Hans Jürgen Maier Thomas Niendorf Ralf Bürgel

Handbuch Hochtemperatur-Werkstofftechnik

Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und -beschichtungen

6. Auflage

Handbuch Hochtemperatur-Werkstofftechnik

Hans Jürgen Maier • Thomas Niendorf Ralf Bürgel

Handbuch Hochtemperatur-Werkstofftechnik

Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und -beschichtungen

6., überarbeitete und erweiterte Auflage

Hans Jürgen Maier Institut für Werkstoffkunde Leibniz Universität Hannover Garbsen, Deutschland

Ralf Bürgel Georgsmarienhütte, Deutschland Thomas Niendorf Institut für Werkstofftechnik Universität Kassel Kassel, Deutschland

ISBN 978-3-658-25313-4 ISBN 978-3-658-25314-1 (eBook) https://doi.org/10.1007/978-3-658-25314-1

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 1998, 2001, 2006, 2011, 2015, 2019 Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Verantwortlich im Verlag: Thomas Zipsner

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort zur 6. Auflage

Die steigenden Forderungen nach Energie- und Ressourceneffizienz führen bei Hochtemperaturwerkstoffen, die z. B. bei Bauteilen in Energiewandlungsanlagen eingesetzt werden, zunehmend zu höheren thermischen und mechanischen Beanspruchungen. Das Verständnis des Materialverhaltens unter diesen oft extremen Betriebsbedingungen ist für die Auswahl geeigneter Werkstoffe entscheidend. Das *Handbuch Hochtemperatur-Werkstofftechnik* stellt daher zu Beginn die im Hinblick auf den Hochtemperatureinsatz der Werkstoffe relevanten materialkundlichen Grundlagen in den Fokus. Ausführliche Darstellungen der aktuell eingesetzten Legierungskonzepte und deren technische Umsetzung bei hochbeanspruchten Bauteilen, wie z. B. Turbinenschaufeln, stellen die Schwerpunktthemen der weiteren Kapitel dar. Das *Handbuch Hochtemperatur-Werkstofftechnik* wendet sich damit an den wissenschaftlich-technisch interessierten Nachwuchs ebenso wie an den erfahrenen Praktiker.

Die durchweg positive Resonanz auf die vorhergehende Auflage hat uns veranlasst, bei der Neuauflage die ursprüngliche Struktur beizubehalten. Neu aufgenommen wurden jedoch Inhalte wie die Additive Fertigung, die zunehmend auch bei Hochtemperaturbauteilen Einzug hält. Da neben dem Verkauf von Neuteilen das sog. MRO-Geschäft (Maintenance, Repair and Overhaul) insbesondere für die hochpreisigen Komponenten von Triebwerken und Gasturbinen immer wichtiger wird, wurde der Abschnitt über die Rekonditionierungsmaßnahmen ebenfalls gezielt ergänzt.

Die vorliegende 6. Auflage ist erneut in gedruckter Version sowie als eBook verfügbar. Die hohe Nachfrage insbesondere nach der elektronischen Variante zeigt, dass vielen Lesern die mit der 5. Auflage neu hinzugekommenen interaktiven Möglichkeiten das Arbeiten mit dem Handbuch deutlich erleichtert haben.

Wir danken allen Leserinnen und Lesern für ihr Interesse am Handbuch sowie die Verbesserungsvorschläge und Anregungen, die wir in diese Neuauflage einfließen lassen konnten. Besonderer Dank gilt dem zuständigen Lektor, Herrn Dipl.-Ing. Thomas Zipsner, und dem Team des Verlages, die dieses Vorhaben erneut professionell begleitet haben.

Januar 2019

Hans Jürgen Maier und Thomas Niendorf

Zeichen und Einheiten

a	Gitterparameter	nm
а	Temperaturleitfähigkeit	$m^2 s^{-1}$
а	(chemische) Aktivität	1
Α	Fläche, siehe S_0	mm ²
Α	Mittelspannungsverhältnis ($A = \sigma_{a}/\sigma_{m}$)	1
A _u	Zeitbruchdehnung	1, %
b	Betrag des Burgers-Vektors	nm
с	Konzentration (meist bezogen auf Masseanteile, siehex)	/, %
cp	spezifische Wärmekapazität bei konstantem Druck	$J kg^{-1}K^{-1}$
d _K	mittlerer Korndurchmesser	μm
d _T	mittlerer Teilchendurchmesser	μm
D	Schädigungsparameter	1
D	Diffusionskoeffizient	$m^2 s^{-1}$
Ď	Interdiffusionskoeffizient	$m^2 s^{-1}$
D_0	Diffusions-Vorfaktor	$m^2 s^{-1}$
Ε	Elastizitätsmodul	GPa
f	Anteil (z. B. Teilchenanteil $f_{\rm T}$, Volumenanteil $f_{\rm V}$)	1, %
f	Frequenz	Hz
F	Kraft	N
G	Schubmodul	GPa
G	freie Enthalpie (Gibbs-Energie)	J
ΔG^{a}	freie Aktivierungsenthalpie	J mol ⁻¹
Н	Enthalpie	J
k	Vergröberungskonstante (Reifungskonstante)	nm ³ s ⁻¹
k	Verteilungskoeffizient (Anteile zwischen verschiedenen Phasen)	1
kB	Boltzmann-Konstante: $k_{\rm B} = 1,3806 \cdot 10^{-23} \text{ J K}^{-1}$	

Gleiche Zeichenverwendungen für andere Größen sind im Text besonders vermerkt.

(Fortsetzung)

kp	parabolische Wachstumskonstante	$kg^2 m^{-4} s^{-1}$
K _p	Gleichgewichtskonstante	1
$\overline{L_0}$	Anfangslänge	mm
Li	momentane Länge	mm
m	Masse	kg
n	Spannungsexponent	1
N _A	Avogadro-Konstante: $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$	
NB	Zyklenzahl bis zum Bruch	1
N _V	Elektronenleerstellenzahl	1
Р	Larson-Miller-Parameter	1
ġ	Wärmestromdichte	W m ⁻²
Q	Wärmeenergie (Wärmemenge)	J
Ż	Wärmestrom	W
Q	Aktivierungsenergie	J mol ⁻¹
$Q_{\rm c}$	Aktivierungsenergie des Kriechens	J mol ⁻¹
R	Allgemeine Gaskonstante: $R = 8,314 \text{ J K}^{-1} \text{ mol}^{-1}$	
R _e	Elastizitätsgrenze (Streckgrenze)	MPa
R _m	Zugfestigkeit	MPa
$R_{\rm m\ t/\vartheta}$	Zeitstandfestigkeit für die Zeit <i>t</i> bis zum Bruch bei der Temperatur ϑ^1	MPa
$R_{\rm mk\ t/\vartheta}$	Zeitstandfestigkeit einer gekerbten Probe	MPa
<i>R</i> _{p0,2}	0,2 %-Dehngrenze	MPa
$R_{\mathrm{p}\ \varepsilon/t/\vartheta}$	Zeitdehngrenze für die plastische Gesamtdehnungenach der Zeit <i>t</i> bei der Temperatur ϑ^a	MPa
R _W	Wechselfestigkeit bei $\sigma_{\rm m} = 0$	MPa
s	Dicke (Wanddicke, Schichtdicke)	mm
S	Entropie	J K ⁻¹
S ₀	Anfangsquerschnitt (einer Probe)	mm ²
Si	momentaner Querschnitt (einer Probe)	mm ²
t	Zeit	s
t _m	Belastungsdauer bis zum Bruch ^a	h
Т	absolute Temperatur, vgl. auch ϑ	K
T_1	Lösungstemperatur (Solvustemperatur) einer Phase	K
T _L	Liquidustemperatur	К
T_R	Rekristallisationstemperatur	K
T _S	absolute Schmelztemperatur (bei Legierungen mit einem Schmelzintervall ist die Solidustemperatur gemeint), vgl. auch ϑ_{S}	K
U	innere Energie	J

(Fortsetzung)

x	Konzentration (meist bezogen auf Atomanteile, vgl. auch c)	1, %
Ζ	Einschnürung	1, %
Zu	Zeitbrucheinschnürung ^a	/, %
α	Wärmeübergangskoeffizient	$W m^{-2} K^{-1}$
α_{l}	thermischer Längenausdehnungskoeffizient	K^{-1}
	(sofern nicht anders vermerkt, ist der mittlere Wert für das betrachtete	
	Temperaturintervall gemeint: $\alpha_1 = \frac{\Delta L}{L_0} \cdot \frac{1}{\Delta T}$	
$\gamma_{\rm KG}$	spezifische Korngrenzflächenenergie	mJ m ⁻²
γ _{OF}	spezifische Oberflächenenergie	mJ m ⁻²
γ _{Ph}	spezifische Phasengrenzflächenenergie	mJ m ⁻²
γ _{SF}	(spezifische) Stapelfehlerenergie	mJ m ⁻²
Γ	Sprungrate (bei der Diffusion)	s ⁻¹
δ	Fehlpassungsparameter (Misfit-Parameter)	1, %
ε	technische Dehnung $\varepsilon = \frac{L_i - L_0}{L_0} (\cdot 100 \%)$	1, %
$\varepsilon_{ m f}$	Kriechdehnung ^a	1, %
ε _e	elastische Dehnung ^a	1, %
$\varepsilon_{\rm in}$	inelastische Dehnung	1, %
$\varepsilon_{\rm m}$	mechanische Dehnung (in Abgrenzung zu $\varepsilon_{\rm th}$)	1, %
ε _p	plastische Dehnung ^a	1, %
$\varepsilon_{\rm t}$	Gesamtdehnung	1, %
$\varepsilon_{\mathrm{th}}$	thermische Dehnung	/, %
$\varepsilon_{ m W}$	wahre Dehnung: $\varepsilon_{\rm W} = \ln \left(L_{\rm i}/L_0 \right)$	1
Ė	Dehn- oder Kriechrate	s ⁻¹
έs	sekundäre (stationäre) Kriechrate	s ⁻¹
η	Verformungsgrad (allgemein)	1, %
θ	Temperatur, vgl. auch T	°C
$\vartheta_{\rm S}$	Schmelztemperatur, siehe Anmerkung bei T_S	°C
λ	Wärmeleitfähigkeit	$W m^{-1} K^{-1}$
$\lambda_{\rm D}$	mittlerer Dendritenstammabstand	μm
λ_{T}	mittlerer Teilchenabstand	μm
ν	Poisson'sche Zahl	1
ρ	Dichte	g cm ⁻³
ρ	Versetzungsdichte	m ⁻²
σ	mechanische (Normal-)Spannung	MPa
σ_0	Nennspannung: $\sigma_0 = F/S_0$	MPa
$\sigma_1, \sigma_2, \sigma_3$	Hauptnormalspannungen	MPa
σ_{a}	außen anliegende Spannung	MPa

(Fortsetzung)

σ_{a}	Spannungsamplitude	MPa
$\sigma_{ m dF}$	Druckfließgrenze	MPa
$\sigma_{ m i}$	innere Spannungen	MPa
$\sigma_{ m m}$	Mittelspannung	MPa
$\sigma_{ m th}$	thermisch induzierte Spannung, Wärmespannung	MPa
$\sigma_{ m W}$	wahre Spannung: $\sigma_{\rm W} = F/S_{\rm i}$	MPa
τ	Schubspannung	MPa
Ω	Atomvolumen	nm ³

^aDiese Zeichen sind aus DIN 50118 , *Zeitstandversuch unter Zugbeanspruchung*" entnommen. DIN 50118 wurde durch die Europäische Norm DIN EN 10291 vom Jan. 2001 ersetzt. Da abzusehen ist, dass sich die praxisfremden Formelzeichen dieser EN-Norm, die den jahrzehntelangen Gepflogenheiten widersprechen, weder national noch international durchsetzen werden, wird hier bis auf weiteres DIN 50118 für den Zeitstandversuch herangezogen. In Beiblatt 1 zu DIN EN 10291 wird eingeräumt, "*die in langjähriger Praxis bewährten Festlegungen aus DIN 50118 … auch weiterhin anwenden zu können*".

Hinweise:

Sofern nicht anders vermerkt, beziehen sich Prozentangaben bei Legierungselementen auf Masseanteile.

Bei zugeschnittenen Größengleichungen, in denen die Größen mit bestimmten Einheiten einzusetzen sind, werden der Übersicht halber die Einheiten separat genannt. Mathematisch streng genommen müsste jede Größe in den Gleichungen durch die gewählte Einheit dividiert werden.

Abkürzungen

APS	atmosphärisches Plasmaspritzen		
CC	konventionell gegossen (conventionally cast)		
CVD	chemische Gasphasenabscheidung (chemical vapour deposition)		
DS	gerichtet erstarrt mit Stängelkörnern (directionally solidified)		
EB-PVD	physikalische Gasphasenabscheidung mittels Elektronenstrahlverdampfung		
	(electron beam-physical vapour deposition)		
GCP	geometrisch dichtest gepackt (geometrically closed packed)		
HCF	hochzyklische Ermüdung (high-cycle fatigue)		
hdP	hexagonal dichteste Packung		
HIP	heiß-isostatisches Pressen		
IPS	Inertgasplasmaspritzen		
kfz	kubisch-flächenzentriert		
krz	kubisch-raumzentriert		
LCF	Niedrig-Lastwechsel-Ermüdung (low-cycle fatigue)		
MK	Mischkristall		
ODS	oxiddispersionsgehärtet (oxide dispersion strengthened)		
PVD	physikalische Gasphasenabscheidung(physical vapour deposition)		
REM	Rasterelektronenmikroskop		
RT	Raumtemperatur (20 °C)		
SC od. SX	Einkristall (single crystal)		
TCP	topologisch dichtest gepackt(topologically closed packed)		
TEM	Durchstrahlungselektronenmikroskop		
TF	thermische Ermüdung (thermal fatigue)		
VPS	Vakuumplasmaspritzen		

Das Druckkriechen einer Orgelpfeife

Die Orgelpfeife steht mit ihrem gesamten Gewicht auf der Spitze, die in einem Holzkonus fixiert ist. Die Legierung besteht aus Zinn mit ca. 20 % Blei; die Solidustemperatur liegt bei etwa 220 °C.

Selbst in unbeheizten Kirchen herrscht für einen solchen Werkstoff eine metallphysikalisch hohe Temperatur von knapp 0,6 Ts. Die Legierung kriecht im Laufe der Jahrzehnte unter dem Eigengewicht der Orgelpfeife. An der Spitze bilden sich Beulen und Falten, die auf dem Holz aufliegen.

neu

nach vielen Jahrzehnten

Mit Dank an Fa. Metzler Orgelbau, Dietikon/Schweiz

Inhaltsverzeichnis

1	Gru	ndlagen		1	
	1.1	Einfüh	rung	1	
	1.2	Thermodynamische und kinetische Grundlagen			
		1.2.1	Temperatur und thermische Energie	3	
		1.2.2	Grundbegriffe der Thermodynamik und Kinetik von Reaktionen	5	
		1.2.3	Thermodynamische Triebkraft	6	
		1.2.4	Reaktionskinetik	8	
	1.3	Diffusi	ion	11	
		1.3.1	Mechanismen und Gesetzmäßigkeiten	11	
		1.3.2	Diffusion in Substitutionsmischkristallen	19	
		1.3.3	Diffusion entlang von Gitterfehlern	21	
		1.3.4	Diffusion in geordneten Gittern	23	
	1.4	Grund	lagen der Wärmeübertragung	25	
		1.4.1	Begriffe	25	
		1.4.2	Wärmedurchgang durch eine Wand	26	
	Liter	atur		36	
2	Gefü	gestabil	ität	37	
	2.1	Erholu	ng	37	
	2.2	Rekris	tallisation	42	
		2.2.1	Allgemeines	42	
		2.2.2	Kinetik der Rekristallisation	43	
		2.2.3	Mechanismen und Gesetzmäßigkeiten der Rekristallisation	45	
	2.3	Kornve	ergröberung	55	
	2.4	Aussch	neidungsvorgänge	61	
		2.4.1	Allgemeines	61	
		2.4.2	Energiebilanz bei Ausscheidungsvorgängen	65	
	2.5	Teilche	envergröberung/Ostwald-Reifung	72	
	2.6	Gefüge	ebedingte Volumenänderungen	81	
	Liter	atur	- • • • • • • • • • • • • • • • • • • •	83	

Hoch	tempera	turfestigkeit und -verformung	85			
3.1	Allgem	eines	85			
3.2	Grundla	agen der Hochtemperaturverformung	86			
3.3	Krieche	en	91			
	3.3.1	Kriechkurve	92			
	3.3.2	Darstellungsformen der Kriech- und Zeitstanddaten und				
		Aspekte der Bauteilauslegung	96			
3.4	Versetz	ungskriechen	100			
	3.4.1	Mikrostrukturelle Interpretation	100			
	3.4.2	Gesetzmäßigkeiten des Versetzungskriechens	103			
3.5	Korngr	enzengleiten	114			
3.6	Diffusio	onskriechen	117			
3.7	Verform	nungsmechanismuskarten	122			
3.8	Krieche	en von Legierungen	126			
	3.8.1	Mischkristallhärtung	126			
	3.8.2	Teilchenhärtung	131			
	3.8.3	Kriechen geordneter intermetallischer Phasen	144			
3.9	Bruchn	nechanismuskarten	145			
3.10	Kriechs	schädigung und Kriechbruch	147			
	3.10.1	Transkristalline Kriechschädigung	147			
	3.10.2	Interkristalline Kriechschädigung	148			
	3.10.3	Tertiäres Kriechen	162			
3.11	Einfluss der Kornform auf die Zeitstandeigenschaften					
3.12	Kriechverhalten von Einkristallen 16					
3.13	Extrapolation von Zeitstandergebnissen 16					
3.14	Zeitstandfestigkeitsnachweis bei veränderlichen Beanspruchungen 17					
3.15	Spannungsrelaxation					
3.16	Kerbzeitstandverhalten 1					
3.17	Entwicl	klung und Auswahl kriechfester Werkstoffe	186			
Litera	atur	•••••••••••••••••••••••••••••••••••••••	191			
Zykli	ische Fes	tigkeit und Verformung	195			
4.1	Begriff	e und Einführung	195			
4.2	Ermüdu	Ing bei tiefen Temperaturen	202			
4.3	Ermüdung bei hohen Temperaturen					
4.4	Schädigung und Bruch unter zyklischen Belastungen					
4.5	Lebensdauerabschätzung für zyklische Belastungskollektive					
4.6	Lebensdauerabschätzung für kombinierte Kriech- und					
	Ermüdu	Ingsbeanspruchung	217			
4.7	Thermi	sche Ermüdung	224			
	4.7.1	Einführung und Definition	224			
	4.7.2	Wärmedehnung und Wärmespannung	226			
	Hoch 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 Litera Zykli 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Hochtempera 3.1 Allgem 3.2 Grundli 3.3 Krieche 3.3.1 $3.3.1$ 3.3 Krieche 3.3.1 $3.3.2$ 3.4 Versetz 3.4.1 $3.4.2$ 3.5 Korngr 3.6 Diffusion 3.7 Verforr 3.8 Krieche 3.8.1 $3.8.2$ 3.8.3 3.9 Bruchm $3.10.1$ 3.10 Krieches $3.10.1$ $3.10.2$ $3.10.3$ $3.10.1$ $3.10.3$ $3.10.3$ 3.11 Einflus: 3.12 Krieches 3.13 Extrapo 3.14 Zeitstan 3.15 Spannu 3.16 Kerbze 3.17 Entwict Literatur 4.1 Begriff 4.2 Ermüdu 4.3 Ermüdu 4.5 Lebens 4	Hochtemperaturfestigkeit und -verformung. 3.1 Allgemeines. 3.2 Grundlagen der Hochtemperaturverformung. 3.3 Kriechken 3.3.1 Kriechkurve 3.3.2 Darstellungsformen der Kriech- und Zeitstanddaten und Aspekte der Bauteilauslegung. 3.4 Versetzungskriechen 3.4.1 Mikrostrukturelle Interpretation 3.4.2 Gesetzmäßigkeiten des Versetzungskriechens. 3.5 Komgrenzengleiten 3.6 Diffusionskriechen n 3.7 Verformungsmechanismuskarten 3.8.1 Mischkristallhärtung 3.8.2 Teilchenhärtung 3.8.3 Kriechen von Legierungen 3.8.4 Teilchenhärtung 3.8.3 Kriechen geordneter intermetallischer Phasen 3.9 Bruchmechanismuskarten 3.10.1 Tanskristalline Kriechschädigung 3.10.2 Interkristalline Kriechschädigung 3.10.3 Tertiäres Kriechen 3.11 Einfluss der Kornform auf die Zeitstandeigenschaften 3.12 Kriechverhalten von Zeitstandergebnissen 3.13 Extrapolation von Zeitstandergebnissen			

		4.7.3	Prüftechniken zur thermischen Ermüdung	237	
		4.7.4	Einflussgrößen auf die thermische Ermüdung	242	
	Litera	atur		250	
5	Hoch	tempera	turkorrosion	253	
	5.1	Begriff	e	253	
	5.2	Thermo	dynamik der Metall/Gas-Reaktionen	253	
	5.3	Oxidati	on	260	
		5.3.1	Einführung und Begriffe	260	
		5.3.2	Kinetik der Oxiddeckschichtbildung	260	
		5.3.3	Mechanismen des Deckschichtwachstums	266	
		5.3.4	Oxidation von Legierungen	271	
		5.3.5	Deckschichten auf Legierungen	274	
		5.3.6	Zyklisches Oxidationsverhalten	278	
		5.3.7	Haftung von Deckschichten und Aktivelementeffekte	281	
		5.3.8	Plastisches Verhalten von Oxiddeckschichten	284	
		5.3.9	Korngrenzenzerfall (Pest)	285	
		5.3.10	Zundergrenze	285	
	5.4	Aufkoh	llung	286	
		5.4.1	Allgemeines	286	
		5.4.2	Besondere Erscheinungsformen der Aufkohlung	290	
	5.5	Entkohlung			
	5.6	Aufstic	kung	295	
	5.7	Aufschwefelung			
	5.8	Heißgaskorrosion			
		5.8.1	Begriffe und Einführung	300	
		5.8.2	Korrosive Substanzen bei Verbrennungsprozessen	302	
		5.8.3	Prüfmethoden	305	
		5.8.4	Mechanismen der Heißgaskorrosion	307	
		5.8.5	Zusammenfassung und Aspekte der Werkstoffwahl	321	
	5.9	Erosion	n-Korrosion-Wechselwirkungen	323	
	5.10	Korrosi	ionsbedingte Volumenänderungen	325	
	5.11	Wechse	elwirkungen zwischen Korrosion und mechanischen		
		Eigenso	chaften	326	
	Litera	atur		330	
6	Hoch	tempera	ıturlegierungen	333	
	6.1	Definiti	ion und Anwendungsgebiete	333	
	6.2	Beansp	ruchungen und Werkstoffanforderungen	334	
	6.3	Auswal	hlkriterien für Basiselemente und Übersicht über		
		Hochte	mperatur-Werkstoffgruppen	334	

6.4	Hochte	mperaturlegierungen auf Fe-Basis	341
	6.4.1	Übersicht	341
	6.4.2	Hitzebeständige Stähle	344
	6.4.3	Warmfeste Stähle	349
	6.4.4	Hochwarmfeste Stähle	350
6.5	Hochte	mperaturlegierungen auf Co-Basis	356
	6.5.1	Allgemeines und Vergleich	356
	6.5.2	Legierungsaufbau, Gefüge und Eigenschaften	358
6.6	Hochte	mperaturlegierungen auf Ni-Basis	363
	6.6.1	Allgemeines und Vergleich	363
	6.6.2	Mikroseigerungsverhalten bei der Erstarrung	364
	6.6.3	Phasen in Ni-Basislegierungen	372
	6.6.4	Wärmebehandlung γ' -gehärteter Ni-Basislegierungen	394
	6.6.5	Korrosionseigenschaften	410
	6.6.6	Berechnung von Volumenanteilen der γ' -Phase	411
6.7	Gericht	et erstarrte Superlegierungen	415
	6.7.1	Allgemeines	415
	6.7.2	Herstellung	417
	6.7.3	Besondere Eigenschaften gerichtet erstarrter Legierungen	426
	6.7.4	Rekristallisation gerichtet erstarrter Bauteile	431
6.8	Gericht	et rekristallisierte Dispersions-Superlegierungen	433
	6.8.1	Allgemeines	433
	6.8.2	Legierungstypen	435
	6.8.3	Herstellung	436
	6.8.4	Rekristallisation	438
	6.8.5	Legierungsaufbau und besondere Eigenschaften	440
	6.8.6	Blechlegierungen	442
	6.8.7	Korrosions- und Beschichtungsverhalten	443
6.9	Additiv	e Fertigung	444
	6.9.1	Verfahren der additive Fertigung	444
	6.9.2	Eigenschaften additiv gefertigter Hochtemperaturwerkstoffe.	448
6.10	Hochse	hmelzende Legierungen	457
	6.10.1	Allgemeines	457
	6.10.2	Festigkeitssteigerung und Legierungsaufbau	459
	6.10.3	Aktuelle Entwicklungen	460
6.11	Interme	etallische Phasen als Konstruktionswerkstoffe	461
	6.11.1	Allgemeines	461
	6.11.2	Klassifizierung der intermetallischen Phasen	462
	6.11.3	Besondere Eigenschaften der intermetallischen Phasen	466
	6.11.4	Potenzielle intermetallische Konstruktionswerkstoffe	469
6.12	Edelme	talllegierungen	476

	6.13	Verunre	einigungen und Reinheitsgradverbesserung	477
		6.13.1	Allgemeines	477
		6.13.2	Einflüsse von Verunreinigungen auf die Eigenschaften	477
		6.13.3	Maßnahmen zur Reinheitsgradverbesserung	481
	6.14	Verglei	ch von Hochtemperaturwerkstoffen und Aspekte der	
		Werksto	offauswahl	483
	Litera	atur		490
7	Hoch	tempera	tur-Korrosionsschutzschichten	497
	7.1	Hochter	mperatur-Korrosionsschutzschichten	497
		7.1.1	Funktion	497
		7.1.2	Beanspruchungen und Anforderungen	498
		7.1.3	Beschichtungsverfahren	499
		7.1.4	Beschichtungsarten und Eigenschaften	512
		7.1.5	Thermisch-mechanisches Verhalten beschichteter Bauteile	522
	7.2	Wärme	dämmschichten	533
		7.2.1	Funktion	533
		7.2.2	Anforderungen	537
		7.2.3	Beschichtungsverfahren zur Applikation von Keramiken	538
		7.2.4	Arten und Eigenschaften	539
	Litera	atur		547
8	Maßı	nahmen	an betriebsbeanspruchten Bauteilen	549
	8.1	Zustand	lsbeurteilungen	549
	8.2	Rekond	litionierungsmaßnahmen	555
	Litera	tur		562
9	Werl	stoffbez	eichnungen und -zusammensetzungen	565
	9.1	Chemis	che Zusammensetzungen ausgewählter Legierungen	565
	9.2	Handels	snamen	575
Un	irechni	ung von	Einheiten	577
Un	irechni	ung gäng	giger Einheitenin der Werkstofftechnik	579
Sti	chwort	verzeich	nis	581

Grundlagen

1.1 Einführung

Zwischen tiefen und hohen Temperaturen, Kaltverformung und Warmverformung, quasistabilem und zeitlich veränderlichem Gefüge bestehen keine scharfen Grenzen. Beispielsweise ist die physikalisch korrekte Feststellung zunächst ungewohnt, dass Kriechverformung nicht auf hohe Temperaturen beschränkt ist, sondern bei allen Werkstoffen und bei allen Temperaturen oberhalb 0 K einsetzt. Zustände, die sich über lange Zeiten - scheinbar "unendlich" lange - nicht ändern, bezeichnet man als stabil, obwohl die meisten davon in Wirklichkeit metastabil sind. Gegenüber den stabilen Gleichgewichtszuständen zeichnen sie sich in vielen Fällen durch technisch attraktive Eigenschaften aus. Beispiele: die hohe Festigkeit von Martensit in C-Stählen verglichen mit einem Gefüge aus Ferrit und Karbiden, die bei tiefen Temperaturen hohe Streckgrenze eines feinkörnigen Gefüges gegenüber einem Einkristall oder die Festigkeit bei feiner Teilchendispersion im Gegensatz zu stark vergröberten Teilchen. Entscheidend für die Frage, wie lange sich ein metastabiler Zustand einfrieren lässt, sind die Gesetzmäßigkeiten der Thermodynamik und Kinetik. Für technische Betrachtungen, d. h. überschaubare Lebensdauern von Konstruktionen, ist das Kriechen der Werkstoffe erst oberhalb etwa 0,4 $T_{\rm S}$ ($T_{\rm S}$: absolute Schmelztemperatur) relevant, darunter vernachlässigbar. In ähnlicher Weise sind viele Grenz- oder Schwellenwerte mehr aus ingenieurmäßig-pragmatischen Gründen eingeführt worden, obwohl sie keine klare Trennung "Effekt findet statt oder findet nicht statt" markieren. Die Hochtemperatur-Werkstofftechnik behandelt Temperaturbereiche, in denen die Gefüge nicht dauerhaft eingefroren bleiben, sondern sich Vorgänge in der Mikrostruktur in nennenswerten Zeiten abspielen.

Bei hohen Temperaturen läuft eine Reihe verschiedener Werkstoffzustandsänderungen ab, die in Tab. 1.1 aufgelistet sind. Sie lassen sich auf die Einflüsse von Temperatur, mechanischer Spannung, Zeit sowie Umgebungsatmosphäre (einschließlich energiereicher Strahlung)

1

[©] Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

H. J. Maier et al., *Handbuch Hochtemperatur-Werkstofftechnik*, https://doi.org/10.1007/978-3-658-25314-1_1

Tab. 1.1 Arten der Werkstoffzustandsänderungen und deren Einflussgrößen bei hohen Temperaturen (\checkmark : Einfluss ist vorhanden). Ein Einfluss der Zeit und Temperatur ist bei allen aufgeführten Vorgängen vorhanden

Einflussgrößen \rightarrow			
Zustandsänderungen ↓	Spannung	Atmosphäre	Kap.
Erholung	1		Abschn. 2.1
• statisch (nach Verformung)			
 dynamisch (während der 			
Verformung)			
Rekristallisation	1		Abschn. 2.2
• statisch (nach Verformung)			
 dynamisch (während der 			
Verformung)			
Kornvergröberung	\checkmark		Abschn. 2.3
Teilchenvergröberung	1		Abschn. 2.5
(Ostwaldreifung)			Abschn. 6.6.3
Änderung der Teilchenmorphologie	1		Abschn. 6.6.3
Phasenumwandlungen	Einfl.	in Verbindung mit	Abschn. 2.6
Auflösung bestehender Phasen	gering	Korrosionsprodukten	Abschn. 5.3-
Bildung neuer Phasen		-	Abschn. 5.8
			Abschn. 6.6.4
Gefügebedingte Volumenänderungen	Einfl.	in Verbindung mit	Abschn. 2.6
(Kontraktion, Dilatation)	gering	Korrosionsprodukten	Abschn. 5.10
Konzentrationsausgleich; Reduktion			Abschn. 6.6.3
von Seigerungen			Abschn. 6.6.4
Segregationen			Abschn. 3.10.2.1
			Abschn. 6.13
Kriechen	1	in Verbindung mit	Kap. 3
Gestaltänderungen; Änderungen der		Korrosionsvorgängen	Abschn. 5.10
Versetzungsdichte und -anordnung			
Hohlraum- und Rissbildung	1	Einfluss auf	Abschn. 3.11
		Oberflächenrisse	Abschn. 5.11
Äußere und innere Korrosion	Einfl. Über		Kap. <mark>5</mark>
	Rissbildung		
Änderung der chemischen	Einfl.	in Verbindung mit	Kap. 5
Zusammensetzung durch	gering	Korrosionsprodukten	Abschn. 7.1
Interdiffusion bei			
Werkstoffverbunden und bei			
Korrosion			
Erniedrigung der Solidustemperatur		in Verbindung mit	Kap. 5
		manchen	
		Korrosionsvorgängen	
Strahlungsbedingte		thermische und	-
Hochtemperaturversprödung		schnelle Neutronen	
Strahlungsbedingtes beschleunigtes	1	schnelle Neutronen	-
Kriechen			

zurückführen. Ein Teil dieser Vorgänge wird gezielt herangezogen, um bestimmte Zustände und Eigenschaften einzustellen, wie z. B. die Rekristallisation. Für das Betriebsverhalten von Bauteilen stellen dagegen nahezu alle aufgeführten Prozesse Schädigungen im Sinne von Verschlechterungen der Gebrauchseigenschaften des Werkstoffes und damit des Gebrauchswertes der Komponente gegenüber dem Neuzustand dar. Eine Ausnahme bildet die Reduktion herstellungsbedingter Seigerungen, die sich positiv bemerkbar macht. Einzelne Eigenschaftsverbesserungen, z. B. in Verbindung mit manchen Korrosionsformen, gibt es selten.

Manchmal ist, besonders in Zusammenhang mit dem Kriechverhalten teilchengehärteter Legierungen, eine Unterscheidung der Begriffe *Schädigung* und *Erschöpfung* gebräuchlich. Unter Schädigung werden danach Trennungen im Werkstoff in Form von Hohlraum- und Rissbildung verstanden sowie korrosionsbedingter Abtrag; beide werden als unumkehrbare Prozesse betrachtet. Als Erschöpfung werden demgegenüber Vorgänge bezeichnet, die zwar ebenfalls die Gebrauchseigenschaften verschlechtern, aber prinzipiell durch eine regenerierende Wärmebehandlung reversibel sind. Der Verlust an Teilchenhärtung aufgrund von Teilchenvergröberung fällt typischerweise in diese Kategorie. Die Wiederherstellung der Eigenschaften ist allerdings mehr eine Frage der technischen Möglichkeiten und des vertretbaren Aufwandes. Auch Bauteile mit Hohlraumbildung und Materialabtrag lassen sich mit bestimmten Methoden rekonditionieren. In Verbindung mit den Begriffen Schädigung und Erschöpfung ist also stets anzugeben, welcher Vorgang der Werkstoffzustandsänderung gemeint ist.

1.2 Thermodynamische und kinetische Grundlagen

1.2.1 Temperatur und thermische Energie

Die thermische Energie oder Wärmeenergie stellt den temperaturabhängigen Anteil der inneren Energie eines festen Stoffes dar. Zum Verständnis der Hochtemperaturvorgänge ist es zweckmäßig, sich die thermischen Energiezustände eines Festkörpers und die statistische atomare Definition der Temperatur vor Augen zu führen. Nach dem Einstein'schen Modell schwingen die Atome in Kristallen in drei Translationsfreiheitsgraden um feste Zentren. Die Schwingungsmittelpunkte bilden die Punkte des Kristallgitters. Der kinetische Anteil der Schwingungsenergie ist identisch mit der thermischen Energie (Wärmeenergie). Je höher die Temperatur ist, umso größer ist die Amplitude der Schwingung, und auch der mittlere Atomabstand nimmt zu, was zur thermischen Ausdehnung führt. Am Schmelzpunkt sind die Gitterbausteine schließlich so stark thermisch angeregt, dass das Kristallgitter aufbricht und die Atome freie Beweglichkeit erlangen. Die Oszillation der Atome wird in dem Modell voneinander unabhängig betrachtet; allerdings wird eine Kopplung insoweit angenommen, dass die Atome untereinander thermische Energie austauschen können, also Wärmeleitung stattfindet.

Schwingungsenergie aller Atome pro Energieniveau

Abb. 1.1 Modell der Verteilung der Schwingungsenergie über die diskreten Energieniveaus für drei Temperaturen $T_1 < T_2 < T_3$

Nach der Quantenmechanik nehmen die Atome diskrete Energieniveaus ein, die stets ein Vielfaches des Wertes $h \cdot \nu$ ausmachen (Planck'sche Konstante: $h = 6,626 \cdot 10^{-34}$ J s, ν : Frequenz der Eigenschwingung der Teilchen). Das niedrigste Energieniveau besitzen die Atome beim absoluten Nullpunkt. Temperaturerhöhung bedeutet Energiezufuhr, wodurch die Atome auf höhere Quantenzustände gehoben werden. Die Wärmezufuhr ΔQ ist also aufzuteilen in die Anzahl der nicht weiter unterteilbaren Energiequanten $h \cdot \nu$. Eine völlig gleichmäßige Verteilung der Quanten auf alle Atome ist äußerst unwahrscheinlich. Vielmehr werden sie sich ungleichmäßig über alle Atome verteilen, was Abb. 1.1 für unterschiedliche Temperaturen veranschaulicht. Mit steigender Temperatur werden insgesamt mehr Energieniveaus besetzt, und das Niveau, auf dem sich das Maximum der Energie für alle betrachteten Atome befindet, verschiebt sich zu höheren Werten.

Die mikrophysikalische Schwingungsenergie verteilt sich auf die potenzielle und kinetische Energie der Gitterbausteine, analog zur makrophysikalischen Schwingungsenergie eines Pendels. Die Wärmeenergie entspricht dem statistischen *Mittelwert* der kinetischen Energie der schwingenden Teilchen, welche *pro Atom*

$$\bar{u}_{\rm kin}|_{\rm Atom} = \frac{3}{2}k_{\rm B} \cdot T \tag{1.1}$$

beträgt. Die thermische Energie ist also direkt mit der absoluten Temperatur über die Boltzmann-Konstante, $k_{\rm B} = 1,3806 \cdot 10^{-23}$ J K⁻¹, verknüpft. Die zeitlichen Mittelwerte von kinetischer und potenzieller Energie sind gleich, so dass sich die gesamte mittlere Schwingungsenergie pro Atom oder pro Mol wie folgt errechnet:

$$\bar{u}_{\text{kin}}|_{\text{Atom}} = 2\frac{3}{2}k_{\text{B}} \cdot T = 3k_{\text{B}} \cdot T \quad \text{oder} \quad \bar{U}|_{\text{Mol}} = N_{\text{A}} \cdot \bar{u}|_{\text{Atom}} = 3R \cdot T$$
(1.2)

Hierbei ist $R = N_A \cdot k_B = 8,3145 \text{ J mol}^{-1} \text{ K}^{-1}$ die sog. allgemeine Gaskonstante mit $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$ (Avogadro-Konstante).

Die Verteilung des Energiespektrums der Atome in Abhängigkeit von der Temperatur spielt für die zu diskutierenden Hochtemperaturvorgänge eine entscheidende Rolle.

1.2.2 Grundbegriffe der Thermodynamik und Kinetik von Reaktionen

Abb. 1.2 zeigt die Zusammenhänge zur Reaktionsgeschwindigkeit in einer Übersicht. Für die Frage, ob eine Reaktion freiwillig ablaufen kann, ist die Änderung der *freien Enthalpie* $\Delta G = G_2 - G_1$ bei einer Reaktion von Zustand "1" nach Zustand "2"

Abb. 1.2 Abhängigkeit der Reaktionsgeschwindigkeit von den thermodynamischen und kinetischen Größen

maßgeblich. ΔG liefert die thermodynamische Triebkraft. Unter Reaktion wird allgemein jegliche Art von Zustandsänderung verstanden. Die freie Enthalpie muss hierbei abnehmen, ΔG also nach obiger internationaler Definition negativ sein. Je stärker negativ ΔG ist, umso höher ist die Triebkraft für die freiwillige Zustandsänderung und umso schneller verläuft die Reaktion. Zusätzlich zu dieser notwendigen thermodynamischen Bedingung entscheidet über die Reaktionsgeschwindigkeit die Mobilität der Reaktionsteilnehmer. Dies wird unter dem Begriff *Kinetik* zusammengefasst. Sie wird bestimmt durch Temperatur, Zeit und die freie Aktivierungsenthalpie ΔG^a (üblicherweise wird der Index "a" für "aktivieren" hochgestellt und darf nicht mit einem Exponenten verwechselt werden). Letztere stellt einen Energiebetrag dar, der überwunden werden muss, damit die Reaktion tatsächlich stattfindet. Je geringer die Temperatur und/oder die Zeit ist, umso unwahrscheinlicher die Aktivierung, und die Reaktion ist möglicherweise kinetisch gehemmt.

1.2.3 Thermodynamische Triebkraft

Das Stabilitätsmaß für Werkstoffzustände stellt die *freie Enthalpie G* dar, die auch als *thermodynamisches Potenzial, Gibbs'sche freie Energie* oder (nach IUPAC-Empfehlung) als *Gibbs-Energie* bezeichnet wird. Sie wird durch drei weitere thermodynamische Zustandsgrößen festgelegt:

- 1. den Energieinhalt des Zustandes, bezeichnet als Enthalpie H
- 2. die statistische Wahrscheinlichkeit der Anordnung der Atome oder Bausteine des Werkstoffes, ausgedrückt durch die *Entropie S*
- 3. die Temperatur T.

Die Verknüpfung dieser Zustandsgrößen liefert die Definition für die freie Enthalpie nach Gibbs:

$$G = H - T \cdot S \tag{1.3}$$

Da das Produkt aus Druck und Volumen bei *Feststoffen* im Vergleich zur inneren Energie *U* vernachlässigbar ist, kann diese mit der Enthalpie annähernd gleichgesetzt werden $H = U + p \cdot V \approx U$

Abb. 1.3 gibt einen Überblick, woraus sich die Enthalpie *H* in einem kristallin aufgebauten Festkörper zusammensetzt. Alle Teilbeiträge sind den beiden grundsätzlich zu unterscheidenden Energiearten, der potenziellen und der kinetischen Energie, zugeordnet. Für die hier interessierenden Betrachtungen sind stets die mikrophysikalischen Bedeutungen dieser Energien gemeint und nicht die Energie der Lage in einem Gravitationsfeld oder die makroskopische Bewegungsenergie. Zweckmäßigerweise erfolgt eine weitere Unterteilung in *chemische, mechanische* und *thermische* Enthalpieterme. In Realkristallen sind die chemische und mechanische Enthalpie durch Gitterfehler im Vergleich zum perfekt,

also völlig fehlerfrei aufgebauten Kristallverband verändert. Diejenigen Gitterfehler, die nicht mit einer nennenswerten Entropieänderung verknüpft sind, nämlich die Versetzungen und Grenzflächen, streben zwecks Minimierung der Enthalpie – und damit der freien Enthalpie – in jedem Fall nach Abbau. Spielt dagegen bei Gitterfehlern die Entropie eine wesentliche Rolle, wie bei den Leerstellen und Fremdatomen, so ist nach der Zustandsgleichung $G = H - T \cdot S$ die energetische Gesamtbilanz für die jeweilige Temperatur zu betrachten. Da das Produkt $T \cdot S$ negativ eingeht, kann die Enthalpie H bei einer Zustandsänderung auch steigen, wenn der zweite Term dominiert.

Durch die Enthalpie allein ist gemäß Gl. 1.3 der Zustand eines Stoffes nicht vollständig beschreibbar. Vielmehr spielt zusätzlich die *statistische Wahrscheinlichkeit der Anordnung* der Atome eine Rolle. Man bezeichnet dies als *Ordnungsgrad*. Die hierfür maßgebliche Zustandsgröße wird *Entropie* genannt. Entropie, Ordnungsgrad und statistische Wahrscheinlichkeit für diesen Ordnungsgrad hängen qualitativ wie folgt zusammen:

niedrige Entropie \Rightarrow hoher Ordnungsgrad \Rightarrow geringe statistische Wahrscheinlichkeit

und umgekehrt:

hohe Entropie \Rightarrow niedriger Ordnungsgrad/starke Unordnung \Rightarrow hohe statistische Wahrscheinlichkeit

Die Natur strebt generell Zustände größtmöglicher Entropie, d. h. höchstmöglicher Unordnung an. Wie aus der Zustandsgleichung 1.3 für die freie Enthalpie zu entnehmen ist, wird dieses Bestreben mit steigender Temperatur unterstützt (Produkt $T \cdot S$). Beim Zusammenbrechen des kristallinen Aufbaus am Schmelzpunkt nimmt die Entropie zu, weil ein kristallines Gitter einen Zustand sehr hoher Ordnung bedeutet gegenüber der regellosen Atomanordnung in der Flüssigkeit. Zahlreiche weitere metallkundliche Vorgänge lassen sich durch das Streben nach Entropieerhöhung erklären. Beispiele: – Seigerungen werden durch eine Homogenisierungsglühung beseitigt. – Eine Mischungslücke wird mit steigender Temperatur enger und verschwindet letztlich. – Ausscheidungen lösen sich bei einer Lösungsglühung auf. – Überstrukturphasen gehen bei der kritischen Ordnungstemperatur in einen ungeordneten Zustand über. – Eine ausgeprägte Streckgrenze verschwindet bei höheren Temperaturen durch Auflösen der *Cottrell-Wolken* an den Versetzungen.

1.2.4 Reaktionskinetik

Die Thermodynamik liefert die Antwort auf die Fragen: Kann der Vorgang ablaufen und wie hoch ist die treibende Kraft hierfür? Um zu erfahren, wie schnell die Reaktion oder der Vorgang vonstattengeht, sind die Gesetze der Kinetik zusätzlich zu betrachten.

Der quantitative Einfluss der thermodynamischen Triebkraft auf die Reaktionsgeschwindigkeit, r, kann unterschiedlich ausfallen. In Abb. 1.2 ist allgemein eine Abhängigkeit der Form

$$r \sim \Delta G^k \quad \text{mit} \quad k \ge 1$$
 (1.4)

angegeben. Auf die Reaktionsgeschwindigkeit kann allein aus der Energiebilanz allerdings kein Rückschluss gezogen werden. Man spricht von kinetisch gehemmten Vorgängen, wenn eine energetisch mögliche Reaktion wegen nicht ausreichender Mobilität der Reaktionspartner nicht oder nur sehr langsam abläuft. Es kann sogar vorkommen, dass Reaktionen, welche mit einer sehr hohen Energiefreisetzung verbunden sind, außerordentlich träge verlaufen. Beispiel: Al₂O₃-Deckschichten wachsen verglichen mit den meisten anderen Oxiden extrem langsam, obwohl die Reaktion von Al mit Sauerstoff stark exotherm ist.

Das linke obere Teilbild in Abb. 1.2 gibt schematisch den Verlauf der freien Enthalpie bei einer Reaktion von Zustand "1" nach Zustand "2" wieder, wobei "2" der stabilere sein möge. Für nahezu alle Reaktionen ist charakteristisch, dass zur Überführung in den stabileren Zustand zunächst eine Energiebarriere überwunden werden muss. Beispiele: das Zünden einer Knallgasreaktion oder eines Streichholzes. Andernfalls liefen die Änderungen ungebremst auf den stabilen Endzustand zu. Eine Ausnahme in der Metallkunde stellt die spinodale Entmischung dar. Man spricht von *thermisch aktivierbaren Prozessen*, wenn die Geschwindigkeit des Vorganges temperaturabhängig ist. Die Energiebarriere bezeichnet man als *freie Aktivierungsenthalpie* ΔG^a . Meist findet man zahlenmäßig Aktivierungsenergien angegeben, für die in der Regel das Symbol Q anstelle von H benutzt wird. In diesen Fällen geht der zugehörige Entropieterm in eine andere Konstante ein, wie bei der Diffusion in den Diffusionsvorfaktor (siehe Gln. 1.11 und 1.14).

Wie man sich die freie Aktivierungsenthalpie vorzustellen hat, hängt vom jeweiligen zu aktivierenden Vorgang ab. Ein anschauliches Beispiel stellt die Diffusion von Zwischengitteratomen dar. Hierbei muss das Fremdatom einen gegenüber dem Mittelwert überhöhten Energiebetrag in Form momentaner thermischer Energie aufweisen, damit der Sprung in eine benachbarte Position aktiviert werden kann. Bei der Keimbildung von Ausscheidungen, um ein anderes Beispiel zu nennen, muss sich eine gewisse Anzahl von Atomen zusammenfinden, damit ein wachstumsfähiger Keim entsteht. Die freie Aktivierungsenthalpie wird in diesem Fall durch die zufällige thermische Fluktuation der Reaktionspartner erreicht, so dass lokal eine Konfiguration mit ausreichend vielen Atomen für einen stabilen Keim entsteht (Anmerkung: Da ΔG^a für diesen Keimbildungsmechanismus sehr groß ist, ist in technisch reinen Legierungen die Keimbildung über Fremdkeime stark begünstigt.)

Bei allen Reaktionen, für die eine Aktivierungsschwelle überwunden werden muss, stellt sich die Frage nach der *Wahrscheinlichkeit* für die Reaktionspartner, in den aktivierten Zustand zu gelangen. Hierfür sind die Temperatur und Zeit entscheidend. Selbst bei z. B. 1 K existiert eine extrem geringe und daher technisch völlig bedeutungslose Wahrscheinlichkeit für den beschriebenen Atomplatzwechsel oder die Bildung eines stabilen

Ausscheidungskeimes aus einem übersättigten Mischkristall. Die thermischen Bewegungen der Gitterbausteine nehmen mit der Temperatur zu, und somit steigt nach dem Energiespektrenmodell (Abb. 1.1) die Wahrscheinlichkeit zur Überwindung der freien Aktivierungsenthalpie. Diese Wahrscheinlichkeit erhöht sich mit der Temperatur exponentiell nach einer *Arrhenius*-Funktion und linear mit der Zeit, so dass die Reaktionsgeschwindigkeit wie folgt beschrieben werden kann:

$$r = r_0 \cdot e^{-\frac{\Delta G_{\text{Atom}}^a}{k_B \cdot T}} \quad \text{oder} \quad r = r_0 \cdot e^{-\frac{\Delta G_{\text{mol}}^a}{R \cdot T}}$$
(1.5)

 r_0 Proportionalitätskonstante (Grenzwert von r für $T \to \infty$) ΔG^a_{Atom} freie Aktivierungsenthalpie bezogen auf 1 Atom ΔG^a_{mol} freie Aktivierungsenthalpie bezogen auf 1 Mol.

Die freie Aktivierungsenthalpie kann entweder auf den Elementarvorgang pro Atom oder – was meist üblich ist – auf 1 Mol bezogen werden.

Die rechten Teilbilder in Abb. 1.2 geben die Einflüsse von Temperatur und der freien Aktivierungsenthalpie auf die Reaktionsrate schematisch wieder. Der gestrichelte Kurvenast im (r; T)-Diagramm würde erst bei extrem hohen Temperaturen zum Tragen kommen, die weit oberhalb aller Schmelztemperaturen liegen. Für $T \rightarrow \infty$ geht die Exponential-Funktion gegen 1, so dass der Grenzwert von *r* gleich dem Vorfaktor r_0 ist. Ein Zahlenbeispiel soll die exponentielle Abhängigkeit der Reaktionsgeschwindigkeit von der Temperatur verdeutlichen. Für die freie Aktivierungsenthalpie wird ein Wert von 250 kJ mol⁻¹ angesetzt, wie er z. B. typisch für Diffusionsvorgänge regulärer Gitteratome in manchen Metallen ist. Für die Reaktionsgeschwindigkeit errechnen sich bei 20 °C und bei 1000 °C folgende Werte (in Gl. 1.5 sind absolute Temperaturen einzusetzen):

$$r(20^{\circ}\text{C}) = r_0 \cdot 2.7 \cdot 10^{-45}$$

 $r(1000^{\circ}\text{C}) = r_0 \cdot 5.5 \cdot 10^{-11}$

Falls die Reaktion bei 1000 °C eine Sekunde dauert, ergibt sich bei 20 °C eine Zeit von:

$$t(20 \ ^{\circ}\text{C}) = \frac{r(1000 \ ^{\circ}\text{C})}{r(20 \ ^{\circ}\text{C})} \cdot t(1000 \ ^{\circ}\text{C}) = 2 \cdot 10^{34} \text{ s} = 6.5 \cdot 10^{26} \text{ Jahre}$$

Die Anzahl Atome, welche bei 1000 °C pro Sekunde durch eine bestimmte Fläche diffundiert, benötigt also bei 20 °C hierfür die unvorstellbar lange Zeit von $6.5 \cdot 10^{26}$ Jahren; bei 500 °C sind es 1175 h ≈ 49 Tage. Analoges gilt für alle Vorgänge, die auf Diffusion beruhen, wie z. B. das Auslöschen von Versetzungen bei einer Glühung. Bei Wärmebehandlungen sowie bei allen Hochtemperaturvorgängen wird durch die Wärmezufuhr die Geschwindigkeit einer Reaktion erhöht. Bei tieferen Temperaturen

bleiben dagegen thermodynamisch mögliche Vorgänge weitgehend unterdrückt, und die Gefüge der Metalle und Legierungen befinden sich in einem eingefrorenen metastabilen Zustand.

Die Arrhenius-Funktion Gl. 1.5 lässt sich für metallkundlich übliche Werte der freien Aktivierungsenthalpie und die infrage kommenden Temperaturbereiche nicht mit linearer Achsenteilung sinnvoll wiedergeben, weil viele Zehnerpotenzen überstrichen werden, wie das obige Zahlenbeispiel zeigt. Es erfolgt daher eine logarithmische Auftragung der Reaktionsrate gemäß:

$$\ln r = c^{1} - \frac{\Delta G_{\text{mol}}^{a}}{R} \cdot \frac{1}{T} \quad \text{oder} \quad \lg r = c_{2} - \frac{0434\Delta G_{\text{mol}}^{a}}{R} \cdot \frac{1}{T}$$
(1.6)

Auf der Abszisse wird die reziproke absolute Temperatur 1/T linear geteilt, so dass die Funktion zweckmäßigerweise als Gerade dargestellt werden kann. Eine solche Arrhenius-Auftragung ist in Abb. 1.2 gezeigt. Die Steigung der Geraden errechnet sich zu $-\Delta G^a/R$ bei In-Teilung oder $-0.434 \Delta G^a/R$ bei Ig-Darstellung. Die freie Aktivierungsenthalpie der Reaktion kann also direkt aus der Steigung bestimmt werden.

1.3 Diffusion

1.3.1 Mechanismen und Gesetzmäßigkeiten

Die Diffusion stellt bei nahezu allen Hochtemperaturvorgängen den entscheidenden Elementarprozess dar. Alle Werkstoffzustandsänderungen nach Tab. 1.1 basieren auf den Platzwechseln von Atomen. Grundlage für die mathematische Beschreibung von Diffusionsvorgängen ist das 1. Fick'sche Gesetz:

$$j = \frac{N}{A \cdot t} = -D \text{ grad } c \tag{1.7}$$

j Materieflussdichte (Zahl *N* der durch die Einheitsfläche pro Zeit diffundierenden Atome), $m^{-2} s^{-1}$

A betrachtete Diffusionsfläche, m²

t Zeit, s

D Diffusionskoeffizient, m⁻² s⁻¹

grad *c* Gradient der Konzentration $\left(\frac{dc}{dx}, \frac{dc}{dy}, \frac{dc}{dz}\right)$, m⁻⁴

c Konzentration, m⁻³

xyz Ortskoordinaten, m.

Für den eindimensionalen Fall gilt dann:

$$j = -D\frac{dc}{dx} \tag{1.8}$$

Der Konzentrationsgradient dc/dx gibt die Richtung¹ des Diffusionsstromes vor. Das Minuszeichen ergibt sich dadurch, dass der Diffusionsstrom von höherer zu geringerer Konzentration fließt, dc/dx in Diffusionsrichtung folglich negativ ist und *j* sinnvollerweise als positiver Wert definiert ist. Solange ein Konzentrationsgefälle vorliegt, die Elementeverteilung also inhomogen ist, resultiert im eindimensionalen Fall ein Netto-Materiefluss in eine Richtung. Im Fall eines völlig homogenen Werkstoffes ist dc/dx = 0 und somit der Netto-Materiefluss Null, d. h. der Hin- und Rückstrom von Atomen durch die betrachtete Fläche sind gleich groß. Der Diffusionskoeffizient kann in den Gln. 1.7 und 1.8 nur näherungsweise als unabhängig von der lokalen Zusammensetzung angenommen werden. In der Regel ist D = f(c) und damit auch D = f(x). Dies kann für überschlägige numerische Behandlungen von Diffusionsvorgängen jedoch oft vernachlässigt werden.

Bei Selbstdiffusion in Reinmetallen oder bei homogener Elementeverteilung in einem Mischkristall lassen sich die statistisch regellosen Atomplatzwechsel nicht ohne weiteres experimentell mit Hilfe von Gl. 1.8 erfassen, weil j = 0 ist. Man schafft sich deshalb einen künstlichen Konzentrationsgradienten durch Dotierung mit radioaktiven Isotopen und kann dann deren Konzentrationsänderungen auf Grund von Diffusion messtechnisch verfolgen und so D bestimmen.

Grundsätzlich ist zu unterscheiden, ob die diffundierenden Atome interstitiell, also auf Zwischengitterplätzen gelöst sind oder ob es sich um reguläre Gitteratome handelt. Im letztgenannten Fall kann sowohl Selbstdiffusion in einem Reinmetall vorliegen als auch Fremddiffusion von Substitutionsatomen in einem Mischkristall.

1.3.1.1 Interstitielle Diffusion

Die Wanderung interstitiell gelöster Atome, wozu in den Metallgittern die kleineren Atome H (Atomradius² 0,31 Å), O (0,66 Å), N (0,71 Å), C (0,76 Å), B (0,84 Å), S (1,05 Å) sowie einige Elemente der hinteren Hauptgruppen mit niedriger Periodenzahl gehören, kann man sich einfach als Sprung auf einen nächstgelegenen, unbesetzten Zwischengitterplatz vorstellen. Da die Konzentration dieser Fremdelemente stets relativ gering ist, kann von genügend vielen freien Nachbarplätzen ausgegangen werden. Für den Sprung muss eine freie Aktivierungsenthalpie aufgebracht werden, um das Zwischengitteratom zwischen den umgebenden Gitteratomen hindurchzuzwängen, Abb. 1.4. Die Schwingungszentren der

¹Streng genommen müsste man in den Gln. 1.7 und 1.8 den Gradienten des sog. chemischen Potentials verwenden, da in speziellen Fällen, wie der sog. spinodalen Entmischung, auch Diffusion entgegen von dc/dx auftreten kann. Für die hier diskutierten Prozesse können solche Effekte i. d. R. jedoch vernachlässigt werden.

²Angegeben sind hier die sog. Kovalenzradien, Details siehe [1].

Abb. 1.4 Veranschaulichung des Platzwechsels von Zwischengitteratomen sowie Darstellung der freien Aktivierungsenthalpie des Sprunges

Atome entsprechen der freien Enthalpie G_0 . Damit ein Atom einen Platzwechsel in eine benachbarte Zwischengitterposition vollziehen kann, müssen die Bindungszustände zu den umgebenden Atomen geändert werden und das Atom muss sich zwischen den Nachbaratomen "hindurchquetschen". Das Ändern des Bindungszustands und das Hineindrücken in die Sattelposition bedürfen der erwähnten freien Aktivierungsenthalpie ΔG^a . Diese Energie kommt durch die thermische Auslenkung der Atome aus ihrer mittleren Position zustande. Gemäß Abb. 1.1 belegen die Atome ein Energiespektrum, welches mit steigender Temperatur breiter wird. Die über alle Atome gemittelte thermische Energie von $3/2 k_B \cdot T$ ist in der Regel sehr klein gegen ΔG^a . Für einzelne Atome mit einer höheren Energie besteht eine ausreichende Wahrscheinlichkeit, das Niveau $G_0 + \Delta G^a$ zu erreichen. In der Sattelposition ist die erforderliche freie Aktivierungsenthalpie gerade erreicht; eine geringe zusätzliche thermische Energie lässt das Atom in die benachbarte Leerstelle springen und damit Diffusion bewirken.

Die Sprungrate kann analog zu Gl. 1.5 beschrieben werden:

$$\Gamma_{\rm i} \sim e^{-\frac{\Delta G_{\rm S}}{RT}} \tag{1.9}$$

 Γ_i Sprungrate oder -frequenz interstitieller Atome (Anzahl der Sprünge pro Zeit) ΔG_S^a freie Aktivierungsenthalpie des Sprunges (hier auf 1 Mol der Legierung bezogen).

Die Sprungrate entspricht damit der in Abschn. 1.2.4 allgemein definierten Reaktionsgeschwindigkeit *r*. Der Diffusionskoeffizient lässt sich für kubisch primitive Kristalle, in denen die Diffusion isotrop in allen sechs senkrecht aufeinander stehenden Richtungen gleich wahrscheinlich erfolgt, ableiten zu:

$$D = \frac{1}{6} \cdot \alpha^2 \cdot \Gamma \tag{1.10}$$

α Sprungweite (Abstand der Zwischengitterplätze).

Die Zwischengitteratome nehmen Positionen zwischen den jeweils größtmöglichen Gitterabständen ein. In kubischen Kristallen also auf den Würfelkanten ($\langle 100 \rangle$ -Richtungen) mit dem Abstand *a* der regulären Gitteratome. Die nächstgelegenen Zwischengitterplätze liegen in der jeweils kürzesten Entfernung zueinander: in kfz-Gittern im Abstand $\alpha = a/\sqrt{2}$ und $\alpha = a/2$ in krz-Gittern.

Aus Gln. 1.9 und 1.10 ergibt sich für die Temperaturabhängigkeit des Diffusionskoeffizienten eine Arrhenius-Funktion:

0

$$D = D_0 \cdot e^{-\frac{Q_0}{RT}} \tag{1.11}$$

D₀ temperaturunabhängiger Vorfaktor

 Q_{iD} Aktivierungsenergie der interstitiellen Diffusion (identisch mit der Aktivierungsenthalpie des Zwischengittersprunges ΔH_s^a).

In den Vorfaktor D_0 gehen α , die Anzahl der nächstgelegenen Zwischengitterplätze, die Schwingungsfrequenz der Atome sowie die Aktivierungsentropie ein. Die Schwingungsfrequenz kann nicht als diskreter Wert für alle Atome und stoffunabhängig angegeben werden, weil eine komplexe Schwingungskopplung im Gitter vorliegt. Näherungsweise wird die Debye-Frequenz mit ca. 10^{13} s⁻¹ angesetzt, welche sich aus der Debye'schen Theorie als Grenzfrequenz ergibt.

Der Diffusionskoeffizient *D* stellt die für Hochtemperaturvorgänge entscheidende Größe dar, ist aber als Wert unanschaulich (Einheit: $m^2 s^{-1}$). Demgegenüber vermittelt die Angabe der Sprungrate eine bessere Vorstellung über die Mobilität der Atome, wie nachfolgende Beispiele zeigen werden.

Die Aktivierungsenergie der interstitiellen Diffusion ist relativ gering, so dass Zwischengitteratome schon bei homologen Temperaturen deutlich unterhalb von 0,4 $T_{\rm S}$ rasch diffundieren können. Dies verdeutlicht ein Zahlenbeispiel für C in α -Fe bei 450 °C (entspricht 0, 4 $T_{\rm S}$ für Fe) mit folgenden Daten: $Q_{\rm iD} = 76$ kJ mol⁻¹ und $D_0 = 7,9 \cdot 10^{-7}$ m² s⁻¹. Der Diffusionskoeffizient errechnet sich zu: $D_{\rm C}(450^{\circ}{\rm C}) = 2,6 \cdot 10^{-12}$ m² s⁻¹. Mit $\alpha = 0,5$ $a_{\alpha-{\rm Fe}} = 1,43 \cdot 10^{-10}$ m ergibt sich eine Sprungfrequenz nach Gl. 1.10 von $\Gamma = 7,6 \cdot 10^8$ s⁻¹. Jedes C-Atom wechselt also bei 450 °C seinen Zwischengitterplatz im Mittel 7,6 $\cdot 10^8$ Male pro Sekunde. Trotz dieser sehr hohen Zahl bedeutet das Ergebnis, dass bei dieser Temperatur durchschnittlich nur etwa jede zehntausendste der etwa 10¹³ Oszillationen eines C-Atoms pro Sekunde zu einem Platzwechsel führt.