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Preface

This volume composes the Proceedings of the Twelfth International Conference on
Genetic and Evolutionary Computing (ICGEC 2018), which was hosted by
Changzhou College of Information Technology and was held in Changzhou,
Jiangsu, China on December 14–17, 2018. ICGEC 2018 was technically cospon-
sored by Changzhou College of Information Technology (China), Fujian Provincial
Key Lab of Big Data Mining and Applications (Fujian University of Technology,
China), National Demonstration Center for Experimental Electronic Information
and Electrical Technology Education (Fujian University of Technology, China),
Tajen University (Taiwan), National University of Kaohsiung (Taiwan), Shandong
University of Science and Technology (China), Western Norway University of
Applied Sciences (Norway), and Springer. It aimed to bring together researchers,
engineers, and policymakers to discuss the related techniques, to exchange research
ideas, and to make friends. Eighty-one excellent papers were accepted for the final
proceeding. Six plenary talks were kindly offered by: Prof. James, Jhing-Fa Wang
(President of Tajen University, Taiwan, IEEE Fellow), Prof. Zhigeng Pan
(Hangzhou Normal University, China), Prof. Xiudong Peng (Chengzhou College of
Information Technology, China), Prof. Jiuyong Li (University of South Australia,
Australia), Prof. Philippe Fournier-Viger (Harbin Institute of Technology
(Shenzhen), China), and Prof. Peter Peng (University of Calgary, Canada). We
would like to thank the authors for their tremendous contributions. We would also
like to express our sincere appreciation to the reviewers, Program Committee
members, and the Local Committee members for making this conference
successful.

Fuzhou, China Jeng-Shyang Pan
Bergen, Norway Jerry Chun-Wei Lin
Changzhou, China Bixia Sui
Pingtung, Taiwan Shih-Pang Tseng
December 2018
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A New Advantage Sharing Inspired
Particle Swarm Optimization Algorithm

Lingping Kong and Václav Snášel

Abstract Particle swarm optimization algorithm is a widely used computational
method for optimizing a problem. This algorithm has been applied to many appli-
cations due to its easy implementation and few particles required. However, there is
a big problem with the PSO algorithm, all the virtual particles converged to a point
whichmay or may not be the optimum. In the paper, we propose an improved version
of PSO by introducing the idea of advantage sharing and pre-learning walk mode.
The advantage sharing means that the good particles share their advantage attributes
to the evolving ones. The pre-learning walk mode notices one particle if it should
continue to move or not which uses the feedback of the last movement. Two more
algorithms are simulated as the comparison methods to test Benchmark function.
The experimental results show that our proposed scheme can converge to a better
optimum than the comparison algorithms.

Keywords Particle swarm optimization · Advantage sharing ·
Benchmark function

1 Introduction

A collective behavior of natural or artificial is the concept of Swarm intelligence (SI)
[1]. The agents follow very simple rules, and although there is no centralized control
structure guiding howmembers should behave, communications between such agents
converge to the global behavior. Swarm Intelligence-based techniques can be used in
a number of applications. Swarm Intelligence-based algorithms include Cat Swarm
Optimization [2], Genetic algorithm (GA), Artificial Bee Colony Optimization [3],
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Particle swarm optimization (PSO) [4], Shuffle frog leaping algorithm (SFLA) [5],
and so on.

PSO is originally proposed by Kennedy and Eberhart for simulating social behav-
ior, then this algorithm was simplified and was observed to be performing optimiza-
tion. A number of candidate particles represent problem solutions are simulated
and iteratively improved toward the best. The most common type of implementation
defines the updatingmode with two equations, velocity updating, and position updat-
ing. There are many variants of PSO [6], some researchers seek ways to simplify
the algorithm, some versions improve the updating mode by adding extra features
to it [7], some applications combine PSO with other algorithms attributes to solve
problems [8].

Ahmad Nickabadi is one of the authors who studied the parameter decision of
updating equation. The author analyzed and discussed three main groups of choosing
inertia weight value, constant, time-varying, and adaptive inertia weights. Except for
that, the author proposed a new approach with adaptive inertia weight parameter,
the populations situation can be reflected based on the feedback parameter which
uses the success rate of the particles [9]. Moradi [10] combines the genetic algorithm
and particle swarm optimization for location decision use on a distribution system.
The author uses the combination strategy to minimize network power losses and
improve the voltage stability, and a good performance is demonstrated by carrying
out this strategy on 33 and 69 bus systems. A hybrid algorithm used a fuzzy adaptive
particle swarm optimization (FAPSO) and Nelder–Mead simplex search is proposed
by Taher Niknam [11]. This hybrid algorithm completes the local search through the
Nelder–Mead process and accomplishes the global search by FAPSO. The author
verified the hybrid algorithm by testing it on two typical systems consisting of 13 and
40 thermal units. Cheng [12] proposed a social learning particle swarm optimization
(SLPSO). This algorithm adopts a dimension-dependent parameter to relief the para-
meter settings and it also uses demonstrators in the current swarm to guide the particle
evolving, which unlike the classical PSO variants. The experimental results show the
algorithm performs well on low-dimensional and high-dimensional problems.

The rest of paper is organized as follows: Sect. 2 introduces the disadvantage
of PSO algorithm and presents the idea of advantage sharing, then proposes the
AS-PSO algorithm. Section3 gives the results of comparison experiments tested on
Benchmark function. Section4 concludes the paper.

2 Advantage Sharing Particle Swarm Optimization

The particle swarm optimization (PSO) is a computational method and also a
population-based stochastic algorithm. PSO optimizes a problem by updating can-
didate solutions iteratively, which also means that there are no selection and ran-
dom walk during the running process. The candidate members are active based on
its local best-known location over the individuals position and velocity, and their
movements are influenced by the best one known location in searching space. Even
PSO can search very large spaces of candidate solutions, but it does not guarantee an
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optimum solution. In other words, the PSO algorithm may converge to a local opti-
mum. So this paper proposes an improved version of PSO with the idea of advantage
sharing and pre-learning walk, called AS-PSO.

In the advantage sharing, one individual is guided toward several the best-known
positions instead of one best position, the common properties of those better posi-
tions could be the characteristics of the optimum location in a big probability, and
advantage sharing decreases the occurrence of trapping into a local optimum. Before
the population updating, each particle will be set up a movement flag, which labels
the moving direction of its last step, and before each particles move, there is also
a maximum steps threshold holds the particles moving times. The movement flag
works as the pioneer wizard, it tells the particles whether the last movement gets
better or not. If one particle moves in a direction and gets improvement, then it might
get more improvement after moving along this direction. AS-PSO algorithm consists
of a set of virtual particle population. During the searching process, every particle
will evolve based on the basic PSO operation. The different points are in three parts,
first before an operation, each particle will be given a movement flag, if the previous
movement is good, then continue to move until it reaches the biggest moving thresh-
old. Second, if the first step searching does not improve its current status, then goes
to the advantage sharing operation. Third, adding a small proportional random walk
operation. The process of AS-PSO in detail is introduced as follows:

2.1 Steps of the AS-PSO

Step 0. Setting-up phase. Define a problem space with D dimensions, the virtual
population P with N particles. The evolving iteration times is t . define the final
solution variable as gbest , and threshold1 is the maximum step number that one
individual can move, threshold2 is the probability of random walk for a particle.
Set MC = 0 (Moving Count, MC).

Step 1. Initialize population P = {p1, p2, . . . , pN }, and each particle has its ran-
dom position and velocity within the search space. For particle j, its position
can be labeled as X j = {x1, x2, . . . , xD}, the velocity is Vj = {v1, v2, . . . , vD}.
Other than that, each particle has ph value, it stores its historical best-known
ever position.

Step 2. Compute the evaluation value (V) for the population, store the one with
best evaluation value particle as the gbest . Sort the population based on the
evaluation value in a ascending order.

Step 3. Take a particle into Updating mode (Introduced in next section), and
update its searching location. Do the same updating process for all the particles.

Step 4. Evaluate the new locations of particles, and compare the current evaluation
valuewith its ph value. If the current location is better then replace the ph value.

Step 5. Loop to step 2 until a condition is met, either the loop index reaches a
maximum value or the gbest is satisfied with the need.
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2.2 Updating Mode

Suppose particle j, Pj is under updating mode, its X j = {x j,1, x j,2, . . . , x j,D} and
Vj = {v j,1, v j,2, . . . , v j,D}. Copy p̃ j = p j .

Step 1. Set MC = MC + 1, ifMC is smaller than threshold1, change the velocity
and position of p̃ j based on Eqs. 1 and 2. Otherwise, exit the updating mode. in
the equationw, c1 and c2 are positive constants, r1 and r2 are two random numbers
in the range [0,1], symbol i ∈ [1, 2, . . . , D].

v j,i (t + 1) = w × v(t) + c1 × r1 × (xph ,i − x j,i ) + c2 × r2 × (xgbest ,i − x j,i )

(1)

x j,i (t + 1) = x j,i (t) + v j,i (t + 1) (2)

Step 2. Compare the p̃ j to the p j , if p̃ j is better, then replace p j with p̃ j and go
back to Step 1. Otherwise, check the MC value, if MC equals to 0, go to step 3,
If not, exit the updating mode.

Step 3. Generate a random number ran. if ran is smaller than threshold2. Use Eq. 3
to update p j . Otherwise, use Eq. 4. In the Eq. 3 m is a integer, which controls the
number of good particles g p = {g p1, g p2, . . . , g pm} used in advantage sharing
process. In the Eq. 4, xboundary is a searching space related value.

g pi = r + j, r ∈ [0, N − j]

x j,i = (
∑m

k=1 xg pk ,i ) ÷ m
(3)

x j,i (t + 1) = rand × xboundary, rand ∈ [0, 1] (4)

2.3 Pseudocode of AS-PSO

The pseudocode of AS-PSO is showed as

3 Experiment Results

Three different algorithms are simulated in our experiment: PSO, SLPSO, our
scheme. Rosenbrock (5), Rastrigrin (6) and Sphere (7) this three benchmark func-
tions are used to test their performance. The benchmark function f (x) is shown as
follows:
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Algorithm 1 Pseudocode of AS-PSO
1: function AS- PSO(P = {p1, p2, . . . , pN }, gbest )
2: Input P, threshold1, threshold2, D, c1, c2, xboundary
3: Output: gbest
4: for i = 0 to N do
5: Initialize pi , Compute V(pi )
6: Store ph
7: end for
8: Store gbest
9: for t = 1 to iteration times do
10: for j = 0 to N do
11: p̃ j = p j
12: MC = 0
13: for MC to threshold1, MC+ = 1 do
14: for i = 0 to D, do p̃ j do
15: v j,i (t + 1) = v(t) + c1 × r1 × (xph ,i − x j,i ) + c2 × r2 × (xgbest ,i − x j,i )
16: x j,i (t + 1) = x j,i (t) + v j,i (t + 1)
17: end for
18: if V(p j )is worse than V( p̃ j ) then
19: p j = p̃ j
20: end if
21: end for
22: if ran ≤ threshold2 ,do p j then
23: Sort(P)
24: if MC = 0 then
25: for i = 0 to m do
26: g pi = r + j, r ∈ [0, N − j]
27: x j,i+ = (

∑m
k=1 xg pk ,i ) ÷ m

28: end for
29: else
30: for i = 0 to m do
31: x j,i (t + 1) = rand × xboundary, rand ∈ [0, 1]
32: end for
33: end if
34: end if
35: end for
36: Store ph for P, Store gbest
37: end for
38: Output gbest
39: end function

f1(x) = f (x1, x2, . . . , xd) =
d

∑

i=1

[100 × (x22i−1 − x2i )
2 + (x2i − 1)2] (5)
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Table 1 Symbols description

Symbols Description Values

N The number of population 16

D The number of dimension 3

m The good particles used in advantage sharing 2

c1, c2 Acculate coefficent 1.49445

xboundary The boundary value of space [−100, 100]
threshold1 The steps value in Updating model process 2

threshold2 The probability of random walk and advantage sharing 0.5

iteration The iteration times used in three algorithm 100

(a) Function value of Rastrigin (b) Function value of Rosenbrock

(c) Function value of Sphere

Fig. 1 Function value convergence curves

f2(x) = f (x1, x2, . . . , xd) = Ad +
d

∑

i=1

[

x2i − A × cos(2πxi )
]

(6)
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Table 2 Comparison results
in Function value

BenchMark Methods

PSO SLPSO AS-PSO

f1(x) 4248.89485 0.53217 0.20247

f2(x) 6.35623 2.55794 0.000000

f3(x) 0.13459 0.00036 0.000000

Table 3 The gbest positions
in Rastrigrin Function

Values Methods

PSO SLPSO AS-PSO

x1 1.057379 −0.065119 7.132366 × 10−8

x2 −0.0499616 0.0495942 −3.333312 × 10−8

x3 2.014951 0.080029 2.703721 × 10−8

f3(x) = f (x1, x2, . . . , xd) =
d

∑

i=1

x2i (7)

The parameters used in experiment are showed in Table 1.
The convergence curves of three benchmark function in three algorithms are

showed in Fig. 1, the x-coordinate is the iteration times, and the y-coordinate is the
function value. The AS-PSO has the best convergence speed, followed by SLPSO,
and finally PSO.

Table2 lists the final benchmark function value, from the table we can tell that AS-
PSO shows a better performance, the benchmark function value are around 0.000000,
which is close to the minimum value of Rastrigin and Sphere. Table3 lists the final
position x1, x2, x3 of gbest in Rastrigin function, its position axes should be (0.0,
0.0, 0.0) in minimum value. From the table, it tells AS-PSO is better than the other
comparison algorithms.

4 Conclusion

In this paper, we propose a variant of particle swarm optimization with the idea of
advantage sharing and pre-learning walk. One particle evolves its position based
on several other excellent individuals instead of one best-known member, which is
Advantage sharing. It is right in a big probability to go more steps along the benefit
obtained way. Furthermore, this algorithm also adds a small proportional random
walk operation for avoiding converging local optimum. In the end, the original PSO
and a recently proposed improved PSO are simulated. The experimental results show
that AS-PSO has a good convergence speed and the final results are better than the
comparison algorithms.
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Density Peak Clustering Based on Firefly
Algorithm

Jiayuan Wang, Tanghuai Fan, Zhifeng Xie, Xi Zhang and Jia Zhao

Abstract In density peak clustering the choice of cut-off distance is not theoreti-
cally supported, and to address this concern, we propose density clustering based on
firefly algorithm. The certainty between data is determined on the basis of density
estimation entropy. The cut-off distance corresponding to the minimum entropy is
found by iterative optimization of FA, and then substituted into the standard den-
sity clustering algorithm. Simulation experiments are conducted on eight artificial
datasets. Comparedwith the standard density peak clustering, ourmethod can choose
the cut-off distance in a self-adaptive manner on different datasets, which improves
the clustering effect.

Keywords Density peak clustering · Cut-off distance · Density estimation
entropy · Firefly algorithm

1 Introduction

Clustering is a process of clustering dataset samples into clusters on the basis of
similarity. As a result, samples within the same cluster have a higher similarity, and
those across different clusters are low in similarity [1–3]. Clustering is able to extract
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hidden pattern and rules from a large amount of data and considered an important
means to identify knowledge from the data. At present, clustering has found extensive
applications in data analysis [4] and engineering system [5].

Many clustering algorithms have emerged to deal with different types of datasets.
Conventional clustering algorithms include partitioning-based clustering [6], hierar-
chical clusteringmethod [7], density-based clusteringmethod [8] and network-based
clustering method [9]. To improve the clustering efficiency and reduce complexity,
Rodriguez et al. [10] described clustering by fast search and find of density peaks
(DPC) in 2014. This algorithm can rapidly find the density peak points for datasets
of any shape and efficiently perform the assignment of data points and removal of
outliers. Therefore, DPC is fit for clustering analysis over massive data. DPC is based
on the concept of cut-off distance dc, used as a density measure for the samples. The
choice of dc has a large impact on the clustering effect. However, dc is generally
determined subjectively with the current DPC, and to do this, the empirical value
first needs to be obtained from extensive prior experiments for different datasets,
which is definitely a major drawback for DPC.

Firefly Algorithm (FA) [11–14] is a new optimization technique based on swarm
intelligence [15], proposed by Yang Xin-she in 2008. In this algorithm, each firefly
is randomly distributed in the solution space and has a fitness value assigned by
optimization corresponding to the intensity of the emitted light. Thefireflydetermines
the direction of its movement by comparing the intensity of the emitted light, and the
distance of movement is determined by relative attractiveness. After the population
evolves for some generations, most fireflies will be attracted to the firefly with the
highest intensity of the emitted light, and the optimization task is completed. FA
is structurally simple, needs fewer parameters and applies to many optimization
problems.

Here, FA is introduced to address the drawbacks of DPC, and density peak clus-
tering based on firefly algorithm (FADPA) is proposed as a modified approach. This
novel algorithm uses density estimation entropy as the objective function of dc, which
is optimized iteratively by FA. Cut-off distance dc is determined self-adaptively for
different datasets, and then the clustering is performed by using standard DPC.

2 Relevant Studies

2.1 Density Peak Clustering

DPC can automatically identify the cluster center of the dataset samples and achieve
high-efficiency clustering for datasets of any shape. Its basic working principle is
as follows. An ideal clustering center has two basic features: (1) the local density
of the cluster center is higher than that of its neighbors; (2) the distance between
different cluster centers is relatively large. To find the cluster centers that meet the
above criteria, the local density ρi for sample i and the distance δi from sample i
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to sample j that has a local density greater than sample i and is nearest to it. It is
defined as follows:

ρi �
∑

j ��i

χ (di j − dc), (1)

where di j is the Euclidean distance between sample i and sample j ; dc is the cut-off
distance. When x < 0, χ (x) � 1; otherwise χ (x) � 0.

δi � min
j :ρ j>ρi

(di j ) (2)

For sample i with the largest local density ρi , δi � max(di j ).
It is known from formula (1) that the local density ρ of the sample is a discrete

value and greatly influenced by the cut-off distance dc. To reduce the influence of dc
on the local density ρ of the sample, literature [16] uses a Gaussian kernel function
to compute the local density of the sample.

ρi �
∑

j ��i

exp

(
−

(
di j
dc

)2
)

(3)

DPC constructs the decision graph of relative distance δ about local density ρ.
Samples with large δ and ρ are the density peak points. However, when the size of
each cluster is small, the difference between ρ and δ is insignificant for the sample.
As a result, the samples are sparse and the density peak points are unclear. So it is
very difficult to find the density peak points by comparing ρ or δ alone. To solve
this problem, ρ and δ are normalized [17]. The cluster centers are found by using γ

decision graph, and are defined as follows:

γi � ρi · δi (4)

Apparently, sample points with large γ can be chosen as the centers. For the
remaining sample j , DPC categorizes it into the cluster where the sample with a
larger local density than j and nearest to j is located. In this way, the remaining
sample is assigned.

2.2 Firefly Algorithm

FA is an optimization process based on swarm intelligence, which mimics the behav-
ior of fireflies in nature attracting the opposite gender by the emitted light. To reduce
the algorithm complexity, the gender of the fireflies is neglected. It is generally
believed that the fireflies emitting less bright light will be attracted to those emitting
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brighter light. The movement distance is determined by the relative attractiveness
between the fireflies. In the standard FA, relative attractiveness between the fireflies
is given by

β � β0e
−γ r2i j , (5)

where ri j is the Euclidean distance between firefly i and firefly j ; β0 is the attrac-
tiveness of the firefly at the distance ri j � 0, a constant; γ is the light absorption
parameter, usually set to 1. For any two fireflies, their Euclidean distance is given by

ri j � ∥∥xi − x j

∥∥ �
√√√√

D∑

d�1

(
xid − x jd

)2
, (6)

where D is the problem dimension.
Hence the movement of firefly i to firefly j can be defined by

xid (t + 1) � xid (t) + β0e
−γ r2i j (x jd (t) − xid (t)) + α(t)ε, (7)

where xid and x jd are the d-th dimension of firefly i and j , respectively. Parameter
ε � (rand() − 1/2), and rand() is a random function distributed uniformly in the
range [0, 1]. α(t) is the step factor, with the value range [0, 1]. t is the number of
iterations.

Through the above, the position of firefly is translated into an optimization prob-
lem. The brightness of the firefly is the function value of the optimization problem.
The position of the firefly is constantly updated through iterative optimization of the
firefly population, until the optimal solution is found to the solution.

3 Density Peak Clustering Based on Firefly Algorithm
(FADPC)

DPC defines different dc for different datasets and achieves a good clustering effect.
However, the choice of dc is not supported by theory, and is usually done according
to the general principle of dc ensuring that the mean number of neghbours for each
data point accounts for about 1–2% of the total data points. In this study, the number
of neiighbors is the number of data points with di j < dc. This principle is only an
empirical one drawn from several datasets, and its universality remains to be verified.

FADPC aims for a more reasonably selected dc by constructing an objective
function to solve dc by FA. Thus appropriate dc values are obtained self-adaptively
for different datasets, and the clustering is made more accurate.
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3.1 Density Estimation Entropy

By the definition of DPC, the sample points are ranked in accordance with the local
density ρ. The δ values are computed sequentially, and the samples with high δ and
ρ are identified as clusters. Moreover, the samples are ranked and categorized in a
decreasing order of ρ. If any sample is miscategorized, the samples following it will
be also miscategorized. Therefore, the objective function is designed to make all ρ

values of the samples to be uniformly distributed in a decreasing order as much as
possible.

Information entropy [18] is ameasure of systemuncertainty andhas found applica-
tions in clustering algorithm in recent years. Consider a dataset D � {x1, x2, . . . , xn}
containing n samples in space. Let the value of density function of each sample be

ϕi � ∑n
j�1 e

(‖xi−x j‖
δ

)2

, then the density estimation entropy is defined as

H � −
n∑

i�1

ϕi

Z
log

(ϕi

Z

)
, (8)

where Z � ∑n
i�1 ϕi is the normalization factor.

By comparing formula (8) and formula (3), it can be found that δ in the value of
density function for each sample has the same meaning as the cut-off distance dc.
Optimizing δ is in essence to optimize the cut-off distance dc.If the entire dataset is
considered as a system, the best clustering effect can be achieved when the entire
system is most stable and the relationship between the data has the highest certainty.

To obtain δ corresponding to the minimum density estimation entropy H , opti-
mization is performed by FA. The density estimation entropy H is taken as the objec-
tive function to be solved. Each firefly particle represents a δ value, and FA is imple-
mented to obtain a δ that makes H value minimum for the clustering. This approach
can overcome the drawback of manual parameter configuration and improve the
accuracy of clustering.

3.2 Steps of FADPC

Formula (8) is used as the objective function for FA, which is then implemented to
optimize δ. The optimized result is substituted as dc into DPC for the clustering. The
implementation steps of the algorithm are shown below

Step 1: Choose dataset sample Am×n (m is the number of data points, and n is
the dimension). Calculate the distance matrix Dm×m (Euclidean distance
between any two data points) for the dataset.


