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Preface

This volume represents presentations given at the 83rd annual meeting of the
Psychometric Society, organized by Columbia University and held in New York,
USA, during July 9–13, 2018. The meeting attracted 505 participants, and 286
papers were presented, of which 81 were part of a symposium. There were 106
poster presentations, 3 pre-conference workshops, 4 keynote presentations, 3
invited presentations, 2 career award presentations, 3 state-of-the-art presentations,
1 dissertation award winner, and 18 symposia.

Since the 77th meeting in Lincoln, Nebraska, Springer publishes the proceedings
volume from the annual meeting of the Psychometric Society to allow presenters to
make their ideas available quickly to the wider research community, while still
undergoing a thorough review process. The first six volumes of the meetings in
Lincoln, Arnhem, Madison, Beijing, Asheville, and Zurich were received suc-
cessfully, and we expect a successful reception of these proceedings too.

We asked the authors to use their presentation at the meeting as the basis of their
chapters, possibly extended with new ideas or additional information. The result is a
selection of 38 state-of-the-art chapters addressing a diverse set of psychometric
topics, including item response theory, multistage adaptive testing, and cognitive
diagnostic models.

Umeå, Sweden Marie Wiberg
Urbana-Champaign, IL, USA Steven Culpepper
Leuven, Belgium Rianne Janssen
Santiago, Chile Jorge González
Amsterdam, The Netherlands Dylan Molenaar
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Explanatory Item Response Theory
Models: Impact on Validity and Test
Development?

Susan Embretson

Abstract Many explanatory item response theory (IRT) models have been devel-
oped since Fischer’s (Acta Psychologica 37:359–374, 1973) linear logistic testmodel
was published. However, despite their applicability to typical test data, actual impact
on test development and validation has been limited. The purpose of this chapter is
to explicate the importance of explanatory IRT models in the context of a frame-
work that interrelates the five aspects of validity (Embretson in Educ Meas Issues
Pract 35, 6–22, 2016). In this framework, the response processes aspect of validity
impacts other aspects. Studies on a fluid intelligence test are presented to illustrate
the relevancy of explanatory IRT models to validity, as well as to test development.

Keywords Item response theory · Explanatory models · Validity

1 Introduction

Since Fischer (1973) introduced the linear logistic test model (LLTM), many addi-
tional explanatory IRT models have been developed to estimate the impact of item
complexity on item parameters. These models include the linear partial credit model
(LPCM; Fischer & Ponocny, 1995), the linear logistic test model with response error
term (LLTM-R; Janssen, Schepers, & Peres, 2004), the constrained two parame-
ter logistic model (2PL-Constrained; Embretson, 1999) and the Rasch facet model
(Linacre, 1989). Explanatory IRT models also can include covariates for both items
and persons, as well as within-person interactions (De Boeck & Wilson, 2004).
Several models can detect strategy differences between persons, such as mixture
distribution models (Rost, 1990; Rost & von Davier, 1995) and mixed models that
include response time to detect strategies (Molenaar & De Boeck, 2018). Further,
hierarchicalmodels can be used in an explanatory fashion, such as item familymodels
(Glas, van der Linden &Geerlings, 2010) and a criterion-referenced model (Janssen,
Tuerlinckx,Meulder&DeBoeck, 2000).Multidimensional IRTmodels with defined
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2 S. Embretson

dimensions, such as the bifactor MIRT (Reise, 2012) or the multicomponent latent
trait model (MLTM; Embretson, 1984, 1997) also can be used as explanatory IRT
models. The Handbook of Item Response Theory (van der Linden, 2016) includes
several explanatory models. Janssen (2016) notes that explanatory IRT models have
been applied to many tests, ranging from mathematics, reading and reasoning to
personality and emotions.

However, despite the existence of these models for several decades and their
applicability to typical test data, actual impact on test development and validation has
been limited. The purpose of this chapter is to highlight the importance of explanatory
IRT models in test development. Studies on the development of a fluid intelligence
test are presented to illustrate the use of explanatory IRT models in test design and
validation. Prior to presenting the studies, background on the validity concept and a
framework that unifies the various aspects are presented.

1.1 Test Validity Framework

In the current Standards for Educational and Psychological Testing (2014), validity
is conceptualized as a single type (construct validity) with five aspects. First, the
content aspect of construct validity is the representation of skills, knowledge and
attributes on the test. It is supported by specified test content, such as blueprints
that define item skills, knowledge or attribute representation, as well as specifica-
tions of test administration and scoring conditions. Second, the response processes
aspect of validity consists of evidence on the cognitive activities engaged in by the
examinees. These cognitive activities are assumed to be essential to the meaning of
the construct measured by a test. The Standards for Educational and Psychological
Testing describes several direct methods to observe examinees’ processing on test
items, such as eye-trackers movements, videos and concurrent and retrospective ver-
bal reports/observations, as well as response times to items or the whole test. Third,
the internal structure aspect of construct validity includes psychometric properties
of a test as relevant to the intended construct. Thus, internal consistency reliability,
test dimensionality and differential item functioning (DIF) are appropriate types of
evidence. Item selection, as part of test design, has a direct impact on internal struc-
ture. Fourth, the relationship to other variables aspect concerns how the test relates
to other traits and criteria, as well as to examinee background variables (i.e., demo-
graphics, prior experience, etc.). Evidence relevant to this aspect should be consistent
with the goals of measurement. Fifth, the consequences aspect of validity concerns
how test use has adverse impact on different groups of examinees. While the test
may not have significant DIF, studies may nonetheless show that the test has adverse
impact if used for selection or placement. Adverse impact is particularly detrimental
to test quality if based on construct-irrelevant aspects of performance.

The various aspects of validity can be conceptualized as a unified sys-
tem with causal interrelationships (Embretson, 2017). Figure 1 organizes the
five aspects into two general areas, internal and external, which concern test
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Fig. 1 Unified framework for validity

meaning and test significance, respectively. Thus, the content, response processes
and internal structure aspects are relevant to defining the meaning of the construct
while the relationships to other variables and consequences aspects define the sig-
nificance of the test. Notice that the content and response processes aspect drive
the other aspects causally in this framework. Importantly, these two aspects can be
manipulated in test development. That is, item design, test specifications and testing
conditions can impact test meaning. Thus, understanding the relationship between
test content and response processes can be crucial in test development to measure
the intended construct.

Unfortunately, the methods for understanding response processes described in
the Standards have substantial limitations. Both eye-tracker data and talk aloud data
are typically expensive to collect and analyze as well as impacting the nature of
processing for examinees. Further, unless elaborated in the context of a model, the
utility of response time data may be limited to identifying guessing or inappropriate
responses. Importantly, explanatory IRTmodeling can be applied to standard test data
with no impact on examinees responses. Further, such models permit hypotheses to
be tested about the nature of response processes through relationships of item content
features and item responses.

2 Explanatory IRT Models in Item Design: Examples
from ART

The Abstract Reasoning Test (ART) was developed in the context of research on
response processes. ART is a test of fluid intelligence used to predict learning and
performance in a variety of settings (Embretson, 2017). ART consists of matrix
completion items as shown in Fig. 2. In these items, the examinee must identify the
figure that completes the matrix based on the relationships between the figures across
the rows and down the columns.
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Fig. 2 Example of an ART item

2.1 Theory of Response Processes on Matrix Problems

Consistent with the Carpenter, Just and Shell’s (1990) theory, it was hypothesized
that examinees process the various elements individually in the matrix entries to
find relationships. According to the theory, processing complexity is driven by the
number of unique objects (as counted in the first entry) and memory load in finding
relationships. Memory load depends on both the number and types of relationships,
which are hypothesized to be ordered by complexity as follows: 1 = Constant in
a Row (or column), the same figure appears in a row; 2 = Pairwise Progressions,
figures change in the same way in each row; 3 = Figure Addition/Subtraction, the
third column results from overlaying the first and second columns and subtracting
common figures; 4 = Distribution of Three, a figure appears once and only once
in each row and column and 5 = Distribution of Two, one figure is systematically
missing in each row and column. Figure 2 illustrates relationships #1, #4 and #5
(see key on right) and Fig. 4 illustrates relationship #3. Relationship #2 could be
illustrated by a change in object size across rows. Carpenter et al. (1990) postulate
that these relationships are tried sequentially by examinees, such that Constant in a
Row is considered before Pairwise Progressions and so forth. Thus, theMemoryLoad
score is highest for the Distribution of Two relationships. Figure 2 shows numerical
impact on Memory Load for three types of relationships. The difficulty of solving
matrix problems also is hypothesized to depend on perceptual complexity, which
is determined by Distortion, Fusion or Integration of objects in an entry. Figure 2
has none of these sources of perceptual complexity while Fig. 4 illustrates object
integration in the matrix on the right side. Each matrix item can be scored for the
processing and perceptual complexity variables. Item difficulty is postulated to result
from these variables because they drive cognitive complexity.
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2.2 Explanatory Modeling of Response Processes on ART
Matrix Problems

An explanatory modeling of ART item difficulty results from applying LLTM to
item response data, using the scores for matrix problem complexity. LLTM is given
as follows:

P(θ) = exp(θj − ∑
k τkqik + τ0)

1+ exp(θj − ∑
k τkqik + τ0)

(1)

where qik is the score for item i on attribute k, τk is the weight of attribute k in item
difficulty and τ0 is an intercept. Finally, θj is the ability of person j.

LLTM was applied to model item responses for ART items, scored for the two
predictors of processing complexity and the three predictors of perceptual complexity.
For example, a sample of 705 Air Force recruits were administered a form of ART
with 30 items. The delta statistic, which is a likelihood ratio index of fit (Embretson,
1999) similar in magnitude to a multiple correlation, indicated that LLTM had strong
fit to the data (�= .78). Theprocessing complexity variables had the strongest impact,
especially memory load, which supports the theory.

2.3 Impact of Explanatory Modeling on Item Design
for Matrix Problems

These results and the scoring system had direct impact on item and test design for
ART. An automatic item generator was developed for ART items. Abstract structures
were specified to define the objects within each cell of the 3 × 3 display and the
response options. Types of relationships, as described above, specifies the changes
in objects (e.g., circles, arrows, squares, etc.) and/or their properties (e.g., shading,
borders, distortion, size, etc.) across columns and rows. LLTM results on military
samples indicated high predictability of item difficulty by the generating structure (�
= .90) and continued prediction by the five variables defining cognitive complexity
(� = .79).

3 Strategy Modeling in Test Design: Example from ART

Examinee differences in item solving strategies and potential impact on the various
aspects of validity was examined in two studies. In Study 1, ART was adminis-
tered with the original brief instructions. In Study 2, ART was administered with an
expanded version of the instructions with examples of each type of relationship. In
both studies, strategies were examined through mixture modeling.
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3.1 Mixture Modeling to Identify Latent Classes

The mixture Rasch model (Rost & von Davier, 1995) can be applied to identify
classes of examinees that vary in item difficulty ordering, which is postulated to
arise from applying different item solving strategies. The mixture Rasch model is
given as follows:

P(θ) = �gπg
exp(θjg − βig)

1+ exp(θjg − βig)
(2)

where βig is the difficulty of item i in class g, θjg is the ability of person j in class g
and πg is the probability of class g. Classes are identified empirically to maximize
model fit. However, class interpretation can be examined by follow-up explanatory
modeling (e.g., applying LLTM within classes) or by comparing external correlates
of ability.

3.2 Study 1

Method. A form of ART with 30 items was administered to 803 Air Force recruits
who were completing basic training. The ART instructions concerned the nature of
matrix problems as defined by relationships in the row and columns in the 3 × 3
matrices. However, the scope of relationships that could be involvedwas not covered.
ART was administered without time limits. Item parameters were estimated with
the Rasch model and with the mixture Rasch model. In both cases the mean item
parameter was set to zero.

Results from other tests were available on the examinees, including the Armed
Services Vocational Aptitude Battery (ASVAB).

Results. The test had moderate difficulty for the sample based on raw scores
(M = 18.097, SD = 5.784) and latent trait estimates (M = .636, SD = 1.228).
Racial-ethnic comparisons were between groups with N > 50. The latent trait
estimates were significant (F2,743 = 8.722, p < .001, η2 = .023). Standardized
differences of (d = .452) for African Americans and (d = .136) for Hispanics were
observed as compared to Caucasians.

The mixture Rasch model was applied with varying numbers of classes. Table 1
shows thatwhile the log likelihood index (−2lnL) decreased successively fromone to
three classes, the Bayesian Information Criterion (BIC) increased for three classes.
Thus, the two-class solution, with 68.7 and 31.2% of examinees in Class 1 and
Class 2 respectively, was selected for further study. The latent trait means differed
significantly between classes (F1,801 = 439.195, p < .001), with Class 1 (M = 1.143,
SD = .984) scoring higher than Class 2 (M = −.413, SD = .865). Significant racial
ethnic differences were observed between the classes

(
χ2
1,695 = 12.958, p < .001

)

, with 75.0% of Caucasians and 57.3% of African-Americans in Class 1.
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Table 1 Mixture Rasch modeling results

Number of classes Parameters −2lnL BIC

Study 1

1 31 25,472 25,680

2 62 25,146 25,567

3 93 25,044 25,680

Study 2

1 33 13,222 13,423

2 67 13,068 13,477

3 101 13,001 13,616

Table 2 LLTM weights, standard errors and t value by class

Complexity source Class 1 (df = 572, � = .820) Class 2 (df = 229, � = .809)

Weight SE t value Weight SE t value

Unique elements .1922 .0113 16.95* .2681 .0185 14.50*

Memory load .1851 .0049 37.49* .0926 .0077 12.09*

Integration .4543 .0454 10.00* .5502 .0622 8.85*

Distortion .7434 .0654 11.36* −.0121 .1054 −.12

Fusion .3150 .0508 6.20* .0549 .0723 .76

Intercept −4.1809 .1018 −41.08* −2.2618 .1285 −17.61*

*p < .01

LLTM was applied within each class to determine the relative impact of the
sources of cognitive complexity. While the overall prediction, as indicated by the
� statistic (Embretson, 1999) shown on Table 2, was strong for both classes, the
LLTM weights for cognitive complexity differed. Typically, the strongest predictor
is Memory Load; however, the weight for Memory Load was significantly higher in
Class 1. Unique Elements was the strongest predictor in Class 2 and two of three
perceptual complexity variables were not significant.

Item difficulty also was modeled by the sources of memory load from the five
types of relationships. It was found that the number of Figure-Addition relationships
was correlated negatively for Class 1 (r = −.211) and positively for Class 2 (r =
.216). Itemswith Figure-Addition relationships mostly more difficult for Class 2 (see
Fig. 3).

Finally, ART trait estimates were correlated with four factors of ASVAB: Ver-
bal, Quantitative, Perceptual Speed and Technical Information. Although significant
positive correlations were found with all factors except Perceptual Speed for Class
1, no significant correlations with ASVAB factors were found for Class 2.

Discussion. Two classes of examinees, with varying patterns of item difficulty,
were identified on the ART for fluid intelligence. Class 2 was characterized by sub-
stantially lower trait levels and lack of significant correlations with other aptitude
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Fig. 3 Item difficulties by class

measures (i.e., ASVAB factors). Further, item difficultywas less predictable for Class
2 from the memory load associated with ART items. An analysis of the relationship
types that contribute to memory load indicated that items with Figure-Addition rela-
tionships had substantially higher difficulty in Class 2. A possible explanation is that
examinees in this class were unfamiliar with the Figure-Addition relationships and
applied the much harder Distribution of Two relationship. Figure 4 shows examples
of these relationships. Notice that the item on the left requires two Distribution of
Two relationships (i.e., changes in the hourglass and house figures), as well as a Con-
stant in a Row (triangles). The item on the right, however, can be solved by either
three Figure-Addition (colum 3 is the substraction of column 2 from column 1) or
three Distribution of Two relationships.
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Fig. 4 Two ART items varying in distribution of two relationships

3.3 Study 2

The application of themixture Raschmodel in Study 1 identified a class of examinees
with lower scores and different patterns of item difficulty that may be based on
unfamiliarity with the possible types of relationships that can occur in ART. In this
study, instructions were added to demonstrate each type of relationship.

Method. The examinees were 444 police recruits who were enrolled in basic
training in law enforcement. A version of ART with 32 items included extended
instructions in which all types of relationships were presented and illustrated. These
instructions involved approximately eight additional minutes of testing time. For a
sub-sample of examinees, training scores and scores on another test of fluid intelli-
gence were available.

Results. The test was somewhat easy for the sample based on raw scores (M =
21.459, SD= 4.779) and latent trait estimates (M = 1.152, SD= 1.203). As for Study
1, racial-ethnic comparisons were made between groups with N > 50. The latent
trait estimates were significant (F2,406 = 3.099, p = .016, η2 = .015). Compared to
Caucasians, standardized differences of (d = .276) for African Americans and (d =
.075) for Hispanics were observed.

Themixture Raschmodel was applied to determine the number of classes. Table 1
shows that while the log likelihood index (−2lnL) decreased somewhat from one to
two classes, the BIC index increased. Thus, the single class model is the preferred
solution. Finally, for a subsample of 144 recruits, scores for a six-week course in
legal issues for police officers were available. Training scores were correlated more
highly with ART (r = .333, p < .001) than with the Cattell Culture Fair Intelligence
Test (CCF; r = .211, p = .009).

Discussion. A single item-solving strategy is supported for ART when adminis-
tered with extended instructions. That is, a single class was supported with mixture
Rasch modeling. Further, the magnitude of the racial-ethnic differences was also
substantially smaller in this study. Finally, ART correlated more highly with training
than a similar non-verbal intelligence test, which has very short instructions.
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4 Summary

The purpose of this chapter was to illustrate how using explanatory IRT models can
contribute to the test development process and impact validity. The mixture Rasch
model identified two classes of examinees on the ART with different item difficulty
orders. The LLTM indicated strong predictability of item performance from cogni-
tive complexity variables; however, the weights varied by class, supporting strategy
differences. Items involving a certain type of relationship were relatively more dif-
ficult in the lower scoring class. Further, there was an undesirable impact of the
second class on the external relationships aspect of validity; ART did not correlate
with other aptitude tests and racial-ethnic differences were also found. A redesigned
ART, that include extended instructions on types of relationships, had a single class,
supporting common problem-solving strategies. Further, racial ethnic differences
were substantially smaller on the redesigned ART and ART had stronger correla-
tions with achievement than a similar test of fluid intelligence. Thus, two explana-
tory IRT models were used to inform the responses processes aspect of validity for
a fluid intelligence test. The redesigned test to optimize responses processes had
smaller racial-ethnic differences than the previous ART and more desirable external
relationships than the CCF, a similar test of fluid intelligence.
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Abstract The main aim of this study is to report on the frequency of which different
item response theory models are employed in Psychometrika articles. Articles rele-
vant to item response theory modeling in Psychometrika for 82 years (1936–2017)
are sorted based on the classification framework by Thissen and Steinberg (Item re-
sponse theory: Parameter estimation techniques. Dekker, NewYork, 1986). A sorting
of the item response theory models used by authors of 367 research and review ar-
ticles in Volumes 1–82 of Psychometrika indicates that the usual unidimensional
parametric item response theory models for dichotomous items were employed in
51% of the articles. The usual unidimensional parametric item response theory mod-
els for polytomous itemswere employed in 21%of the articles. Themultidimensional
item response theory models were employed in 11% of the articles. Familiarity with
each of more complicated item response theory models may gradually increase the
percentage of accessible articles. Another classification based on recent articles is
proposed and discussed. Guiding principles for the taxonomy are also discussed.

Keywords Item response theory ·Models · Psychometrika · Rasch model ·
Taxonomy

1 Introduction

In this study, we report on the frequency of use of item response theorymodels inPsy-
chometrika classified using the taxonomy of Thissen and Steinberg (1986) to answer
the following questions:Will knowledge of a few basic item response theory models,
such as the Rasch model and the three-parameter logistic model, assist readers in
recognizing the modeling component of a high percentage of research articles that
are relevant to item response theory modeling in Psychometrika? Which additional

S.-H. Kim (B) · M. Kwak · M. Bian · Z. Feldberg · T. Henry · J. Lee · I. B. Olmez ·
Y. Shen · Y. Tan · V. Tanaka · J. Wang · J. Xu · A. S. Cohen
University of Georgia, Athens, GA 30602-7143, USA
e-mail: shkim@uga.edu
URL: https://coe.uga.edu/directory/people/shkim

© Springer Nature Switzerland AG 2019
M. Wiberg et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 265, https://doi.org/10.1007/978-3-030-01310-3_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01310-3_2&domain=pdf
mailto:shkim@uga.edu
https://coe.uga.edu/directory/people/shkim
https://doi.org/10.1007/978-3-030-01310-3_2


14 S.-H. Kim et al.

item response theory models are used most often and therefore could be added most
profitably to the psychometric and educational measurement background of readers?
To aid psychometricians, measurement specialists, and applied statisticians who are
continuing their own psychometric training, as well as persons designing courses in
psychometrics and educational measurement for advanced undergraduate and gradu-
ate students, we report on modeling components of the item response theory relevant
research and review articles in Psychometrika between 1936 and 2017.

In their taxonomy, Thissen and Steinberg (1986) classified item response theory
models into four distinct groups based on assumptions and constraints on the parame-
ters: binary models, difference models, divided-by-total models, and left-side-added
models. They classified, for example, the two-parameter normal ogive model and the
Rasch model as the binary models; Samejima’s graded response model in normal
ogive and logistic forms as the differencemodel; Bock’s nominal responsemodel and
Master’s partial credit model as the divide-by-total models; and Birnbaum’s three-
parameter logistic model as the left-side-added model (see Thissen & Steinberg,
1986, and references therein). In this paper, we present a more refined classification
of the item response theory models based on the type of data analyzed.

2 Methods

This study analyzed Volumes 1 through 82 (March 1936 through December 2017) of
Psychometrika and included all articles identified in the table of contents as Articles,
Notes, Comments, Brief Comments, Tables, and Presidential Addresses. Excluded
were Errata, Announcements, Abstracts, Book Reviews, Rules, Obituaries, Reports,
Minutes, Notices, Constitution, and Lists of Members. For example, the excluded
portions included: Volume 1, Issue 2, Pages 61–64 that contained the List of 150
Members of the Psychometric Society; Volume 4, Issue 1, Pages 81–88 that con-
tained the List of 235 Members of the Psychometric Society; and Volume 2, Issue 1,
Pages 67–72 that presented the Abstracts of 11 papers to be presented at the District
Meeting of the Psychometric Society, The University of Chicago, on Saturday,
April 3, 1987.

2.1 Review Process

Initially, 2837 articles were screened and identified from these volumes, and a group
of measurement specialists eventually selected 367 articles for detailed review. The
367 articles were selected for their relevance to various models in item response
theory. At least two measurement specialists independently reviewed each of the
367 articles for their use of item response theory models and completed a checklist
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documenting topics and models. The excluded articles received a second but briefer
review for the presence or absence of the use of item response theory models in the
procedures and techniques employed in the study. The reviewer read the abstracts,
the methods sections, and all tables, and scanned other sections of the articles for
the pertinent information. All reviewers were faculty members or graduate students
trained in both quantitative methodology and applied statistics.

For the 367 articles receiving detailed review, any discrepancies between the two
or more independent reviewers were discussed and resolved. Discrepancies were
found initially for some of these articles. Another careful reading of these discrepant
articles by the reviewers indicated that nearly all errors involved overlooking the
methods section and the procedures and techniques used in the article.

For the 367 articles relevant to item response theory modeling in this study, we
first partitioned these papers into theoretical and application types. Due to the char-
acteristic of Psychometrika as a leading journal in psychometrics, the articles except
for four were classified as theoretical.

2.2 Analysis of Models Used

We determined the frequency of the item response theory models in the 367 journal
articles. Articles were sorted based on the classification framework by Thissen and
Steinberg (1986). In addition to performing the simple quantification (number and
percentage of articles using amethod),we assessed howmuch a reader’s acquaintance
with additional item response theory models would improve his or her psychometric
repertoire. In trying to obtain a definite measure, we were handicapped by the lack of
a natural order for learning and applying these models. For the analysis, we chose the
order that maximally increased the percentage of articles for which a reader would
be acquainted with the item response theory models employed if he or she learned
one more item response theory model.

We began this analysis by assuming that there are three major ordered classes
of the item response theory models; (1) unidimensional parametric item response
theory models for dichotomous items, (2) unidimensional parametric item response
theory models for polytomous items, and (3) multidimensional item response theory
models. In a sense, the order was thus determined by the complexity of models as
well as modeling data gathered. This ordering, though useful, intellectually reason-
able, and empirically based, is nevertheless arbitrary. In particular, it ignores the
fundamental role of broad psychometric concepts used in the article such as adap-
tive testing, differential item functioning, equating and linking, parameter estimation
techniques, test scoring, and so on in determining the extent of a reader’s psychome-
tric understanding. Furthermore, it may not be the best order for learning about the
item response theory models.
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3 Results

Figure1 shows the time plots of the number of articles in Psychometrika as well as
the number of item response theory relevant articles in each volume from 1936 to
2017. The average of the number of articles in each volume was 34.6 and its standard
deviation was 8.6. The five number summary was (19, 28.8, 33, 41, 59). There was
a steady increasing pattern in terms of the number of articles in each volume. The
average of the number of item response theory relevant articles in each volume was
4.2 and its standard deviation was 4.3. The five number summary was (0, 0, 2.5, 8,
17). A rapid increase occurred between the 70’s and the 90’s for the number of item
response theory relevant articles in each volume.

Figure2 shows the time plot of the proportion of the item response theory relevant
articles in each volume from 1936 to 2017. The average of the proportion was .11
and its standard deviation was .11. The five number summary was (0, 0, .07, .21,
.53). The proportion was rapidly increased between the 70’s and the 90’s.

Table1 presents the number of articles that used different item response theory
models by decades from the 1930s (n.b., the 1930s starts from1936) to the 2010s (n.b.,
the 2010s are not finished yet). The bottom line contains the total number of unique
(i.e., not the column sum) item response theory relevant articles by decades. The
far right-hand-side column of Table1 shows the frequency of item response theory
models found in Volumes 1 through 82 of Psychometrika. Under the assumptions
outlined above, we analyzed the frequencies of the classes of item response theory
models employed in the journal articles.

The followings are themodel acronyms in Table1: One-Parameter Logistic (1PL),
One-Parameter Normal (1PN), Two-Parameter Logistic (2PL), Two-Parameter Nor-
mal (2PN),Nonparametric (NON),Three-ParameterLogistic (3PL),Three-Parameter

Fig. 1 Time plots of the
number of articles in blue
and the number of item
response theory relevant
articles in red
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Fig. 2 Time plot of the
proportion of item response
theory relevant articles
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Normal (3PN), Two-Parameter of Choppin (2PC), Four-Parameter Logistic (4PL),
Multiple Choice of Samejima (MCS), Multiple Choice of Thissen and Steinberg
(MCTS), Multiple Choice (MC), Graded Response (GR), Partical Credit (PC), Rat-
ing Scale (RS), Generalized Partial Credit (GPC), Nominal Categories (NC), Bino-
mial Trials (BT), Poisson Counts (POC), Continuation Ration (CR), Linear Logistic
Test Model (LLTM), and Multidimensional Item Response Theory (MIRT).

Table1 shows many articles reviewed relied on some type of unidimensional
dichotomous item response theory models. These articles used the Rasch model
most frequently by 107 out of 367 articles. The one-parameter logistic model with a
common item discrimination parameter was used in 15 articles. The two-parameter
logisticmodelwas used by 60 out of 367 articles, and the two-parameter normal ogive
model was used by 37 out of 367 articles. The three-parameter logistic model was
used quite frequently, that is, 82 out of 367 articles. The polytomous item response
theory models are generally used less frequently (25 for the graded response model,
21 for the partial credit model, 10 for the rating scale model, 5 for the generalized
partial credit model, and 7 for the nominal categories model).

It can be noticed that the various taxonomic classifications of the item response
theory models defined in Table1 were not frequently employed in the articles re-
viewed. The impression is that only limited cases of the item response theory models
or the combinations of the models have been employed in Psychometrika, although
this finding does depend on the initial taxonomy of the item response theory models.
Articles published recently within about 20 years that used item response theory
models were more complicated both mathematically and statistically than other pre-
viously published articles in Psychometrika. Theoretical research studies based on
more complicated item response theory models require a deeper understanding of
and more extensive training in psychometrics and applied statistics.
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A sorting of the item response theory models used by authors of the 367 articles
in Psychometrika indicates that a reader who is familiar with the usual unidimen-
sional parametric item response theorymodels for dichotomous items (e.g., theRasch
model, the one-parameter logistic model, the two-parameter logistic or normal ogive
model, and the three-parameter logistic or normal ogive model) may have potential
access to 186 out of 367 articles (51%). Note that the number 186 was not obtained
from Table1 but based on the separate counting of the articles. Note also that the
numbers in Table1 are not mutually exclusive because, for example, an article might
employ two or more different item response theory models together. It should also
be noted that the accessibility here implies the recognition of the model used in the
article instead of comprehension of the entire contents of the article. Because the uni-
dimensional parametric item response theory models for polytomous items (e.g., the
graded response model, the partial credit model, the rating scale model, the nominal
categories model, and the generalized partial credit model) were employed in 79 out
of 367 articles, a reader who is familiar with the two classes of the unidimensional
item response theory models may have potential access to cumulatively 72% of the
journal articles. Familiarity with each of the more complicated item response theory
models may gradually increase the percentage of accessible articles. If one knew
the multidimensional item response theory models in addition to the unidimensional
item response theory models, one would access 38 articles, or 83 cumulative per cent
of the number of articles reviewed. However, more complicated models (e.g., non-
parametric models, testlet models, mixture models, multilevel models, etc.) were
concurrently used in the psychometric research journal articles together with the
usual parametric models for the dichotomous and polytomous items. Hence, 64 out
of 367 (17%) of the articles cannot be fully accessible in terms of item response
theory if a reader is familiar with only these parametric models.

Although some classifications were obviously quite narrowly defined, others such
as multidimensional item response theory models and nonparametric models were
not. Furthermore, these latter models, though cited infrequently in the articles, may
be more frequently used in other application fields and may become more common
in future psychometric research.

The selected articles relevant to item response theory modeling in Table1 were
sorted based on the classification framework by Thissen and Steinberg (1986). An-
other recent classification based on Van der Linden (2016a), however, can be used,
and a more refined subclassification (e.g., Nering &Ostini, 2010) can also be consid-
ered. Note that articles may be further sorted by the parameter estimation methods
(e.g., Baker & Kim, 2004; De Ayala, 2009) as well as the computer programs used to
implement the estimation methods (e.g., Hambleton, Swaminathan, & Roger, 1991,
pp. 159–160; Van der Linden, 2016b).

Psychometric researchers interested in continuing their own training in method-
ology should find the frequencies of various item response theory models presented
in Table1 helpful in identifying the knowledge of which item response theory mod-
els they should be aware. This paper reviews item response theory models with the
perspective of a general reader, and no attempt has been made to identify a hierar-



20 S.-H. Kim et al.

chical structure of the item response theory models, which may vary for researchers
in different psychometric research areas within different specialties.

4 Discussion

Except for general item response theory review articles in Psychometrika, not many
item response theory models were used simultaneously in each research article. As
noted by Popham (1993) andBock (1997) there are several unexpected consequences
of using item response theory models in the analysis of testing data. Only a limited
number of item response theory experts can fully understand what is happening, for
example, in the process of test calibration. Also, there are many different directions
of the development of item response theory so that even experts in the item response
theory field may not be able to comprehend the full scope of the theory and applica-
tions of item response theory. It is unfortunate that the item response theory models
and item response theory itself are too difficult to understand for scholars with only
limited statistical andmathematical training.Nevertheless, item response theory does
occupy and may continue to occupy major portions of lively and productive future
development in psychometric research.

Understanding someof the item response theory relevant articles inPsychometrika
definitely requires more than the familiarity of the item response theory models. For
example, training in modern Bayesian statistics for which the Bayesian posterior
approximation methods with data augmentation techniques are taught is needed for
reading several articles. Note that the normal ogivemodelswere frequently employed
in data augmentation techniques by some authors who are themselves prepared for
understanding more advanced research articles.

It should be noted that the numerical measure of ability or proficiency is the ul-
timate, eventual entity that is pursued in item response theory modeling. In other
applications, the item parameters are something needed assuming that persons are
randomly sampled from a population. In item response theory with such a sampling
concept, the item parameters are the structural parameters while the person param-
eters are incidental parameters. The concept of invariance of ability with regard to
the sets of item parameters (i.e., persons ability can be measured with different sets
of items) as well as invariance of item characteristics with regard to the groups of
persons (i.e., item characteristics can be obtained with different groups of persons)
are crucial in item response theory. Many investigations of structural parameters
such as measurement invariance or differential item functioning studies are stud-
ies of structural parameters. Note that measurement invariance is a preliminary to
studying invariant person measures, and as such, needs to be seen as a process within
measurement validation (Kane, 2006). Hence, item response theory models and the
required parameters to estimate ought to be scrutinized in conjunction with specific
application areas.

In the field of educational assessment, items can be in the forms of both
dichotomously-scored and polytomously-scored. Inmost large scale assessment pro-
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grams (e.g., National Assessment of Educational Progress, Trends in International
Mathematics and Science Study) a combination of the three-parameter logisticmodel
and the generalized partial credit model is used to calibrate item response data. In
the analysis of instruments with mixed item types, there are special combinations of
dichotomous and polytomous item response theory models to be used (e.g., Rasch
and PC; 2PL and GR). So, there are natural combinations of item response theory
models for mixed item types.

This study may be helpful to people designing and teaching courses in psycho-
metric methods for advance undergraduate and graduate students and other psycho-
metricians or measurement specialists using various item response theory models.
But one should keep in mind that any professional specialization in psychometric
research may influence understanding with regard to the relative importance of the
various item response theory models.

The purpose of writing for some journal articles that are relevant to item response
theory in psychometric research might not be to disseminate the findings of the
studies to more general psychometric researchers. The authors might have tried to
demonstrate their capabilities to invent novel models, to create new ideas, and to
explore challenging areas of psychometrics. Consequently, there are a plethora of
item response theory models invented recently.

We have identified the various models in item response theory that have been
used by psychometricians in Psychometrika articles and that are thus very much
likely to be used by future authors in psychometric research. Note that the latter
point may not be the case because some articles used the most esoteric item response
theory models together with complicated computational techniques. The appropriate
training of psychometric researchers in the use of item response theorymodels seems
to be an important consideration. Such an issue should be addressed by the leading
scholars who are responsible for training future psychometric researchers. More in
depth evaluation of the articles and more thorough review would be helpful.

It can be noted that item response theory models presented in Table1 already
contained additional models than those (e.g., 4PL, MC, CR, LLTM, MIRT, Testlet,
and Multilevel) in Thissen and Steinberg (1986). There are many different item
formats sowemay classify item response theorymodels in terms of the item response
data and additional variables required for themodeling. If we denote the original item
response data for multiple-choice items as U , then item response theory models for
multiple-choice items can be used to estimate model parameters. When we denote
the keyed or scored data to be R and further denote dichotomously scored data to
be D, then we may use the Rasch model and other item response theory models
for dichotomously scored items (e.g., 1PL, . . . , 4PL). If R can be further specified
with the types of polytomously scored items that is denoted by P , then we may use
item response theory models for polytomous items. Here, the set of item parameters
can be denoted by ξ and the set of ability parameters can be denoted by θ . If we
allow additional dimensionality to the item and ability parameters, then wemay have
multidimensional item response theory models. In the above context, if there exist a
latent group hyperparameter τ and both ability and item parameters are characterized


