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Chapter 1
Introduction

Edoardo Ballico, Alessandra Bernardi, Iacopo Carusotto,
Sonia Mazzucchi, and Valter Moretti

The development of quantum mechanics has been one of the greatest scientific
achievements of the early twentieth century. In spite of its remarkable success in
explaining and predicting an amazing number of properties of our physical world, its
interpretation has raised strong controversies among a wide community of scientists
and philosophers. One of the hottest points of discussion is the meaning of the so-
called quantum entanglement that, for systems of two or many particles, allows in
particular the possibility for each particle of the system to be simultaneously located
at different spatial positions. Entangled states display a special kind of correlations.
Generally speaking, differently from the statistical correlations that are usually
found in classical probability theory, quantum entanglement cannot be understood in
terms of statistically distributed hidden variables and must involve the possibility for
quantum systems of particles to be simultaneously in different single particle pure
quantum states. Entangled states therefore present facets of the quantum worlds
which are even more complicated than the famous example of a superposition of
states in the so-called Schrödinger’s cat which is simultaneously classically dead
and alive. The peculiar phenomenology of quantum mechanics goes far beyond
this paradoxical case: in contrast to the usual chain rules of classical conditional
probability, the probability for a physical event to occur in a quantum framework
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is computed by the interference of the complex-valued amplitudes corresponding
to the different classical states. In dynamical processes, these classical positional
states are described by paths that the system can follow during its evolution. This
description of the physical world is commonly known as Feynman integral and
implicitly requires that the system be simultaneously in different classical states
at all intermediate times [1]. The mathematical counterpart of this picture is that
quantum states of a composite system are described by a tensor product structure
where each product entry represents a component of the system. In this picture,
entanglement is encoded in quantum superpositions, that is linear combinations
of completely decomposed tensors. In this sense, if the tensor product involves
different states of a given component which are localized in far and causally
separated spatial regions, a single component of the system may be simultaneously
located in different places.

While the observable consequences of quantum mechanics have been exper-
imentally explored all along the twentieth century, starting from the discrete
energy levels of the hydrogen atom towards superconductivity and superfluidity
in quantum condensed matter physics and precision measurements in quantum
relativistic particle physics, the most basic and profound features of entanglement
and its philosophical consequences have started being investigated only much more
recently. A crucial step in this development was the formulation in 1935 of the so-
called Einstein-Podolsky-Rosen (EPR) paradox raising doubts on the completeness
of the quantum mechanical description of the physical world [2] in view of the
existence of entangled states in the formalism of quantum theory and the Luders-
von Neumann postulate on the instantaneous collapse of the wavefunction after a
measurement procedure. The subsequent derivation in 1964 of the so-called Bell
inequalities [3] was the milestone, which offered a quantitative criterion to test
quantum mechanics against alternative hidden variable theories satisfying a local
realism principle and essentially ruling out entangled states as proposed in the
EPR paper. So far, the outcome of all experiments carried out along these lines
starting from Aspect’s 1982 one on cascaded photon emission [4] has been a
strong confirmation of the predictions of quantum mechanics predicting violation
of Bell’s inequalities and ruling out the local realism principle. In the following
years, the experiments have been gradually improved to better deal with various
hidden assumptions or loopholes pointed out by various scientists. In 2015, for the
first time, the violation of Bell’s inequalities was corroborated by an experimental
test of Bell’s theorem by R. Hanson et al. certifying the absence of any additional
assumptions or loophole [5].

In addition to a revolution in our philosophical understanding of the physical
world around us, the success of quantum mechanics in describing these amazing
features of the microscopic world has then given a dramatic boost into the
exploration of their possible use in technological applications, e.g. to the quantum
communication and quantum information processing, two new branches of science
based on a dramatic change in perspective in logics and computation. As one
can easily imagine, this paradigm shift is accompanied by the need of new
mathematical and computer science tools for the description and the control of
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quantum mechanical systems and, more practically, for the full exploitation of the
new possibilities opened by entanglement for communication and computation.

This special volume was prepared in the wake of the “International work-
shop on Quantum Physics and Geometry” organized during July 2017 in Levico
Terme (Trento, Italy) (http://www.science.unitn.it/~carusott/QUANTUMGEO17/
index.html) on these topics. This event, sponsored by CIRM with the precious
support of INDAM, University of Trento, TIFPA-INFN and the INO-CNR BEC
Center gathered world specialists in both physical sciences and in mathematics, with
the aim of exploring possible interdisciplinary links between quantum information
and geometry and contributing to the creation of a community of researchers
trying to export advanced mathematical concepts to this new applicative field. The
objective was to convey to a single event leading experts from the two fields, so
to explore interdisciplinary connections and contribute establishing an active and
long-lasting community. On the physics side, a conductive thread of the event
has been the characterization of entanglement; on the mathematics one, different
tools to describe it from different perspectives have been covered, including tensor
decomposition, the classification of the orbit closures of some Lie groups, tensor
network representations, and topological properties of the quantum states. The
articles that follow give a hint of the rich developments that one may expect to
result from this meeting of different worlds. While all contributions present exciting
state-of-the-art results, they are also meant to offer a general, mathematics-oriented
introduction to quantum science and technologies and to their latest developments.

The first contribution by J.M. Landsberg on “A very brief introduction to
quantum computing and quantum information theory for mathematicians” sum-
marizes the PhD course on “Quantum Information and Geometry” that he has
given at Trento University with the support of INDAM during the months of
June and July 2017 surrounding the Levico workshop. In combination with the
recorded lectures that are available under request (https://drive.google.com/open?
id=0B2Y1CpIKbFuSR1hVT3BfNmtTSFU), this long article aims at giving a com-
plete coverage of the background material from both physics and computer science.
The contribution by D. Pastorello on “Entanglement, CP-maps and quantum
communications” reviews basic concepts of quantum mechanics and entanglement
and then focuses on the potential of quantum entanglement as a resource in
communication systems. The contribution by B. Vacchini on “Frontiers of open
quantum system dynamics” presents important developments on the dynamics of
quantum systems coupled to environments, which generalize to a wider context the
quantum evolution in terms of the well-known Schrödinger equation. Mathematical
results on the use of advanced geometrical concepts in quantum information theory
are presented in the contribution by F. Holweck on “Geometric constructions over
C and F2 for Quantum Information”, with a special attention to the entanglement
of pure multipartite systems and to contextuality issues [6]. In both problems,
a central role is played by representation theory, which is respectively used to
classify entanglement in terms of the closure diagram of the orbits in tensor
spaces and for the description of commutation relations of the generalized N-qubit
Pauli group. The contribution by L. Chiantini on “Hilbert functions and tensor

http://www.science.unitn.it/~{}carusott/QUANTUMGEO17/index.html
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analysis” illustrates the power of geometric methods for the decomposition of
tensors and, in particular, offers a survey-style introduction to the important problem
of the uniqueness of the decomposition (the so called “identifiability”), useful for
signal processing and, possibly, for the representation of quantum states of many
indistinguishable particles. As a final point, some extension to the famous Kruskal’s
criterion is proposed. Finally, the contribution by M. Ciaglia, A. Ibort and G.
Marmo on “Differential Geometry of Quantum States, Observables and Evolution”
summarizes an alternative geometric description of quantum mechanical systems in
terms of the Kähler geometry of the space of pure states of a closed quantum system
and discusses how the composition of systems and the resulting entanglement can
be captured in this new setting.

We hope that this volume will trigger an active interest from the mathematical
community towards the exciting challenges that quantum science and technology is
raising to scientists of all disciplines.

References
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Chapter 2
A Very Brief Introduction to Quantum
Computing and Quantum Information
Theory for Mathematicians

Joseph M. Landsberg

Abstract This is a very brief introduction to quantum computing and quantum
information theory, primarily aimed at geometers. Beyond basic definitions and
examples, I emphasize aspects of interest to geometers, especially connections with
asymptotic representation theory. Proofs can be found in standard references such as
Kitaev et al. (Classical and quantum computation, vol. 47. American Mathematical
Society, Providence, 2002) and Nielson and Chuang (Quantum computation and
quantum information. Cambridge University Press, Cambridge, 2000) as well as
Landsberg (Quantum computation and information: Notes for fall 2017 TAMU
class, 2017).

2.1 Overview

I begin, in Sect. 2.2, by presenting the postulates of quantum mechanics as a natural
generalization of probability theory. In Sect. 2.3 I describe basic entanglement
phenomena of “super dense coding”, “teleportation”, and Bell’s confirmation of the
“paradox” proposed by Einstein-Podolsky-Rosen. In Sect. 2.4 I outline aspects of
the basic quantum algorithms, emphasizing the geometry involved. Section 2.5 is a
detour into classical information theory, which is the basis of its quantum cousin
briefly discussed in Sect. 2.7. Before that, in Sect. 2.6, I reformulate quantum theory
in terms of density operators, which facilitates the discussion of quantum informa-
tion theory. Critical to quantum information theory is von Neumann entropy and in
Sect. 2.8 I elaborate on some of its properties. A generalization of “teleportation”
is discussed in Sect. 2.9. Regarding practical computation, the exponential growth
in size of (C2)⊗n with n that appears in quantum information theory leads to the
notion of “feasible” states discussed in Sect. 2.10, which has interesting algebraic
geometry associated to it. I conclude with a discussion of representation-theoretic
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6 J. M. Landsberg

aspects of quantum information theory, including a discussion of the quantum
marginal problem in Sect. 2.11. I do not discuss topological quantum computing,
which utilizes the representation theory of the braid group. For those interested in
more details from this perspective, see [18].

2.2 Quantum Computation as Generalized Probabilistic
Computation

In this section I take the point of view advocated in [1] and other places that quantum
computing should be viewed as a natural generalization of probabilistic computing,
and more generally that the laws of quantum mechanics as generalizations of the
laws of probability.

2.2.1 Classical and Probabilistic Computing via Linear
Algebra

This section is inspired by Arora and Barak [2, Exercise 10.4].
Classical communication deals with bits, elements of {0, 1}, which will be

convenient to think of as elements of F2, the field with two elements. Let fn : Fn2 →
F2 be a sequence of functions. Give R2 basis {|0〉, |1〉} (such notation is standard in
quantum mechanics) and give (R2)⊗m = R2m basis {|I 〉 | I ∈ {0, 1}m}. In this way,
we may identify F

m
2 with the set of basis vectors of R2m . A computation of fn (via

an arithmetic or Boolean circuit) may be phrased as a sequence of linear maps on
a vector space containing R2n , where each linear map comes from a pre-fixed set
agreed upon in advance. In anticipation of what will come in quantum computation,
the pre-fixed set of maps (called gates in the literature) will be taken from maps
having the following properties:

1. Each linear map must take probability distributions to probability distributions.
This implies the matrices are stochastic: the entries are non-negative and each
column sums to 1.

2. Each linear map only alters a small number of entries. For simplicity assume it
alters at most three entries, i.e., it acts on at most R23

and is the identity on all
other factors in the tensor product.

In quantum computation, the first property will be replaced by requiring the linear
maps to be completely positive and trace preserving (see Sect. 2.7). The second is
the same and justified because “universal” quantum computing is possible with such
maps, even requiring the three factors to be adjacent, which is essentially due to the
classical Cartan-Dieudonné theorem.
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To facilitate comparison with quantum computation, first restrict to reversible
classical computation. The complexity class of a sequence of functions in classical
reversible computation is the same as in arbitrary classical computation.

For example, if we want to effect (x, y) �→ x ∗ y, consider the map

|x, y, z〉 �→ |x, y, z⊕ (x ∗ y)〉 = |x, y, z⊕ (x ∧ y)〉 (2.1)

(where the second expression is for those preferring Boolean notation) and act as the
identity on all other basis vectors (sometimes called registers). Here z will represent
“workspace bits”: x, y will come from the input and z will always be set to 0 in the
input. In the basis |000〉, |001〉, |010〉, |100〉, |011〉, |101〉, |110〉, |111〉, of R8, the
matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2)

This gate is sometimes called the Toffoli gate and the matrix the Toffoli matrix.
The swap (negation) gate ¬ is realized by the matrix

σx =
(

0 1
1 0

)
. (2.3)

The swap and Toffoli matrices can perform any computation that is accomplished
via a sequence of matrices drawn from some finite set of Boolean operations, each
acting on a fixed number of basis vectors with at worst a polynomial in n size
increase in the number of matrices needed. For those familiar with Boolean circuits,
any sequence of Boolean circuits (one for each n) may be replaced by a sequence
with just Toffoli and negation gates with at worst a polynomial (in n) blow up in
size.

A probability distribution on {0, 1}m may be encoded as a vector in R2m : If
the probability distribution assigns probability pI to I ∈ {0, 1}m, assign to the
distribution the vector v =∑

I pI |I 〉 ∈ R2m .
The matrices (2.2), (2.3) realize classical computation. To add randomness to

enable probabilistic computation, introduce the matrix

( 1
2

1
2

1
2

1
2

)
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which acts on a single R
2 corresponding to a fair coin flip. Note that the coin flip

matrix is not invertible, which will be one motivation for quantum computation in
Sect. 2.2.2. Work in R2n+s+r where r is the number of times one needs to access a
random choice and s is the number of matrices (arithmetic operations) in addition
to the coin tosses needed to compute f .

A probabilistic computation, viewed this way, starts with |x0r+s〉, where x ∈ F
n
2

is the input. One then applies a sequence of admissible stochastic linear maps to
it, and ends with a vector that encodes a probability distribution on {0, 1}n+s+r .
One then restricts this to {0, 1}p(n), that is, one takes the vector and throws away
all but the first p(n) entries. This vector encodes a probability sub-distribution,
i.e., all coefficients are non-negative and they sum to a number between zero and
one. One then renormalizes (dividing each entry by the sum of the entries) to
obtain a vector encoding a probability distribution on {0, 1}p(n) and then outputs the
answer according to this distribution. Note that even if our calculation is feasible
(i.e., polynomial in size), to write out the original output vector that one truncates
would be exponential in cost. A stronger variant of this phenomenon will occur
with quantum computing, where the result will be obtained with a polynomial
size calculation, but one does not have access to the vector created, even using an
exponential amount of computation.

To further prepare for the analogy with quantum computation, define a proba-
bilistic bit (a pbit) to be an element of

{p0|0〉 + p1|1〉 | pj ∈ [0, 1] and p0 + p1 = 1} ⊂ R
2.

Note that the set of pbits (possible states) is a convex set, and the basis vectors
are the extremal points of this convex set.

2.2.2 A Wish List

Here is a wish list for how one might want to improve upon the above set-up:

1. Allow more general kinds of linear maps to get more computing power, while
keeping the maps easy to compute.

2. Have reversible computation: we saw that classical computation can be made
reversible, but the coin flip was not. This property is motivated by physics, where
many physical theories require time reversibility.

3. Again motivated by physics, one would like to have a continuous evolution of
the probability vector, more precisely, one would like the probability vector to
depend on a continuous parameter t such that if |ψt1〉 = X|ψt0〉, then there exist
admissible matrices Y,Z such that |ψt0+ 1

2 t1
〉 = Y |ψt0〉 and |ψt1〉 = Z|ψt0+ 1

2 t1
〉

and X = ZY . In particular, one wants operators to have square roots. (Physicists
sometimes state this as “time evolution being described by a semi-group”.)
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One way to make the coin flip reversible is, instead of making the probability
distribution be determined by the sum of the coefficients, one could take the sum of
the squares. If one does this, there is no harm in allowing the entries of the output
vectors to become negative, and one could use

H := 1√
2

(
1 1
1 −1

)
(2.4)

for the coin flip. The matrix H is called the Hadamard matrix or Hadamard gate in
the quantum computing literature. If we make this change, we obtain our second
wish, and moreover have many operations be “continuous”, because the set of
matrices preserving the norm-squared of a real-valued vector is the orthogonal
group O(n) = {A ∈ Matn×n | AAT = Id}. So for example, any rotation has a
square root.

However our third property will not be completely satisfied, as the matrix

(
1 0
0 −1

)

which represents a reflection, does not have a square root in O(2).
To have the third wish satisfied, allow vectors with complex entries. From now

on let i = √−1. For a complex number z = x+iy let z = x−iy denote its complex
conjugate and |z|2 = zz the square of its norm.

So we go from pbits, {p|0〉 + q|1〉 | p, q ≥ 0 and p + q = 1} to qubits, the set
of which is

{α|0〉 + β|1〉 | α, β ∈ C and |α|2 + |β|2 = 1}. (2.5)

The set of qubits, considered in terms of real parameters, looks at first like the
3-sphere S3 in R4 
 C2. However, the probability distributions induced by |ψ〉 and
eiθ |ψ〉 are the same so it is really S3/S1 (the Hopf fibration), i.e., the two-sphere
S2. In the quantum literature this is referred to as the Bloch sphere. Geometrically,
it would be more natural (especially since we have already seen the need to re-
normalize in probabilistic computation) to work with projective space CP1 
 S2 as
our space of qubits, instead of a subset of C2. So the set of qubits is better seen as
(2.5) modulo the equivalence |ψ〉 ∼ eiθ |ψ〉.

For v = (v1, . . . ,vn) ∈ Cn, write |v|2 = |v1|2+ · · ·+ |vn|2. The set of stochastic
matrices is now replaced by the unitary group

U(n) := {A ∈ Matn×n(C) | |Av| = |v| ∀|v〉 ∈ C
n}.

The unitary group satisfies the third wish on the list: For all A ∈ U(n), there
exists a matrix B ∈ U(n) satisfying B2 = A.
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Consider wish 1: it is an open question! However at least our generalized
probabilistic computation includes our old probabilistic computation because the
matrices (2.2), (2.3), (2.4) are unitary.

An indication that generalized probability may be related to quantum mechanics
is that the interference patterns observed in the famous two slit experiments is
manifested in generalized probability: one obtains a “random bit” by applying H
to |0〉: H |0〉 = 1√

2
(|0〉 + |1〉). However, if one applies a second quantum coin flip,

one loses the randomness as H 2 = Id so H 2|0〉 = |0〉, which, as pointed out in [1],
could be interpreted as a manifestation of interference.

2.2.3 Postulates of Quantum Mechanics and Relevant Linear
Algebra

Here are the standard postulates of quantum mechanics and relevant definitions from
linear algebra.

P1 Associated to any isolated physical system is a Hilbert space H, called the state
space. The system is completely described at a given moment by a unit vector |ψ〉 ∈
H, called its state vector, which is well defined up to a phase eiθ with θ ∈ R.
Alternatively one may work in projective space PH.

Explanations A Hilbert space H is a (complete) complex vector space endowed
with a non-degenerate Hermitian inner-product, h : H × H → C, where
by definition h is linear in the first factor and conjugate linear in the second,
h(|v〉, |w〉) = h(|w〉, |v〉) for all v,w, and h(|v〉, |v〉) > 0 for all |v〉 �= 0.

The Hermitian inner-product h allows an identification of H with H∗ by |w〉 �→
〈w| := h(·, |w〉). This identification will be used repeatedly. Write h(|v〉, |w〉) =
〈w|v〉 and |v| = √〈v|v〉 for the length of |v〉.

If H = Cn with its standard basis, where |v〉 = (v1, . . . ,vn), the standard
Hermitian inner-product on Cn is 〈w|v〉 =∑n

j=1 wjvj . I will always assume Cn is
equipped with its standard Hermitian inner-product.

Remark 2.2.1 When studying quantum mechanics in general, one needs to allow
infinite dimensional Hilbert spaces, but in the case of quantum computing, one
restricts to finite dimensional Hilbert spaces, usually (C2)⊗N .

P2 The state of an isolated system evolves with time according to the Schrödinger
equation

ih̄
d|ψ〉
dt

= X|ψ〉

where h̄ is a constant (Planck’s constant) and X is a fixed Hermitian operator,
called the Hamiltonian of the system. (Physicists, enamored of the letter H , often
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also use it to denote the Hamiltonian.) Here, recall that the adjoint of an operator
X ∈ End(H), is the operator X† ∈ End(H) such that 〈X†v|w〉 = 〈v|Xw〉 for all
v,w ∈ H and X is Hermitian if X = X†. For a general Hilbert space, the Unitary
group is U(H) := {U ∈ End(H) | |Uv| = |v| ∀|v〉 ∈ H}.

How is generalized probability related to Schrödinger’s equation? Let U(t) ⊂
U(H) be a smooth curve with U(0) = Id. Write U ′(0) = d

dt
|t=0U(t). Consider

0 = d

dt
|t=0〈v|w〉

= d

dt
|t=0〈U(t)v|U(t)w〉

= 〈U ′(0)v|w〉 + 〈v|U ′(0)w〉.

Thus iU ′(0) is Hermitian. We are almost at Schrödinger’s equation. Let u(H) =
TIdU(H) denote the Lie algebra of U(H) so iu(H) is the space of Hermitian
endomorphisms. ForX ∈ End(H), write Xk ∈ End(H) forX · · ·X applied k times.
Write eX := ∑∞

k=0
1
k!X

k . If X is Hermitian, then eiX ∈ U(H). Postulate 2 implies
the system will evolve unitarily, by (assuming one starts at t = 0), |ψt 〉 = U(t)|ψ0〉,
where

U(t) = e −itXh̄ .

Measurements Our first two postulates dealt with isolated systems. In reality, no
system is isolated and the whole universe is modeled by one enormous Hilbert space.
In practice, parts of the system are sufficiently isolated that they can be treated
as isolated systems. However, they are occasionally acted upon by the outside
world, and one needs a way to describe this outside interference. For our purposes,
the isolated systems will be the Hilbert space attached to the input in a quantum
algorithm and the outside interference will be the measurement at the end. That
is, after a sequence of unitary operations one obtains a vector |ψ〉 = ∑

zj |j 〉
(here implicitly assuming the Hilbert space is of countable dimension), and as in
generalized probability:

P3 The probability of obtaining outcome j under a measurement is |zj |2.
In Sect. 2.6, motivated again by probability, P1, P3 will be generalized to new

postulates that give rise to the same theory, but are more convenient to work with in
information theory.

A typical situation in quantum mechanics and quantum computing is that there
are two or more isolated systems, say HA,HB that are brought together (i.e.,
allowed to interact with each other) to form a larger isolated system HAB . The
larger system is called the composite system. In classical probability, the composite
space is {0, 1}NA × {0, 1}NB . In our generalized probability, the composite space is
(C2)⊗NA⊗(C2)⊗NB = (C2)⊗(NA+NB):


