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Preface

Background

Many problems in mechanics involve a deformable domain with moving bound-
aries. Examples include two-way fluid–structure interaction, free surface flows,
flows over soft tissues and textiles, flows involving accretion/erosion, flows through
deformable porous media, material forming, to name but a few. The interaction
of the moving boundary with the participating medium leads to fascinating phe-
nomena in a very broad range of contexts such as flutter, wave breaking, dune
formation, ripple formation on the ocean floor, flow instabilities, structure reso-
nance and failure, atherosclerosis, ice formation on aircraft wings, etc.

The presence of a moving boundary also presents considerable challenges when
it comes to modeling and understanding the underlying system dynamics. The
moving boundary often introduces nonlinearities, which call for special analytical
or numerical treatment. Many techniques have been developed over the years to
handle the moving boundary and the corresponding deformable medium. Examples
include front tracking methods, front fixing methods, the volume of fluid method,
the arbitrary Lagrangian–Eulerian method, etc. These methods have allowed the
community to tackle forever more complex problems of engineering and physics,
but challenges still remain and the range of applications for which these techniques
can be applied is vast.
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Symposium

The IUTAM symposium on “Recent Advances in Moving Boundary Problems in
Mechanics” occurred from February 12 to February 15, 2018 in Christchurch, New
Zealand. The aims of the symposium were to

1. gather the international community of engineers and scientists involved in
moving boundary problems in mechanics,

2. attract a broad spectrum of researchers from various backgrounds (theoreticians,
numerical analysts, experimentalists, applied mathematicians, engineers,
physicists, etc.), and

3. unify a fragmented community to cross-fertilize ideas.

It was a pleasure to host about 50 participants from 17 different countries, a truly
international cross section of the field. The single stream format of the symposium
over 4 days afforded many opportunities for all participants to interact and get to
know one another. Talks were broadly organized in themes: fluid–structure inter-
action, bioengineering applications, multiphase flows, analytical and numerical
methods, Stefan problems, structures with a moving boundary, and optimization.
The symposium had a good mix of participants (65% Engineering, 31% Applied
Mathematics, 4% Physics). Presentations also spanned the whole spectrum from
theory to applications. Most of the talks were oriented toward fluid mechanics
(approximately 40% fluid, 40% fluid–structure interaction, 20% solid).

We were delighted to have had four engaging and inspiring plenary talks:

1. Prof. Yvonne Stokes (University of Adelaide): “Can we fabricate that fibre?”
2. Prof. Scott McCue (Queensland University of Technology): “Three dimensional

linear and nonlinear surface wave patterns”
3. Prof. Jun Zhang (NYU): “Symmetry breaking bifurcations arising from

fluid-structure interaction”
4. Prof. Frederic Dias (University College Dublin): “Recent advances in

slamming”

We gratefully acknowledge their contribution to the success of the symposium.
Beyond the stimulating environment of the symposium, we will also keep fond

memories of the social events including the symposium banquet and the Akaroa
Harbour cruise.

Finally, we would like to acknowledge the professional and financial support of
IUTAM, the College of Engineering at the University of Canterbury, the scientific
committee, and local organizing team. Our special and personal thanks go to the
symposium secretary James N. Hewett, who ran this symposium in such a way that
everyone will keep this symposium in mind with very pleasant memories.
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In summary, this symposium not only “moved boundaries” but also broke
boundaries between researchers and pushed them to enhance knowledge in the
field.

Christchurch, New Zealand Stefanie Gutschmidt
James N. Hewett
Mathieu Sellier
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Chapter 1
Can We Fabricate That Fibre?

Yvonne M. Stokes, Darren G. Crowdy, Heike Ebendorff-Heidepriem,
Peter Buchak and Michael J. Chen

Abstract This paper reviews the development of an efficient mathematical model
for the drawing of optical fibres using extensional flow theory which is applicable
for fibres of arbitrary geometry. The model is comprised of a 1D axial stretching
problem describing the change in area of the cross-section from preform to fibre
coupled with a 2D cross-plane problem describing the evolution of a cross-section.
The solution of the axial stretching problem may be written in an exact form while
the cross-plane problem must, in general, be solved numerically. The model may be
used to solve forward and inverse problems and gives results that compare well with
experiments.

Keywords Extensional flow · Free-boundary problem · Optical fibres

1.1 Introduction

Modelling of fibre drawing has been a topic of interest for around five decades,
motivated initially by the ‘spinning’ of textile fibres [13] and film-blowing [14], and,
more recently, by optical fibre technologies [1, 2, 5–8, 15–18] and the fabrication
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2 Y. M. Stokes et al.

Fig. 1.1 Schematic diagram
of the neck-down region,
0 ≤ x ≤ L , over which the
cross-sectional area of the
preform S0 reduces to that of
the fibre SL due to the large
draw speed UL relative to the
feed speed U0. c©2016
IEEE. Reprinted, with
permission, from Chen et al.,
J. Lightwave Tech. 34(24),
5651–5656 (2016) [3, Fig. 1] neck-down

region

x = 0, u (0) = U0,
S (0) = S0

x = L, u (L) = UL,
S (L) = SL

of capillary tubes [9]. The aim of this paper is to review key research in the context
of drawing of microstructured optical fibres.

Microstructured optical fibres, containing patterns of air channels running along
their length, have revolutionised optical fibre technology, promising a virtually limit-
less range of fibre designs for a wide range of applications, including communication
networks, medical devices and sensing [10, 11]. These are fabricated as depicted in
Fig. 1.1; a preform (1–3cm diameter and with a length of around 10cm or so), with a
cross-section of appropriate geometry and having area S0, is fed into a heated region
at a feed speedU0 and pulled at a higher draw speedUL bywinding onto a spool some
distance downstream beyond the neck-down region of length comparable to, but not
necessarily identical with, the heated region. Internal channels may be pressurised.
In the laboratory reference frame this drawing process over the neck-down region
0 ≤ x ≤ L may be considered a steady-state problem. The resulting fibre will, typi-
cally, have a diameter of 100−200µm, a cross-sectional area SL � S0, and a length
of a kilometre or more, while the internal air channels have diameters comparable
to the wavelength of light. Even when the channels are not pressurised, the fibre
drawing process modifies the shape of the cross-sectional geometry from that of the
preform (see Fig. 1.2), as well as its scale, so that fabrication of a fibre with a desired
structure presents a major challenge. What initial preform is suitable and what draw
parameters should be used? Can it even be made? This is an inverse problem and
mathematics is essential to its solution.

While full 3D numerical simulation has been used to investigate deformation of
the cross-sectional geometry during fibre drawing [16, 17], this is still not practical
for fibres with complex cross-sectional geometries because of the fine mesh reso-
lution and large computational resources required. However, the slenderness of the
geometry enables extensional flow theory to be used to develop accurate and efficient
models and we here focus on these.

The first such model of steady-state fibre drawing seems to be due to Matovich
and Pearson [13] who examined the drawing of solid axisymmetric fibres having no
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Fig. 1.2 Cross-sectional geometry of (left) a fibre preform with total pattern diameter 3cm, and
(right) the resulting fibre with total pattern diameter 20µm. These show the deformation due to the
fibre drawing process. Photographs reproduced with the permission of the Institute for Photonics
and Advanced Sensing, The University of Adelaide

internal structure. They obtained the form of the solution assuming a Newtonian fluid
and neglecting surface tension and/or inertial forces; they also considered some non-
Newtonian fluid models. Dewynne, Howell and Wilmott [7] showed that, assuming
a Newtonian fluid and with neglect of surface tension, fibre drawing results only in a
change in the cross-sectional scale, but not its shape, so that the steady-state model,
for any given preform geometry, may be written as a boundary-value problem in one
spatial dimension for the cross-sectional area as a function of axial position, which
is readily solved. In an appendix they also noted that, for the case of non-negligible
surface tension, the first-order model for the cross-sectional area is the same as
for the zero surface tension case, but that the cross-section no longer maintains its
shape which must be determined by solving a second-order 2D cross-flow problem.
Modelling of fibre drawing including surface tension was considered in detail by
Cummings and Howell [5] for fibres with no internal cross-sectional geometry and
for a fluid of constant temperature (viscosity). They showed that the 2D cross-flow
problem may be written as a classical 2D free-boundary Stokes-flow problem.

Motivated specifically by the drawing of microstructured optical fibres, Fitt et al.
[8] used extensional-flow theory to derive coupled flow and temperature models for
the steady drawing of axisymmetric capillary tubes. A Newtonian viscous fluid with
temperature-dependent viscosity was assumed and inertia, gravity, surface tension
and pressurisation of internal channels were included in the model. Various cases
neglecting one or more of these were considered but the complete exact solution for
isothermal fibre drawing with non-negligible surface tension, and neglecting inertia,
gravity and pressurisation, was not found. Griffiths and Howell [9] obtained the
solution for thin-walled annular tubes in theirwork extending themodel ofCummings
andHowell [5] to the non-isothermal drawing of (not necessarily axisymmetric) thin-
walled tubes.

Solution of the extensional flowmodel with non-negligible surface tension for the
drawing of microstructred optical fibres of arbitrary cross-sectional geometry and,
indeed, also the drawing of an annular tube with arbitrary wall thickness, proved
elusive but was finally solved by Stokes et al. [15]. The breakthrough that led to
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this model is described in Sect. 1.2. Importantly, both forward and inverse problems
may be solved as described in Sect. 1.3. Pressurisation of internal channels is not
considered in this paper but was added by Chen et al. [2]. Section 1.4 contains
concluding remarks and also shows some stunningly accurate comparisons of the
model and experiments.

1.2 Mathematical Model

Let the x-axis lie on the central axis of the fibre and be directed downwards in the
direction of stretching (Fig. 1.1); y and z are then the transverse coordinates. At x = 0
the cross-sectional geometry is that of the preform, which has cross-sectional area
S0, and at x = L the cross-sectional geometry is that of the fibre, which has cross-
sectional area SL , so that the neck-down region over which we model is 0 ≤ x ≤ L .
In this Eulerian reference frame fibre-drawing is a steady-state problem. Further, the
effect of gravity is negligible. Then, for a preform of arbitrary geometry, we start
with the full (3D) steady Navier–Stokes equations,

∇ · u = 0,

ρ (u · ∇u) = −∇p + ∇ · σ,

where u = (u, v, w) is the velocity vector, p is pressure, σ = μ(∇u + (∇u)T ) is
the usual viscous-stress tensor, and ρ and μ are the constant density and temperature-
dependent viscosity of the fluid. The fibre has a number of free-surface boundaries,
the external free surface and the surfaces of each of the interior air channels. In this
paper we denote the collection of free-surface boundaries by G(x, y, z, t) = 0 on
which we have the dynamic and kinematic boundary conditions

σ · n = −γκn, u · n = 0.

Here γ is the coefficient of surface tension, assumed to be constant, κ is the curvature
of the boundary and n is an outward normal to the boundary. In addition we have the
boundary conditions

u(0, y, z) = U0, u(L , y, z) = UL .

1.2.1 The Axial Stretching Problem

As discussed previously the geometry through the neck-down region from preform
to fibre is slender so that we may, as is common [5, 7–9, 13, 15], use extensional
flow theory. Thus we set ε = √

S0/L � 1 and then scale variables and parameters
as follows:
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μ = μ̄μ∗, γ = μ̄U0
√
S0

L
γ∗,

(x, y, z) = L(x ′, εy′, εz′), p = μ̄U0

L
p′,

u = (u, v, w) = U0(u
′, εv′, εw′), S = S0S

′,

where primes denote dimensionless variables, asterisks denote dimensionless param-
eters, and μ̄ is a typical viscosity. Because the resulting scaled equations involve only
O(1) and O(ε2) terms, but no O(ε) terms, we also expand scaled dependent vari-
ables in powers of ε2 [7]:

u′ = u0 + ε2u1 + ε4u2 + . . . ,

v′ = v0 + ε2v1 + ε4v2 + . . . ,

and so on. From this we find that, to leading order the axial velocity and pressure
are independent of the transverse coordinates, i.e. u0 = u0(x, t) and p0 = p0(x, t).
As shown in [8], a similar process can be used to show that, at leading order, the
temperature is independent of the transverse coordinates, so that this is also true
of the temperature-dependent viscosity μ and its scaled form μ∗. In this paper we
assume μ(x) to be a known function and take μ̄ to be its harmonic mean over the
neck-down region,

μ̄ = L
∫ L
0 1/μ(x)dx

⇒
∫ 1

0

1

μ∗(x ′)
dx ′ = 1.

Finally we note that the Reynolds number Re = ρU0L/μ̄ is much less than unity
(typically Re ∼ 10−8) so that inertia may be neglected.

With these scalings, and after considerable work [5, 7, 15], the leading-order
model for S0(x ′) and u0(x ′) is obtained. Dropping primes on dimensionless variables
and subscripts on the leading order components of the dependent variables, this is

u(x)S(x) = 1, (1.1)

3μ∗(x)Sux + γ∗

2

√
SΓ = 6σ∗, (1.2)

S(0) = 1, u(0) = 1, u(1) = D = 1/S(1), (1.3)

where Γ (x) is the total length of all internal and external boundaries at position x ,
σ∗ is the scaled tension in the fibre, and D = UL/U0 is the draw ratio. We refer to
this as the axial stretching problem. Clearly, we may use (1.1) to substitute for u
or S in (1.2), and so reduce this model to a single first-order ODE for S or u, with
associated boundary conditions. We note that a given draw ratio D will dictate the
fibre tension σ∗ or vice versa. In general, we must determine Γ (x) from a model
for the cross-plane flow but we first consider the case of zero surface tension γ∗ = 0
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which removes the term involving Γ and enables straight-forward solution of the
axial stretching problem.

1.2.2 The Case of Zero Surface Tension

This case was considered in detail by Dewynne and others [6, 7] who showed that,
at leading order, the cross-plane flow solution may be written entirely in terms of the
leading order axial flow component u,

p = −μ∗ ∂u

∂x
, v = − y

2

∂u

∂x
, w = − z

2

∂u

∂x
.

From this solution we have that the cross section changes in scale but not in shape.
Therefore, we need only solve for the cross-sectional area S(x) which has solution

S(x) = exp

(

−2σ∗
∫ x

0

1

μ∗(x ′)
dx ′

)

,

S(1) = 1

D
= exp

(−2σ∗) ,

where we have made use of the fact that the harmonic mean of μ∗ over 0 ≤ x ≤ 1 is
unity and found that the draw ratio D determines the fibre tension σ∗.

1.2.3 The Cross-Plane Flow Problem for Non-negligible
Surface Tension

We now come to the leading order cross-plane flow problem for γ∗ > 0. As shown
by Cummings and Howell [5], the zero surface tension solution may be considered
an eigensolution of this problem and the flow solution written as the sum of the
eigensolution and a part due to surface tension. We also move to the reference frame
moving with a cross-section from x = 0 to x = 1, in which reference frame the
problem is unsteady and the variable x is replaced by the time variable t . We rescale
variables using the cross-sectional area S(x) as follows:

(y, z) = √
S (ỹ, z̃), t = t̃, Γ = √

SΓ̃ , κ = κ̃√
S

p = pZST + γ∗
√
S
p̃, (v,w) = (vZST , wZST ) + γ∗

μ∗ (ṽ, w̃),
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where pZST , vZST , wZST is the leading order cross-plane flow solution for γ∗ = 0
and tildes denote the new dimensionless variables. In addition we use the ‘reduced
time’ transformation introduced for constant viscosity in [5] and for temperature-
dependent viscosity in [9],

τ = γ∗
∫ t̃

0

dt

μ∗√S
.

The cross-plane problem so obtained is a classical 2D free-boundary Stokes-flow
problem driven by unit surface tension in a domain of unit area:

ṽỹ + w̃z̃ = 0, ṽỹ ỹ + ṽz̃ z̃ = p̃ỹ, w̃ỹ ỹ + w̃z̃ z̃ = p̃z̃, (1.4)

Gτ + ṽGỹ + w̃Gz̃ = 0, on G = 0, (1.5)

Gỹ(− p̃ + 2ṽỹ) + Gz̃(ṽz̃ + w̃ỹ) = −κ̃Gỹ, on G = 0, (1.6)

Gỹ(ṽz̃ + w̃ỹ) + Gz̃(− p̃ + 2w̃z̃) = −κ̃Gz̃, on G = 0, (1.7)

Here subscripts denote differentiation with respect to the subscript variable. Solu-
tion of the cross-plane problem gives the re-scaled cross-flow and cross-sectional
geometry, including the boundary length Γ̃ , as functions of reduced time τ .

1.2.4 Coupling of Axial Stretching and Cross-Plane Flow
Problems

The cross-plane problem (1.4)–(1.7) in terms of τ is coupled with the Eulerian axial
stretching problem (1.1)–(1.3) in terms of x via

dx

dt̃
= u ⇒ γ∗

μ∗√S

dx

dτ
= u, x(0) = 0. (1.8)

While a solution has been obtained for a thin-walled tube with μ∗ an exponential
function of temperature [9], obtaining a solutionmore generally is difficult. However,
as shown by Stokes et al. [15] the two coupled problems are readily solved for general
geometries and viscosity functions if the 1D axial stretchingmodel is written in terms
of the variable τ ,

−3γ∗
√
S

dS

dτ
+ γ∗

2
Γ (τ ) = 6σ∗,

and putting χ = √
S and Γ = √

SΓ̃ reduces this to the first-order ODE

dχ

dτ
− χ

12
Γ̃ = −σ∗

γ∗ ,
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where Γ̃ (τ ) is obtained from the cross-plane problem which is independent of the
axial stretching problem and may be solved first. Defining the integrating factor

H(τ ) = exp

(

− 1

12

∫ τ

0
Γ̃ (τ ′)dτ ′

)

, (1.9)

the solution may be written as

χ(τ ) = 1

H(τ )

(

1 − σ∗

γ∗

∫ τ

0
H(τ ′)dτ ′

)

. (1.10)

Thus, in summary, the cross-plane model gives the total boundary length Γ̃ (τ ),

0 ≤ τ ≤ τ1 where τ1 determines the fibre shape but not its size. Any appropriate
analytical or numerical method may be used to solve for the cross-plane shape and
boundary length and, hence for the integrating factor (1.9). The stretching flow
problem has the exact solution (1.10) in terms of the integrating factor. The draw
ratio D = UL/U0 = 1/χ2(τ1) = 1/S(τ1) determines the size of the final fibre cross-
section and, from (1.10), we have the relation between the fibre shape (τ1) and the
ratio of fibre and surface tension (σ∗/γ∗),

1√
D

= 1

H(τ1)

(

1 − σ∗

γ∗

∫ τ1

0
H(τ ′)dτ ′

)

.

From (1.8) we obtain the separable ODE relating τ and x ,

dx

dτ
= μ∗

γ∗χ
, x(0) = 0,

integration of which gives the fibre tension σ∗,

∫ 1

0

1

μ∗(x ′)
dx ′ = 1 = − 1

σ∗ log

(
H(τ1)√

D

)

.

The model involves the four parameters σ∗ (fibre tension), γ∗ (surface tension),
D = UL/U0 = S0/SL (draw ratio, equivalently fibre size), and τ1 (fibre geometry).
These are not all independent; two must be specified and the remaining two deter-
mined as part of the solution.

An important result from this solution is that for drawing a desired fibre from a
given preform we can use the model to determine the required physical fibre tension
without knowing the temperature profile. As discussed in detail in [15], for a given
preform geometry and a given fibre geometry (i.e. D and τ1), the model gives the
required ratio σ∗/γ∗ which is related to the ratio of the physical parameters σ and γ
by
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σ∗

γ∗ = 1

6
√
S0

σ

γ
. (1.11)

Since the surface tension γ is a known fluid property and the cross-sectional area
S0 of the preform is also known, we may use (1.11) to compute the physical fibre
tension σ. Provided the draw tower allows for measurement of fibre tension during
a draw, the furnace temperature can be adjusted to achieve the desired fibre tension
without the need to know anything about the fluid temperature itself. In fact, since
the model also gives σ∗ and assuming the (approximate) neck-down length is known,
the (approximate) harmonic mean of the fluid temperature through the neck-down
region may be computed from

σ = μ̄U0S0
L

6σ∗ ⇒ μ̄ = σL

6U0S0σ∗ .

1.3 Forward and Inverse Solutions

Solution of the forward problem is done by solving the cross-plane problem for a
given preformgeometry over reduced time 0 ≤ τ ≤ τ1, for some chosen value τ1, and
then solving the axial stretching problem. Solution of the inverse problem is achieved
by solving the cross-plane problem backwards from a given fibre geometry.When the
cross-plane problem may be solved analytically, both forward and inverse problems
are easily solved; see, for example, the solutions given in [15] for the drawing of
(i) an annular tube and (ii) the tube made by arranging a number of circular rods
of appropriate radius in a circle. These two examples were also used to show that
the inverse problem is inherently unstable; small imperfections in the description of
the fibre are amplified as the model is run backwards, leading to different preform
geometries, some of which may not be practical.

To overcome this instability in numerical solution of the inverse cross-plane prob-
lem, some form of regularisation must be used. An example of this is [1] where a
modified form of Crowdy’s [4] elliptical-pore model, which constrains elliptical
holes in the 2D cross-section to remain elliptical as they evolve, is obtained and used
to solve both forward and inverse problems. Figure 1.3, reproduced from [1], shows
some different preform cross-sectional geometries each of which will yield the same
fibre geometry when drawn using the correct value of the draw ratio and fibre tension.

1.4 Conclusions

In this paper we have reviewed the development of an efficient mathematical model
for fibre drawing using extensional flow theory. The model is comprised of a 2D
free-boundaryStokes-flowproblemdescribing theflowandgeometry evolution in the
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Fibre geometry τL = 0.010 τL = 0.020

τL = 0.030 τL = 0.035 τL = 0.040

Fig. 1.3 Options for preform geometries yielding the fibre geometry shown, calculated by running
the elliptical-pore model backwards. To obtain a fibre with the geometry shown and a given cross-
sectional area the preform of chosen geometry must be drawn with the correct draw ratio and
the correct fibre tension which may be determined from the model solution. c©2015 Cambridge
University Press, Reprintedwith permission fromBuchak et al., J. FluidMech. 778, 5–38 [1, fig. 14]

cross-section, and a 1D axial stretching problemwhich describes the change in cross-
sectional area from preform to fibre. By writing and solving both of these problems
in a reference frame moving with a cross-section, and in terms of an appropriately
transformed time variable, an analytic solution of the axial stretching problem for the
evolutionof the cross-sectional area has beenobtained in termsof a function involving
the total boundary length of the cross-section. This boundary lengthmust be obtained
by solving the 2D cross-plane problem; for some geometries analytical solutions are
available but, in general, the 2D cross-plane problem must be solved numerically.
This model is applicable to fibres of arbitrary cross-sectional geometry and it enables
solution of both forward and inverse problems. When solving the inverse problem
the cross-plane problem is run in reverse and some form of regularisation may be
needed to overcome instability and ensure practically realisable preform geometries.

It is noteworthy that the model enables determination of the tension in the fibre
required to draw a given fibre from a given preform, without the need to know any-
thing about the temperature of the fibre material. Then, when using a draw tower
fitted with a tension-measuring device, the furnace temperature can be adjusted to
yield the required fibre tension. This is of great practical value since determining the
temperature and, therefore, the viscosity, through the neck-down region is extremely
difficult, if not impossible. We also here note that the model indicates that all temper-
ature profiles which yield viscosity profiles with the same harmonic mean through
the neck-down region give the same fibre from a given preform. The temperature
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pH = 0mbar, T = 85.65 g pH = 150mbar, T = 85.66 g

pH = 250mbar, T = 85.67 g pH = 300mbar, T = 85.68 g

(100Pa=1 mbar)

Fig. 1.4 Experimentalmicroscope images of the fibre cross-section, overlaidwith the finite element
simulation of [12] (pale blue transparency) and the results of the new asymptotic simulation (thin
red lines). Shown are the four values of pressurisation from [12, Fig. 3]. For each example the
pressurisation applied is shown in the caption above the image, along with the fibre tension as
calculated by the iterative scheme. c©2016 IEEE. Reprinted, with permission, from Chen et al., J.
Lightwave Tech. 34(24), 5651–5656 [3, Fig. 4]

profile affects the evolution of the geometry along the neck-down region but not the
end result.

Although not discussed in this paper, it is possible to include active pressurisation
of the air channels during fibre drawing, which modifies the balance between fibre
tension and surface tension. In this case there is two-way coupling between the
cross-plane flow and axial stretching problemswhichmust be solved simultaneously.
Importantly, measurement of fibre tension still circumvents the need to know the
temperature profile. For further detail on this model see [2].
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Figure 1.4, taken from [3], compares the extensional-flow model including active
pressurisation with experimental results and a 3D finite-element simulation for a
6-hole preform with an external diameter of 4mm. The extensional-flow model
captures the cross-sectional fibre geometry extremely well and better than the
finite-element simulation. This provides excellent validation of the extensional-flow
modelling approach. For further details see [3].

In closing we note that the model accuracy decreases as the preform diameter and
the draw ratio increase. Good comparison is seen between model and experiment
for preforms with external diameters up to around 10mm and the model is a useful
predictive tool for determininghow to fabricate a desiredfibre. For quite largepreform
diameter, around 3cm, there is reasonable qualitative agreement between model and
experiment for some choices of parameters but significant discrepancy for others, in
particular large draw ratio and large tension. This is the subject of ongoing research.
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Chapter 2
A Numerical Study on Free Hovering
Fruit-Fly with Flexible Wings

Y. Yao, K. S. Yeo and T. T. Nguyen

Abstract Insect flyers have drawn the attention of many biologists, mechanists and
engineers due to their unparalleled manoeuvrability. In this article, we introduce a
comprehensive FSI model to investigate a model fruit-fly with flexible wings. We
then apply the model in the numerical study of the interaction between aerodynamic
and structural processes in free hovering flight. The model fruit-fly is allowed to fly
with six-degrees of freedom (6-DoF) and hovers steadily with active wing kinematic
control. The present study provides a convenient approach to track the dynamic
deformation of flexible wings and the instantaneous aerodynamic forces and power
in free flight. The results of hovering flight simulations show that the flexibility of
insect wing allows the wing to bend and passively adapt to the detaching direction
of leading-edge vortices (LEVs), which helps to enhance lift force and reduce the
aerodynamic power consumption in free flight.

Keywords Insect flight · Flexible wing · Free flight · Computational fluid
dynamics · Fluid-structure interaction

2.1 Introduction

Winged insects are amazingly agile flapping wing flyers which can hover, fly up-
side down, and execute rapid manoeuvres [1]. The flapping wing flights are more
efficient in low Reynolds number regime, which outperforms conventional fixed and
rotary wing aircrafts [2]. Due to their unparalleled manoeuvrability and efficiency,
winged insects have long captured the interest of zoologists and aerodynamicists.
The advance of computational fluid dynamics (CFD) enabled researchers to explore
the unsteady aerodynamics of flapping wings and behaviours of free insect flight
via numerical approaches. The aerodynamic performance of insect flight in different
scenarios has been investigated in the literature [2–4].Moreover, there have been also
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several attempts to model natural flexible insect wings via fluid-structural interaction
(FSI) analysis [5, 6]. The recent work of Nguyen et al. [6] enabled the modelling
of flexible wings with large deformation and revealed that wing flexibility plays an
important role in allowing insectwings to undergo aerodynamically favourable defor-
mation. However, few studies integrated the deformation of wing in free insect flight
study. Thus, the effects of wing flexibility on natural free flight remain untouched.

In this article, we present a comprehensive FSImodel for insect flight with flexible
wings and set out to seek for a better understanding of the interaction between
aerodynamic and structural processes in free flights. The model insect is allowed
to fly with six-degrees of freedom (6-DoF) and comprises a pair of flexible wings.
The present numerical method allows the interaction between meshfree node cloud
surrounding moving bodies and background Cartesian grid, and will be described in
Sect. 2. In Sect. 3, the flight performances of model insects with rigid and flexible
wings are presented and analysed respectively. Some qualitative aspects of the fluid
dynamics are discussed to provide insights in the effect of flexibility on aerodynamic
loads on the flapping wings. The key conclusions arising from the present work are
summarized in Sect. 4.

2.2 Methods

2.2.1 Modelling of Free Flying Insect

To correctly simulate insect motion in free flight, flow field surrounding flying insect
needs to be solved to evaluate unsteady aerodynamic forces generated by flapping
wings. The complex geometry and dynamics of the flyer make simulation of such
flowshighly challenging for conventional computational fluid dynamics (CFD)meth-
ods. In this study, we solve moving boundary problem involved in flapping wing
flight with a singular value decomposition (SVD) based generalized finite difference
(GFD) scheme on a hybrid coupled Cartesian-meshfree grid system. The SVD-GFD
method was first proposed by Ang et al. [7], then was further extended to solve
complex moving boundary problems like insect flapping flight, fish swimming, and
others. The present methodology has been validated by comparing results obtained
in standard cases with numerical and experimental data published in the literature.

The computational setup used for ground effect study is presented in Fig. 2.1. The
flow field between the wing stroke plane and the ground was discretized by uniform
Cartesian mesh (grid interval 0.025R, and R is the wing length of the flyer) to obtain
satisfactory resolution. Highly refined meshfree grid was used near the surfaces as
shown in Fig. 2.1b.

The motion of the flyer is driven by the reaction force of the fluid obtained in the
numerical simulation. Once the flow field is solved by the aforementioned numerical
methods, aerodynamic forces can be computed to obtain the solution of the kinematic
and dynamics equations in accordance with Newton’s laws.
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Fig. 2.1 Configuration of computational grid for free hovering fruit-fly study. a Background
Cartesian mesh; bMeshfree cloud around the model insect

Fig. 2.2 Insect wing model adapted from Nguyen et al. [6]. a Natural fruit-fly wing; b LER wing
model

2.2.2 Modelling of Flexible Wing

The non-linear dynamics of the flexible wings under coupled inertia-aerodynamic
loadings is then modelled through a finite element method-based loose fluid-
structural coupling process described in [6]. The open-source FEA library, Vega
[8], which offers a wide choice of numerical schemes and material models, was
adopted this study to solve the non-linear structural dynamic problems related to
flexible wings.

The discretized second order system of differential equations that describes the
motion of a deformable solid can be constructed using the principle of virtual work
and finite element discretization [9]. The co-rotational linear elasticity model is
chosen thanks to its relative simplicity, inexpensive computational cost and good
behaviour in problems involving large deformation [8]. The implicit Newmark inte-
grator is selected to advance the solution in time due to its reliability [10].

A leading-edge reinforced (LER)wing shown in Fig. 2.2 is adopted in this work to
better represent the thin shell structures of natural flexible wings. The LERwing fea-
tures a distribution of stiffening veins and connecting softmembrane that is abstracted
from that of the natural wing. The construction and properties of the LER wing may
be found in [6] with details.
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Fig. 2.3 Instantaneous lift and drag histories of a fruit-fly wing executing simple harmonic motion
at Re � 200

2.2.3 Validation

We adopted the experimental results in Lua et al. [11] to validate the CFD scheme
presented in this paper. In the experiments of Lua et al., the forces on the insect
wings were estimated from a scaled robot wing and normalized to the insect scale.
As shown in Fig. 2.3, our numerical results closely tracked the build-up and decrease
of the experimental data, and correctly captured major force peaks and troughs in
the whole wingbeat. This relative error between experimental and numerical results
also agreed with the previous numerical studies [4, 12], and it may be caused by the
oscillation/flutter of the robotic wing due to its imperfect rigidity and slips within the
actuator mechanisms. The general agreement indicates that the present FSI solver
can predict the force generation of insect wings with sufficient accuracy for our
purpose. More comprehensive validations for the FSI solver, including analyses of
non-deformable, stationary andmoving objects, can be found in the authors’ previous
paper [6].

2.3 Results and Discussions

Many insects have been observed to hoverwith approximately horizontal stroke plane
[13]. This flight status is named normal hovering, and has been considered as the
most basic mode of flapping wing flight by researchers [4, 14]. In the present work,
we implement the proposed FSI model to investigate the effects of wing flexibility
on the normal hovering flight of a model fruit-fly.

The morphological model of the fruit-fly was extracted from the images pho-
tographed by Fry et al. [14] and Holtzman and Kaufman [15]. The model flyer has
a wing length of R � 2.39mm and a body length of L � 2.78mm. The basic wing
kinematics was assumed to be simple harmonic motion with an initial flapping fre-
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Fig. 2.4 Designated body
posture in normal hovering
flight

quency of f � 260 Hz. Then the Reynolds number of the flapping wing flight, which
represent the ratio of inertial to viscous aerodynamic forces, could be determined:

Re f lap � � f R2

ν

where � is the stroke amplitude and ν is viscosity. A nominal Re of 148 may be
worked out for Fry et al.’s sample of six free hovering fruit flies [14], which had an
average wing-beat frequency f � 218 Hz (range 211–227 Hz).

The flyer was controlled to maintain a designated posture shown in Fig. 2.4. In
normal hovering flight, the mean body angle χ̄ was set to 48°, while the stroke-plane
was set to be horizontal at the non-dimensional time t* � 0. In the simulations,
the model flyer is regulated by a stroke-plane based kinematic control algorithm to
maintain long-term steady hovering status. The basic wing kinematics was assumed
to be simple harmonic motion with an initial flapping frequency of 260 Hz. The
stroke-plane was adjusted forward or backward within a set range of βR � βR,0±6◦,
where βR is the angle between stroke-plane and body heading, to keep the flyer stay
at the designated position. A small stroke bias was then set and adjusted actively in
the flight to keep the net pitch moment in balance.

2.3.1 Flight Performance

Figures 2.5 and 2.6 show the details of the flyer’s motion in normal hovering over a
periodof 100wingbeatswith rigid andflexiblewings respectively. Thebodydisplace-
ment was normalized by the wing length R. The time histories of body displacement
and rotation presented in Figs. 2.5 and 2.6 indicate that the lateral motion (yawing,
rolling and lateral displacement (x-direction)) is negligible in hovering flight. There
was a significant body oscillation appearing in the first ten wingbeats of the hovering
flight (t*< 10). The flyer then gradually stabilized to steady cyclical motion in the
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Fig. 2.5 Time histories of motion and kinematic parameters in normal hovering flight with rigid
wings. a Displacement of centre of mass; b Yaw, roll and pitch angles of the flyer

course of simulation. The rigid wing flyer deviated about 0.1R backward, 0.015R
upward from the designated hovering position in the early stage of flight (Fig. 2.5a),
while the body pitched up about 5.5° (Fig. 2.5b). For the flexible wing flyer, the
maximum deviation of the body displacement was about 0.052R backward, 0.018R
upward (Fig. 2.6a), and it was about 2.7° for body pitch (Fig. 2.6b).

The large body oscillation at the beginning of flight is due to the unbalanced forces
and moments produced in the first wingbeat as the flyer accelerate its flapping wings
from rest. Thedecreaseddeviation in theflexiblewingflight indicates the deformation
of the LER wings would reduce the unbalanced pitch moment and longitudinal force
in the 1st wingbeat compared with the rigid wing. The smaller pitch angle further
alleviated the burden of the horizontal motion control. This alleviated initial body
oscillation leads to a 20% cut-down of the settling time in the flight with flexible
LER wings (see Table 2.1).

Moreover, comparing the results shown in Table 2.1, it is noted that the steady-
state body fluctuations associated with wing flapping slightly decreased on the flight
with flexible wings. The 10-wingbeat mean flapping frequency also reduced in the
flexible wing case. We further computed the peak and 10-wingbeat mean power con-
sumption in steady hovering flight. The results provided in Table 2.1 agree well with
experimental data in [14]. The different power consumptions indicate that the flexible
wing flight is more efficient than the rigid wing one. The mean power consumption
of the flexible wing flight was about 20% less than that of the rigid wing flight. The


