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Preface

“Neurodegeneration” corresponds to any pathological condition which primarily
affects neurons. Neurological disorders not only affect the brain but also the nerves
that are found throughout the body and spinal cord. Neurodegenerative diseases
(NDDs) are defined as disorders that affect the central nervous system causing
progressive dysfunction of the nervous system. These incurable and exhausting
conditions are characterized by loss of neuronal cell function and are often associ-
ated with the deterioration of structures of the affected nervous system. Diagnosis of
neurological diseases is a growing concern and one of the most difficult challenges
for modern medicine. According to the World Health Organization’s recent report,
neurological disorders, such as epilepsy, Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease (HD), stroke, and headache, to name a few, affect up to one
billion people worldwide. An estimated 6.8 million people die every year as a result
of neurological disorders.

The book primarily focuses on the study of different neurological disorders like
epilepsy, Alzheimer’s, Parkinson’s, HD, and motor neuron diseases (MNDs) from a
new perspective by analyzing the physiological signals such as EEG, EMG, ECG,
and gait rhythm associated with these diseases using nonlinear dynamics.

Physiological signals such as heart rate, blood pressure, respiration, and stride
intervals fluctuate continuously over time reflecting the complex regulation of these
signals by the central nervous system. Analyzing the dynamics of these human
physiological signals is an important area of research to help control and to be
able to predict the onset of pathological conditions. Since long, several researchers
have used different techniques, mostly linear, for studying various diseases, but, of
late, research on nerve-related diseases or disorders has gained much importance as
the world suffers a lot of deaths due to these progressive neuron diseases which are a
slow and silent killer due to the lack of proper knowledge and appropriate medica-
tion. Since we have been working on various neurological disorders for more than
10 years, we decided to summarize our works and also the works of other researchers
in this field in the form of a book.
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Like every other system found in nature, physiological signals are also of
complex character, as they are composed of many subsystems which are strongly
correlated to each other, but not in a linear fashion. Conventional linear techniques
like amplitude, root mean square, or Fourier analysis cannot provide detailed
information about these subsystems. The development of nonlinear methods has
significantly helped in studying complex nonlinear systems in detail by providing
accurate and precise information about them. Nonlinear time series analysis methods
enable the determination of characteristic quantities of a particular system solely by
analyzing the time course of one of its variables. Thus, from this viewpoint,
nonlinear time series analysis methods are superior to mathematical modeling,
since they enable the introduction of basic concepts directly from the experimental
data. Since works of several researchers have established the complex nonlinear
character of physiological signals like EEG, ECG, EMG, and human gait rhythm, we
have been motivated to use nonlinear techniques in our work.

In a nutshell, the book provides a comprehensive study on most of the neurolog-
ical disorders with special emphasis on the methods used which are not only new but
also rigorous and robust. The findings provide simple parameters for the diagnosis
and prognosis of different neurodegenerative disorders, and adequate software can
be developed which can easily be coupled with machines. The overall premise of the
book for analyzing bioelectrical signals using nonlinear techniques is easily achiev-
able and need of the day. The book will be easily accessible and useful to a very large
community working in biomedical sciences and engineering.

We hope that this compilation of the original research work on the analysis of
brain through fractal analysis will definitely provide a platform and a direction for
inquisitive students and researchers of biomedical engineering and neuroscientists to
think objectively on the premises. We also feel that this work will stimulate more
exhaustive research on different other neurological disorders which are not com-
monly studied.

We are really happy that the leading publisher Springer Nature has accepted to
publish the book. We sincerely thank the editors and all the other staffs of Springer
Nature for their continual help, support, and suggestions.

Kolkata, West Bengal, India Dipak Ghosh
Howrah, West Bengal, India Shukla Samanta
Agartala, Tripura, India Sayantan Chakraborty
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Chapter 1
Introduction

Abstract Disease of the central nervous system has been described in the literature
as a group of neurological disorders for which the function of the brain or spinal cord
is affected. This chapter outlines the general description of the diseases like epilepsy,
Parkinson’s, Huntington’s, Alzheimer’s, and motor neuron diseases. Also a discus-
sion on the diagnostic tools and the methodologies adapted is reviewed in detail.

1.1 Central Nervous System and Its Diseases

The nervous system controls all activities of human beings. The nervous system
consists of the brain and the spinal cord, as well as all the nerves throughout the
body. Compared to other living organisms, humans are considered to be superior as
the anatomy and physiology of the nervous system of humans are unique. The brain
and spinal cord form the central nervous system (CNS), and all other nerves
throughout the body are referred to as the peripheral nervous system (PNS). As
the central nervous system (CNS) can determine the consciousness of us humans, it
has been attributed to be the most complex organ in the human body. All aspects of
our behavior from breathing to supporting our thoughts and feelings (Kandel and
Squire 2000) are controlled by the nervous system. The human brain is the most
sophisticated organ in the human body. The brain regulates vital body functions such
as emotion, memory, cognition, motor activities, heart rate, respiration, and diges-
tion. The human brain is a complex network of millions of neurons packed in a
matrix of glial cells (Benson et al. 2017).

Diseases of the brain may be caused either due to inherent dysfunction of the
brain or due to complex interactions of the brain with the environment (Hyman et al.
2006). Brain diseases range widely from common neurological to psychiatric disor-
ders. Throughout the life span, brain diseases affect a very significant portion of the
population and are widely spread both across the developed and developing nations.
Compared to other diseases, brain diseases account for the highest burden in terms of
health, economy, and social capital globally (Nathan et al. 2001). More than 1.5
billion people are affected due to brain disorders worldwide, and with the passage of
time, it is feared that this population will increase. Thus there is an urgent need of not
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only producing more drugs to treat CNS disorders but rigorous research so that early
prognosis and diagnosis can be made and is the need of the day to help control this
epidemic.

Across the life span of human, the nature of the brain disorders changes. In young
there is a high prevalence of psychiatric disorders, like depression, anxiety, schizo-
phrenia, and substance abuse, whereas the elderly suffer markedly from neurode-
generative disorders such as dementia or stroke (Wittchen et al. 2011). More widely
appreciated are the neurodegenerative disorders, namely, Parkinson’s (PD) and
Alzheimer’s disease (AD), which are on the rise due to an older population (von
Campenhausen et al. 2005). Huntington’s disease (HD) and amyotrophic lateral
sclerosis (ALS) are other neurodegenerative diseases. The neurodegenerative dis-
eases are characterized by inevitable gradual decline in cognitive ability and also the
potential to self-sustain (Prince et al. 2013). The neurodegeneration produces a
clinical syndrome called dementia, whose symptoms include inability to recollect,
sudden and unexpected changes in one’s mood, and problems to communicate and
reason (Devous 2002).

Next to stroke, epilepsy is the second most common neurological disorder
affecting approximately 50 million people worldwide. “Epilepsy” is derived from
the Greek term epilambanein which means to seize, and it denotes the predisposition
to have recurrent, unprovoked seizures (Quintero-Rincon et al. 2016). In epilepsy,
the nerve cells of the brain transmit exorbitant electrical impulses that cause seizures.
An epileptic seizure is defined as “a transient symptom of excessive or synchronous
neuronal activity in the brain” (Fisher et al. 2005). Epilepsy is defined by two or
more such unprovoked seizures. Seizures may be either focal or generalized. In focal
seizures, only a specific segment of the brain is affected, while in generalized
seizures the whole brain is affected (Acharya et al. 2012a). Epileptic seizures may
lead to impairment or unconsciousness and psychic, autonomic, sensory, or motor
problems (Lehnertz 2008).

Electroencephalography (EEG) is an important clinical tool for monitoring and
diagnosing neurological changes in epilepsy. Compared with other methods such as
magnetoencephalography (MEG) and functional magnetic resonance imaging
(fMRI), EEG is an affordable and safe technique for inspecting brain activity.
Drugs and surgical treatment options are not sufficient to treat epilepsy. Among
new therapies developed, implantable devices that deliver direct electrical stimula-
tion to affected areas of the brain have shown promising results. The effectiveness of
these treatments depends mainly on robust algorithms for seizure detection. As
seizure onset cannot be predicted, a continuous recording of the EEG is essential
to ascertain epilepsy. But since visual assessment of long EEG recordings is tedious
and time-consuming (Song 2011), automated detection methods of epilepsy have
gained importance. With a view to study the changes that occur in the brain in
seizure and seizure-free status, we analyzed EEG signals using a latest state-of-the-
art methodology. The observations made are very interesting and are described in
Chap. 2.

Alzheimer’s disease another disease of the central nervous system is the major
reason of dementia. This disease is described by an intensifying reduction in brain
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