensive evaporation” conjugate problem is calculated. The
asymptotic behavior of the solutions in terms of the key parameters of the systems
is obtained and analyzed from the physical viewpoint.

Chapter 4 proposes a semi-empirical model of strong evaporation based on the
linear kinetic theory. Extrapolated jumps of density and temperature on the
condensed-phase surface are obtained by summing the linear and quadratic com-
ponents. The expressions for the linear jumps are taken from the linear kinetic
theory of evaporation. The nonlinear terms are calculated from the relations for a
rarefaction shock wave with due account of the corrections for the acceleration
of the egressing flow of gas. Analytical dependences of the vapor parameters in the
gas-dynamic region on the Mach number, the condensation coefficient, and the
number of degrees of freedom of gas molecules are put forward.
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In Chap. 5, the approximate kinetic analysis of strong condensation is devel-
oped. The “mixing model” is used to calculate regimes of subsonic and supersonic
condensation. Peculiarities of supersonic condensation with increased Mach num-
ber are studied: the inversion of the solution, bifurcation of the solution, transition
to two-valued solutions, the limit Mach number, for which a solution exists. The
effect of the condensation coefficient on the conservation equations for mass, the
normal component of the momentum, and the energy of molecular flows is studied.
The “condensation lock” phenomenon due to reduced permeability of the
condensed-phase surface is examined.

In Chap. 6, the mixing model is used for the analysis of linear kinetic problems
of phase transition. The asymmetry of evaporation and condensation, which occurs
for intensive processes, remains even for the case of linear approximation. The
expressions for pressure and temperature jumps are obtained for the evaporation
problem: These results almost coincide with those of the classical linear theory. The
dependence of the vapor pressure on its temperature is shown as having a minimum
near the margin between the anomalous and normal regimes of condensation. The
results are extended to the case of diffusion reflection of molecules from the phase
boundary.

Chapter 7 is concerned with the spherically symmetric growth of a vapor bubble
in an infinite volume of a uniformly superheated liquid. We considered the influ-
ence of each effect within the framework of the limiting schemes. A detailed
analysis of the energetic thermal scheme of a bubble is carried out. As the next step,
we come to “binary” schemes of growth that describe the simultaneous effect of two
factors on the growth of a bubble. The evaporation–condensation coefficient was
estimated by comparing the theoretical solution with experimental data on the
growth of a vapor bubble under reduced gravity conditions. The growth mechanism
of bubbles formed as a result of homogeneous bubble nucleation is studied. We
arrive at the “asymmetry paradox” of the processes of evaporation and
condensation.

Chapter 8 is concerned with the study of the growth of a vapor bubble in the case
when the superheating enthalpy exceeds the phase transition heat. The Plesset–
Zwick formula was extended to the region of strong superheating. It was that when
the Stefan number exceeds 1, there arises a feature of the mechanism of heat input
from the liquid to the vapor leading to the effect of pressure blocking in the vapor
phase. To calculate the Stefan number in the metastable region, we used the scaling
law of change in the isobar heat capacity. The problem for the conditions of the
experiment on the effervescence of the butane drop was solved. An algorithm was
proposed for constructing an approximate analytical solution for the range of Stefan
numbers greater than unity.

Chapter 9 provides an evaporating meniscus on the interface of three phases. An
approximate solving method is presented capable of finding the influence of the
kinetic molecular effects on the geometric parameter of the meniscus and on
the heat-transfer intensity. The method depends substantially on the change of the
boundary value problem for the fourth-order differential equation (describing the
thermo-hydrodynamics of the meniscus) by the Cauchy problem for a second-order
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equation. Analytical expressions for the evaporating meniscus parameters are
obtained from the analysis of interaction of the intermolecular, capillary, and vis-
cous forces, and the study of the kinetic molecular effects. The latter effects are
shown to depend substantially on the evaporation–condensation coefficient.

Chapter 10 is concerned with kinetic effects for a spheroidal state. The question
on the influence of the kinetic molecular effects on the drop equilibrium conditions
is considered for the first time. Results of the linear kinetic theory of evaporation are
used to evaluate the kinetic pressure difference due to non-equilibrium conditions
of the evaporation process. It is shown that, depending on the value of the
evaporation/condensation coefficient, the kinetic pressure with respect to a drop
may have either repulsing or attracting character. The analytical dependence for the
thickness of the vapor film for a wide range of evaporation/condensation coefficient
is found.

Chapter 11 provides a vapor condensation upon transversal flow around a
cylinder. The analytical solutions for the limiting heat-exchange laws, which cor-
respond to the effect of only one factor, were obtained under the assumption that
there is no effect of the remaining factors. The results of the solution are presented
as relative (with respect to the case of steady-state vapor) heat-exchange laws. The
qualitative analysis of the effect of mode parameters on heat transfer upon con-
densation was carried out. The analysis of the limiting heat-exchange laws
demonstrates their mutual interdependence, which impedes the isolation of simple
asymptotics of the problem under consideration with respect to individual
parameters.

Chapter 12 describes the principal constituents of the general problem of boiling
phenomenon: conditions for inception of boiling, formation of nucleation sites,
boiling regimes. Growth laws of a vapor bubble in a bulk of liquid and on a rigid
surface are described. A microlayer of liquid under a vapor bubble, a macrolayer
under vapor conglomerates, and dry spots on the heat surfaces are studied. A brief
description of heat-exchange models for nucleate boiling is given; these models are
based on the bubble dynamics and integral characteristics of the process. A special
attention is given to a debating problem on the effect of thermophysical charac-
teristics of a heat-transmitting wall. An approximate model for periodic conjugate
heat-exchange problem for boiling is given. Calculation results of the conjugation
factor for boiling and transition boiling regimes are given.

Chapter 13 describes the superfluidity phenomenon due to the formation of
“particle condensate” in one quantum state. Here, we consider specific peculiarities
of heat exchange with film boiling of superfluid helium (He-II) related to
molecular-kinetic effects on the phase boundary. Analysis of thermodynamic
principles of He-II in the framework of the two-fluid model is carried out. A method
of construction of thermodynamics from first principles is considered. The use
of the quantum-mechanical conception quasiparticles enables us to prove the
equivalence of the macroscopic and microscopic levels of He-II thermodynamics
analysis.
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Chapter 14 describes the heat-exchange problem under a turbulent flow in a
coolant channel in the zone of supercritical pressures. The modified surface renewal
model was developed capable of calculating the effect of variable thermophysical
properties on the friction and heat exchange. The approximation solution is shown
as being legitimate in describing the general case of variation of thermophysical
properties. The model was validated on problems with available solutions: flow in a
turbulent boundary layer of viscous compressible gas, a permeable wall past by
incompressible fluid. The law of heat transfer for the turbulent flow in the channel
in the zone of supercritical pressures was calculated.

In Chapter 15, the derivation of the generalized Rayleigh equation that describes
the dynamics of a spherical gas bubble in a tube filled with an ideal liquid is given.
An exact analytic solution of the problem on vapor bubble collapse in a long tube
was obtained. A quantum-mechanical model of homogeneous bubble nucleation is
put forward. The problem of the rise of the Taylor bubble in a round tube is
considered. The available solutions are shown to be ill-justified due to divergence
of some involved infinite series. An analytical solution of the problem is obtained
based on the collocation method and asymptotical analysis of the solution to the
Laplace equation.

Appendix A considers the problem of heat transfer under film boiling. We obtain
analytical solutions capable of taking into account the effects of vapor superheat in
a film and the influence of the convection on the effective values of thermal con-
ductivity and heat of phase transition of superheated vapor. Universal calculation
formulas are presented describing the dependence of these values on the Stefan
number for the cases of linear and parabolic distribution of velocities in the vapor
film.

Appendix B presents the results of experimental investigation of heat transfer in
a pebble bed for flows of single-phase boiling liquid. The experiments involved
measurements of the temperature of heated wall, as well as of the temperature
distribution over the channel cross section at the outlet from the pebble bed. Use
was made of a method of processing of experimental data, which enables one to
determine the coefficient of “pseudoturbulent” thermal conductivity without dif-
ferentiation of the experimentally obtained temperature profile. Temperature pro-
files were obtained for the case of boiling on the pebble bed wall, and qualitative
analysis of these profiles was performed.

I would like to deeply thank the Director of the ITLR, Series Editor
Mathematical Engineering of Springer-Verlag, Prof. Dr.-Ing. habil. B. Weigand for
his strong support of my aspiration to successfully accomplish this work, as well as
for his numerous valuable advices and fruitful discussions concerning all aspects
of the analytic solution methods. Prof. B. Weigand repeatedly invited me to visit the
Institute of Aerospace Thermodynamics to perform joint research. Our collabora-
tion was of great help for me in the preparation of this book. I am deeply indebted
to Dr. J.-Ph. Schmidt, Editor of Springer-Verlag, for his interest in the publication
and very good cooperation during the preparation of this manuscript.
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Chapter 1
Introduction to the Problem

1.1 Kinetic Molecular Theory

The statistical mechanics (at present, the statistical physics), which is considered as
a new trend in theoretical physics and is based on the description of involved
systems with infinite number of molecules, was created by Maxwell, Boltzmann,
and Gibbs. An important constituent of the statistical mechanics is the kinetic
molecular theory, which resides on the Boltzmann integral-differential equation. In
1872, Ludwig Boltzmann published his epoch-making paper [1], in which, on the
basis of his Boltzmann equation, he described the statistical distribution of the
molecules of gas. The equilibrium distribution function of molecules with respect to
velocities, as derived by Maxwell in 1860, is a particular solution to the Boltzmann
equation in the case of statistical equilibrium in the absence of external forces. The
famous H-theorem, which theoretically justifies that the gas growth irreversibly in
time, was formulated in [1].

Metaphysically, the kinetic molecular theory promoted the decisive choice
between two alternative methods of describing the structure of matter: the continual
and discrete ones. The continual approach operates with continuous medium and by
no means is concerned with the detailed inner structure of matter. The system of
Navier-Stokes equations is considered as its specific tool in application to liquids.
The discrete approach traditionally originates from the antique atomistic structure of
matter. By the end of the 19th century it was already generally adopted in chem-
istry. However in the time of Boltzmann no final decision in theoretical physics was
made. It may be said that Boltzmann’s theory played a crucial role in the solution of
this central problem: the description of the structure and properties of a substance
should be based on the discrete kinetic approach.

The time period at the end of the 19th century is noticeable in the European
science by notorious philosophical discussions between the leading natural scien-
tist. Wilhelm Ostwald, the author of “energy theory’’ in the natural philosophy
considered energy as the only reality, while the matter is only a form of its
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manifestation. Being skeptical about the atomic-molecular view, Ostwald inter-
preted all natural phenomena as various forms of energy transformation and thus
brought the laws of thermodynamics to the level of philosophic generalizations.
Ernst Mach, a positivist philosopher and the founder of the theory of shock waves is
gas dynamics, was a great opponent of atomism. Since at his times atoms were
unobservable, Mach considered the “atomistic theory” of matter as a working
hypothesis for explaining physical and chemical phenomena. Disagreeing with the
“energists” (Ostwald) and “phenomenologists” (Mach), Boltzmann, nevertheless
tried to find in their approaches a positive component and sometimes spoke almost
in the spirit of Max’s positivism. In his paper [2], he wrote: “I felt that the con-
troversy about whether matter or energy was the truly existent constituted a relapse
into the old metaphysics which people thought had been overcome, an offence
against the insight that all theoretical concepts are mental pictures”.

Irrespective of the fact that Boltzmann’s theory depend on the simple kinetic
molecular model (which now seems quite transparent), it looked fairly challenging
for many physicists 150 years ago. The principal moment of the theory is the
following postulate: all phenomena in gases can be completely described in terms
of interactions of elementary particles: atoms and molecules. Consideration of the
motion and interaction of such particles had enabled to put forward a general
conception combining the first and the second laws of thermodynamics. The crux of
Boltzmann’s perceptions can be expressed in a somewhat simplified form as
follows [3]: atoms and molecules do really exist as elements in the outside world,
and hence there is no need to artificially “generate” them from hypothetical
equations. The study of the interaction of molecules on the basis of the kinetic
molecular theory provides comprehensive information about the gas behavior.

It is also worth pointing out that until the mid-1950s theoretical physics con-
tained the “caloric theory”, which looked quite good from the application point of
view. This theory was capable of adequately describing a number of facts, but was
incapable of correctly describing transitions of various forms of energy into each
other. It was the kinetic molecular theory that made it possible to ultimately and
correctly solve the problem of the description of the heat phenomenon. So, from the
metaphysical point of view, the kinetic molecular theory is an antithesis to both the
“energetic” and the “phenomenological” approaches.

Boltzmann introduced into science the concept of the “statistical entropy”, which
later played a crucial role in the development of quantum theory [4]. When Planck
was deriving his well-known formula on the spectral density of radiation, he first
wrote it down from empirical considerations. Later, Planck obtained this formula by
theoretical considerations with the help of the statistical concept of entropy. In
extending this concept for the radiation of a black-body he required the conjecture
of discrete portions of energy. As a result, Planck had arrived to the definition of an
elementary quantum of energy with a fixed frequency. This being so, the quantum
theory in its modern form could not in principle be formulated without an appeal to
statistical entropy [5]. Few years after Einstein, Planck introduced the concept of a
quantum of light. The Bose–Einstein statistics and Fermi–Dirac statistics both have

2 1 Introduction to the Problem



their roots in Boltzmann’s statistical method. Finally, the second law of thermo-
dynamics (increase of the entropy for a closed system) is obtained as an equivalent
of the H-theorem.

Boltzmann equation, which was obtained, strictly speaking, for rarefied gases,
proved applicable also to the problem of description of a dense medium.
Succeeding generations of scientists investigated in this way plasmas and mixtures
of gases (simple and polyatomic ones), molecules were being considered as small
solid balls. It is worth observing here that the kinetic molecular theory was a link
between the microscopic and macroscopic levels of the description of matter. The
solution to the Boltzmann equation by Chapman–Enskog’s method of successive
approximations (expansion in terms of a small parameter near the equilibrium) had
enabled one to directly calculate the heat-conduction and the viscosity coefficients
of gases.

For many years, due to its very involved structure, the Boltzmann equation had
been looked upon as a mathematical abstraction. It suffices here to mention that the
Boltzmann equation involves a 5-fold integral collision integral and that in it the
distribution function varies in the seven-dimensional space: time, three coordinates
and tree velocities. From the applied point of view, the need for solving the
Boltzmann equation was at first unclear. Various continual-based approximations
proved quite successful for near-equilibrium situations. However, in the 1950s, with
the appearance of high-altitude aviation and launch of the first artificial satellite, it
became eventually clear that the description of motion in the upper atmosphere is
only possible in the framework of the kinetic molecular theory. The Boltzmann
equation also proved to be indispensable in vacuum-engineering applications and in
the study of motion of gases under low pressure conditions. Later it seemed
opportune to develop methods of kinetic molecular theory in far-from-equilibrium
situations (that is, for processes of high intensity).

It appeared later that the Boltzmann equation can give much more than it was
expected 100 years ago. The Boltzmann equation proved capable of describing
involved nonlinear far-from-equilibrium new type phenomena. It is worth noting
that such phenomena were formulated originally from the pure theoretical con-
siderations as a result of solution of some problems for the Boltzmann equation.

1.2 Discussing the Boltzmann Equation

The kinetic molecular theory depends chiefly on the Boltzmann’s H-theorem, which
underlies the thermodynamics of irreversible processes. According to this theorem,
the mean logarithm of the distribution function (the H-function) for an isolated
system decreases monotonically in time. By relating the H-function to the statistical
weight, Boltzmann showed that the state of heat equilibrium in a system will be the
most probable. Considering as an example a perfect monatomic gas, he showed the
H-function as being proportional to the entropy and derived a formula relating
the entropy to the probability of a macroscopic state (Boltzmann’s formula).
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Boltzmann’s formula directly yields the statistical interpretation of the second law
of thermodynamics based on the generalized definition of the entropy. This relation
unites in fact classical Carnot–Clausius thermodynamics and the kinetic molecular
theory of matter. It is the probabilistic interpretation of the second law of ther-
modynamics that manages to reconcile the property reversibility of mechanical
phenomena with the irreversible character of thermal processes. However, at first
this most important location provision of statistical thermodynamics was vigorously
opposed by fundamentalist scientists.

The first objections against new Boltzmann’s theory had appeared already in
1872 right after the appearance of the paper [1]. With some simplification these
objections can be phrased as follows [3]

• why the reversible laws of mechanics (the Liouville equation) allow irreversible
evolution of a system (Boltzmann’s H-theorem)?

• whether the Boltzmann equation contradicts the classical dynamics?
• why the symmetry of the Boltzmann equation does not agree with that of the

Liouville equation?

The Liouville equation, which is of primary importance for the classical
dynamics, features the fundamental symmetry property: the reversion of velocity
leads to the same result as that for time. In contrast to this, the Boltzmann equation,
which describes the evolution of the distribution function, does not have the
symmetry property. The reason for this is the invariance of the collision integral in
the Boltzmann equation with respect to the reversion of velocity: the Boltzmann’s
theory does not distinguish between the collisions reversed in the positive or
negative directions of time (that is, “in the past or in the future”). This remarkable
property of the Boltzmann equation had led Poincaré to the conclusion that the
trend in the entropy growth contradicts the fundamental laws of classical
mechanics. Indeed, according to the well-known Poincaré recurrence theorem
(1890) [3], after some finite time interval any system should return to a state which
is arbitrarily close to the initial one. This means that to each possible increase of the
entropy (when leaving the initial state) there should correspond a decrease of the
entropy (when returning back to the initial state).

In 1896, Zermelo, a pupil of Planck, derived the following corollary to the
Poincaré recurrence theorem: no single-valued continuous and differentiable state
function (in particular, the entropy) may increase monotonically in time. It turns out
that irreversible processes in classical dynamics are impossible in principle when
excluding the singular initial states. Boltzmann, when raising objections to
Zermelo, pointed out the statistical basis of the kinetic molecular theory, which
operates with probabilistic quantities. For a statistical system, which is composed of
a huge number of molecules, the deconfiguration time should be astronomically
large and hence has negligible probability. So, the Poincaré recurrence theorem
remains valid, but in the context of a gas system it acquires the abstract sense: in
reality only irreversible processes with finite probability are realized. In 1918
Caratheodory claimed that the proof of the Poincaré recurrence theorem is
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insufficient, for it does not make use of the Lebesgue’s (1902) concept of a
“measure of a set point”.

In reply to Zermelo’s criticism, Boltzmann wrote: “Already Clausius, Maxwell
and others have shown that the laws of gases have statistical character. Very fre-
quently and with the best possible clarity I have been emphasizing that Maxwell’s
law of distribution of velocities of gas molecules is not the law of conventional
mechanics, but rather a probabilistic law. In this connection, I also pointed out that
from the viewpoint of molecular theory the second law is only a probability law
…”. In 1895, in reply to Kelvin’s strong criticism, Boltzmann wrote: “My theorem
on the minimum (or the H-theorem) and the second law of thermodynamics are
only probabilistic assertions”.

The discussion on the H-theorem was concluded by Boltzmann in his last
lifetime publication [6]: “Even though these objections are very potent in
explaining theorems of kinetic theory of gases, they by no means disprove the
simple theorems of probability … The state of thermal equilibrium differs only in
that to it there correspond the most frequent distributions of vis viva between
mechanical elements, whereas other states are rare, exceptional. Only by this rea-
son, an isolated gas quantum which is in a state different from thermal equilibrium
will go over into thermal equilibrium and will permanently stay there …”.

In 1876 Loschmidt put forward the following fundamental objection to the
kinetic molecular theory: the time-symmetric dynamic equations exclude in prin-
ciple any irreversible process. Indeed, reverse collisions of molecules “mitigate” the
consequences of direct collisions, and hence in theory the system should return in
the initial state. Hence, following its decrease, the H-function (or the inverse
entropy) must again increase from a finite value to the initial value.
Correspondingly, following its growth the must again decrease. Boltzmann in his
polemics with Loschmidt pointed out the conjecture of “molecular chaos”, under-
lying his statistical approach. According s to this conjecture, in a real situation there
is no correlation of any pair of molecules prior to their collision. In a simplified
form, the line of Boltzmann’s reasoning is as follows.

Loschmidt’s idea of intermolecular interaction postulates the existence of some
“storage of information” for gas molecules in which they “store” their previous
collisions. In the framework of classical dynamics, the role of such a storage should
be played by correlations between molecules. Let us now trace the consequences of
a “time-backward” evolution of a system which is accepted by the Liouville
equation. It turns out that certain molecules (however far they were at the time of
velocities reversion) are “doomed” to meet at a predetermined time instant and be
subject to a predetermined transformation of velocities. But this immediately
implies that the reversion of velocities in time generates a highly organized system,
which is antipodal to the state of molecular chaos. This being so, Boltzmann’s
elegant physical considerations formally disprove Loschmidt’s rigorous observa-
tion. As a result, the kinetic molecular theory had enabled to justify a passage from
the classical dynamics to the statistical thermodynamics or, figuratively speaking,
“from order to chaos”. Such a passage is most natural in rarefied gases, which
determined the main domain of applicability of the Boltzmann equation.
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Boltzmann’s legacy is extremely broad and very deep in its contents. The
philosophical idea of the atomic structure matter weaves through her work in a
striking manner. He uncompromisingly defended this idea from Mach and Ostwald
as representatives of phenomenological (or “pure”) description of natural phe-
nomena. In his polemics with Ostwald, who stated that any attempts of mechanistic
interpretation of energetic laws should be rejected, Boltzmann wrote: “From the fact
that the differential equations of mechanics are left unchanged by reversing the sign
of time without changing anything else, Ostwald concludes that the mechanical
view of the world cannot explain why natural processes already run preferentially in
a definite direction. But such a view appears to me to overlook that mechanical
events are determined not only by differential equations, but also by initial con-
ditions”. In his numerous speeches and popular talks Boltzmann always pointed out
the real existence of atoms and molecules: “Thus he, who believes he can free
himself from atomism by differential equations, does not see the wood for the trees
… We cannot doubt that the scheme of the world, that is assumed with it, is in
essence and structure atomistic”.

One should also mention the original Boltzmann’s idea pertaining to the time
nature, which he did not succeed in bringing in the scientific form. A year before his
tragic death he wrote to the philosopher von Brentano: “I am just now occupied
with determining the number which plays the same role for time as the Loschmidt
number for matter, the number of time-atoms = discrete moments of time, which
make up a second of time”.

The synthesis between the classical dynamics and the kinetic molecular theory
was achieved in the 1930s. Bogoliubov [7] gave an elegant derivation of the
Boltzmann equation from the Liouville equation. This derivation, which depends on
the “hierarchy of characteristic times”, takes into account binary collisions of
molecules. Later Bogolyubov in collaboration with other researchers developed
systematic methods capable of producing more general equations (which take into
account triple and multiple collisions). These methods were subsequently used as a
basis for derivation of equations describing dense gases. According to Ruel [8]:
“… La vie de Boltzmann a quelque chose de romantique. Il s’est donné la mort
parce qu’il était, dans un certain sens, un raté. Et pourtant nous le considérons
maintenant comme un des grands savants de son époque, bien plus grand que ceux
qui furent ses opposants scientifiques. Il a vu clair avant les autres, et il a eu raison
trop tôt …”.

1.3 Precise Solution to the Boltzmann Equation

Numerous studies show that considerable mathematical difficulties are encountered
trying to solve precisely the Boltzmann equation. Bobylev [9] seems to be the first
to obtain the only known particular precise solution to the Boltzmann equation.
Below we shall briefly enlarge on the results of the pioneering work [9]. In the
classical kinetic theory of monatomic gases, the gas state at time t� 0 is
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characterized by one-particle distribution function of molecules over spatial coor-
dinates x and velocities v in the three-dimensional Euclidean space: f x; v; tð Þ With
some simplification, this function can be looked upon as the number of particles
(molecules) per unit volume of the velocity-configuration phase space at a time t. Its
space-time evolution is described by the Boltzmann equation

@f
@t

þ v
@f
@x

¼ I f ; f½ � ð1:1Þ

The right-hand part of (1.1) the collision integral—this is the nonlinear integral
operator, which can be represented as

I f ; f½ � ¼
Z

dwdng u;
un
u

� �
f v0ð Þf w0ð Þ � f vð Þf wð Þf g ð1:2Þ

Here, w is the volume element, n is the unit vector, nj j ¼ 1, dn is the unit sphere
surface element, the integration is taken over the entire five-dimensional space of
molecular velocities. In (1.2), we used the following notation

u ¼ v� w; u ¼ uj j; g u; lð Þ ¼ ur u; lð Þ;
v0 ¼ 1=2 vþwþ unð Þ;w0 ¼ 1=2 vþw� unð Þ ð1:3Þ

We shall assume that collision of molecules follow the laws of the classical
mechanics of particles, which interact with the pair potential U rð Þ where r is the
distance between particles. The function r u; lð Þ in (1.3) is the differential scattering
cross-section for the angle 0\h\p in the center-of-mass system of colliding
molecules, where u[ 0; l ¼ cos hð Þ are the arguments. The quantity g u; lð Þ[ 0 is
the (1.2) is considered as a given function, whose depends on the chosen model of
molecules. For the model of molecules under consideration (rigid balls of radius r0)
we have g u; lð Þ ¼ ur20. A more involved expression appears for the model of
molecules, in which they are considered as point particles with power-law inter-

actions: U rð Þ ¼ a=rn a[ 0; n� 2ð Þ g u; lð Þ ¼ u1�4=ngn lð Þ, where gn lð Þ 1� lð Þ3=2
is a bounded function.

The principal mathematical difficulties in solving the Boltzmann equation are
related with the nonlinearity and involved structure of the collision integral (1.2).
The very first had shown that the boundary-value problem for the Boltzmann
equation is much more challenging than the initial-value problem. The problem of
relaxation (approximation to the equilibrium) can be stated in the most simple way
as follows

@f
@t

¼ I f ; f½ �; f jt¼0 ¼ f0 vð Þ ð1:4Þ

Equation (1.4) describes the space-homogeneous Cauchy problem of indepen-
dent interest. Problems of existence and unique solvability of the Boltzmann
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equation (both for the Cauchy, and for boundary-value problems) were studied
extensively. Gilbert, Chapman-Enskog and Grad were first to study approximate
solutions by their classical methods. Various extensions of such approaches are also
available. Maxwell molecules are particles interacting with the repelling potential
U rð Þ ¼ a=r4. For this model, the scattering cross-section r u; lð Þ is inversely pro-
portional to the absolute value of the velocity u. Hence, the function g u; lð Þ from
(1.2) is independent of u, which substantially simplifies the evaluation of the col-
lision integral. This remarkable advantage of the Maxwell molecules, which was
known already to Boltzmann, was researchers. Bobylev [9] was first to show that
the nonlinear operator (1.2) can be substantially simplified by using the Fourier
transform with respect to the velocity. Setting

u x; k; tð Þ ¼
Z

dv exp �ikvð Þf x; v; tð Þ ð1:5Þ

and changing in (1.1) to the Fourier representation, we arrive at the following
equation for u x; k; tð Þ

@u
@t

þ i
@2u
@k@x

¼ J u;u½ � ¼
Z

dv exp �ikvð ÞI f ; f½ � ð1:6Þ

For any function g u; lð Þ in (1.2) which is independent of u, the operator J u;u½ �
has a much simpler form versus the operator I f ; f½ �. It is easily shown that this
property is satisfied only by Maxwell molecules among all available models of
molecules. This leads to a substantial simplification of the transformed equation
(1.6). However, the appearance of the mixed derivative on the left of (1.6) does not
allow one to efficiently solve the spatial-inhomogeneous problems. This impedi-
ment disappears in examining the relaxation problem (1.4), which has the form in
the Fourier representation

@u
@t

¼ J u;u½ � ð1:7Þ

Let us consider the Cauchy problem for the spatial-homogeneous Boltzmann
equation

ft ¼ I f ; f½ � ¼
Z

dwdng u;
un
u

� �
f v0ð Þf w0ð Þ � f vð Þf wð Þf g ð1:8Þ

as written in the notation (1.3). Here, the subscript means the derivative in t. The
initial condition for (1.8) reads as

f jt¼0 ¼ f0 vð Þ :
Z

dvf0 vð Þ ¼ 1;
Z

dv vf0 vð Þ ¼ 0;
Z

dv v2f0 vð Þ ¼ 3 ð1:9Þ
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By the laws of conservation of the number of particles, moment and energy, the
solution f v; tð Þ to problem (1.8) and (1.9) satisfies the same requirements for all
t[ 0.

Z
dvf vð Þ ¼ 1;

Z
dv vf vð Þ ¼ 0 ð1:10Þ

The corresponding Maxwellian distribution reads as

fM vð Þ ¼ 2pð Þ�1=2exp �#2� � ð1:11Þ

An approach to the solution of the above problem can be written as the following
formal scheme

• Changing to the Fourier representation

u k; tð Þ ¼
Z

dvf v; tð Þ exp �ikvð Þ ð1:12Þ

gives us, instead of (1.8), the following more simple equation

ut ¼ J u;u½ � ¼
Z

dng
kn
k

� �
u

kþ kn
2

� �
u

k � kn
2

� �
� u 0ð Þu kð Þ

� 	
ð1:13Þ

• The following initial condition for (1.13) is set

ujt¼0 ¼ u0 kð Þ ¼
Z

dvf0 vð Þ exp �ikvð Þ

u0jk¼0 ¼ 1;
@u0

@k






k¼0

¼ 0;
@2u0

@k2






k¼0

¼ �3
ð1:14Þ

• The solution u k; tð Þ to the problem (1.13) and (1.14) is studied.
• Using the inversion formula

f v; tð Þ ¼ 2pð Þ�3
Z

dvu k; tð Þ exp ikvð Þ: ð1:15Þ

we formulate the final results for the distribution function f v; tð Þ. Here, we assume
that the integral (1.15) is convergent.
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The Fourier analogues of formulas (1.10), (1.11) read as

u 0; tð Þ ¼ 1;
@u k; tð Þ

@k






k¼0

¼ 0;
@2u k; tð Þ

@k2






k¼0

¼ �3; fM kð Þ ¼ exp � k2

2

� �
ð1:16Þ

From the above it follows that the precise solutions to the Boltzmann equation can
be obtained only in very rare special cases.

1.4 Intensive Phase Change

At present, processes of intensive phase change find more and more practical
applications. This involves the physics of air-dispersed systems, air dynamics,
microelectronics, ecology, etc. The study of intensive phase change is relevant in
for the purposes of practical design of heat-exchange equipment, systems of inte-
grated thermal protection of aircrafts, and the vacuum engineering. We indicate
some important applications related to the intensive phase change

• simulation of the evaporation of a coolant into the vacuum under theoretical loss
of leak integrity of the protective cover of a nuclear reactor of a space vehicle

• organization of materials-laser interaction [10] (intensive evaporation from
heated segments and intensive condensation in the cooling area)

• simulation of Space Shuttles airflow during their re-entry [11]

Intensive phase change plays a governing role in engineering processes
accompanying laser ablation [10]. Materials-laser interaction involves a number of
mutually related physical processes: radiation transfer and absorption in a target
from the condensate phase, heat transfer in a target, evaporation and condensation
on the target surface, gas dynamics of the surrounding medium. Anisimov [12]
seems to be the first to give a theoretical description of laser ablation in vacuum.
Studying the nonequilibrium Knudsen layer, the author of [12] found a relation
between the target temperature and the parameters of egressing vapor. Extending
the approach of [12], Ytrehus [13] proposed the model of intensive evaporation.
The heat model of ablation in exterior atmosphere relating the gas parameters with
the radiation intensity was considered by Knight [14, 15], who examined the system
of gas dynamics equations conjugated with the heat-transfer equation in the target.
Under this approach, the boundary conditions were specified from the solution of
the kinetic problem of intensive evaporation. The further development in the heat
model of laser ablation was related with the numerical study of radiation pulses of
arbitrary form and with the study of the phase change (melting/consolidation) in a
target [16, 17].

An important application of the intensive phase change is the problem of sim-
ulation of comet atmosphere [18–21]. According to modern theory, the comet core
is chiefly composed of aquatic ice with admixture of mineral particles [18]. Subject
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to radiation the ice begins to evaporate, forming the inner gas-dust atmosphere.
Depending on the distance from the Sun, the intensity of ice evaporation and the
density of the near-core comet atmosphere vary substantially. At large distances
from the Sun, in the atmosphere is small, the flow regime being free-molecular. An
Earth orbit, the flow regime in dense regions of the atmosphere on the illuminated
(day) side is described by the solid medium laws. The gas density decreases away
from the comet core, the continual flow regime changing first by the transient
regime, and then by the free-molecular regime. The conjugation of the gas-dynamic
region with the comet surface leads to a very involved mathematical problem, for
which some particular solutions are known [19–21].

However in the general case (relaxing gas, arbitrary surface geometry,
time-variable evaporation intensity solution) the above problem has no solution.
Various approximate approaches were found to be useful in setting the boundary
conditions for gas-dynamic equations. The system of Navier-Stokes equations in a
local plane-parallel approximation was considered in [19]. The boundary conditions
on the comet core surface were set as on the rarefaction expansion shock. In [20,
21], various integrated calculation schemes were used involving the Navier-Stokes
equations in the gas-dynamic region with specification of boundary conditions in
the dense flow region.

The new direction of kinetic analysis related with the turbulence modeling
[22, 23] seems to be quite intriguing. In this case, the solution to the Boltzmann
equation is sought by expanding the distribution function into a series in Knudsen
numbers, which play the role of the rarefaction parameter (the Chapman-Enskog
expansion). A decrease in the Knudsen number results in a transition from stable to
unstable flows, which corresponds to a transition from a laminar to a turbulent flow
region. In the subcritical (laminar) regime, the solution to the Boltzmann equation
for macroscopic parameters is known to be close to the solution to the Navier-
Stokes equations. In the supercritical (turbulent) region, the solution becomes both
unstable and nonequilibrium. Besides, the distribution function becomes rapidly
changing in time, the viscous stress and heat transfer rates increasing discontinu-
ously. To the increasing values of the dissipating quantities one may correspond
some values of the turbulent viscosity and the turbulent heat conduction. This being
so, the Boltzmann equation is capable of giving a closed model for the description
of turbulence, without requiring closing conjectures (as in the classical Reynolds
equations). It is worth noting, however, that this direction of the kinetic is in an
early stage of development.

The simulation of an intensive phase change depends primarily on setting the
boundary conditions on the interfacial surface between the condensed and gaseous
phases. From the kinetic analysis it is known that the distribution functions of the
molecules that emit from the interface, and of the molecules approaching it from the
vapor are substantially different. This results in a heavy nonequilibrium condition in
the Knudsen layer, which is adjacent to the interface surface and whose thickness is
of the order of the mean free path of molecules. The one-dimensional problem of
evaporation/condensation in a half-space for the Boltzmann equation can be
obtained using the Hilbert expansion in the powers of Knudsen numbers [24].
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