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4 Vorwort

Vorwort

In der Prozesstechnik der Chemie und Petrochemie, der Lebensmittel- und Pharmapro-
duktion, der Biotechnologie, der Papier- und Zelluloseindustrie, der Ver- und Entsor-
gungs- sowie Energietechnik, der Rohstoffgewinnung, der Land- und Bauwirtschaft
spielen Rotierende Verdrangerpumpen zum Foérdern, Zirkulieren und Dosieren eine
wichtige Rolle.

Keine andere Pumpenbauart beherrscht ein derart breites Spektrum an Fluideigen-
schaften: von diinn bis dick, von homogen bis klumpig, von schmierend bis abrasiv,
von neutral bis aggressiv.

Rotierende Verdrangerpumpen meistern diese Anforderungen allerdings nur mit teilwei-
se sehr unterschiedlichen Ausfihrungsformen, und der Anwender hat Mihe, fir seinen
Anwendungsfall die richtige Wahl zu treffen.

Dafir leistet das vorliegende Anwenderhandbuch wegweisende und hilfreiche Dienste.

Verfasst furr Ingenieure, Techniker, Chemiker, Physiker in Forschung, Entwicklung, Kon-
struktion, Planung und Produktion, soll das in vier Hauptkapitel gegliederte Buch die fir
die optimale Pumpenauswahl und -auslegung wichtigen Fragen beantworten.

Im ersten Hauptkapitel. ,,Allgemeine Grundlagen“ werden Rotierende Verdrénger-
pumpen mit anderen Pumpenprinzipien verglichen und wichtige Designparameter wie
Forderstrom, Differenzdruck, Leistungsbedarf, Wirkungsgrad, Saugverhalten und
Kennlinien erlautert.

Die Optimierung der Pumpenauswahl wird in den Zusammenhang mit den Lebenszy-
kluskosten gestellt.

Das zweite Hauptkapitel ,,Allgemeines zu Rotierenden Verdrangerpumpen® widmet
sich hauptséchlich den prinzipbedingten sowie anwendungsrelevanten Grundeigen-
schaften der verschiedenen Bauformen:

Zusammenhange zwischen Arbeitsraumgestaltung und Forderfunktion, treibender und
nicht treibender Eingriff, gleitende oder quetschende Abgrenzung- und Dichtfunktion,
interne Spaltdichtungen, Fluidkompatibilitat und Partikelvertraglichkeit, Fluidschonung,
sowie Durchlassvermdgen fiir stlickige Beimengungen.

Das dritte Hauptkapitel ,,Theorie Rotierender Verdrangerpumpen® beschrankt sich
auf das fur den Anwender Notwendige und berticksichtigt den aktuellen Literaturstand
sowie eigene Forschungsergebnisse.

Zu den einzelnen Bauformen werden die fir den Férderstrom und etwaige Férderstrom-
pulsationen wichtigen Design- und Betriebsparameter dargestellt. Theoretische Prog-
nosen der Forderstrompulsation werden experimentellen Ergebnissen gegenlber
gestellt.

Erlauterungen zur Bestimmung von Leistungsbedarf und Wirkungsgrad und zu den
Stell-, Drosssel-, Leistungsbedarf- und Wirkungsgradkennlinien schlieBt sich eine
Ubersicht bauformspezifischer Pumpenkennlinien nach Herstellerangaben sowie eige-
nen Untersuchungen an. Es werden die Einflisse der Design- und Fluidparameter
sowie die groBe Bedeutung der internen Dichtfunktion deutlich.

In Theorie und Praxis wird auf das Saugverhalten (NPSHA, NPSHR) sowie MaBnahmen
zur Kavitationsvermeidung eingegangen.
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Das vierte und umfangreichste Hauptkapitel ,Ausfiihrung, Eigenschaften und
Anwendung* stellt mit Augenmerk auf die Prozesstechnik flr alle wesentlichen Bauar-
ten rotierender Verdrangerpumpen den engen Zusammenhang zwischen der Bauart,
dem Leistungsbereich, der Auslegung in Details und Varianten, den Fluideigenschaften,
dem Anwendungsbereich sowie charakteristischen Anwendungsfallen her.

Zunachst werden die Gemeinsamkeiten der Bauarten wie Wellendichtungen, hermeti-
sche Ausflhrung, Hygiene bzw. Sanitary-Design, Explosionsschutz (ATEX), hydroabra-
siver Verschleiss und AbwehrmaBnahmen behandelt.

Die folgenden Berichte zu den einzelnen Bauarten — Zahnrad-, Drehkolben-, Flligelzel-
len-, Schraubenspindel-, Exzenterschnecken-, Schlauch-, Drehflligelrad-, Schnecken-,
Walzkolben-, Ringkolben-Pumpen - sind alle im gleichen Raster-Leistungsbereich/
Anordnung, Konstruktions-Konzepte, Pumpenauslegung, Ausfihrungs- und Anwen-
dungsbeispiele — gegliedert und daher bestens zur vergleichenden Nutzung geeignet.

Der Verfasser dankt fir die Unterstlitzung des Lehrstuhls Prozessmaschinen und Anla-
gentechnik (Prof. E. Schilicker) — Herrn Bihrer fur exzellente Bilder und Frau Hirsekorn
fur die Mitarbeit bei der Texterstellung.

Renate Vetter, meiner Frau, sage ich ein herzliches Dankeschdn fir ihr unermidliches
Engagement, welches das Gelingen in entscheidender Weise ermdglicht hat.

Dem Vulkan-Verlag wird gedankt fur die gewohnt professionelle und sorgféaltige Heraus-
gabe.

Dem Buch wiinsche ich gute Akzeptanz und insbesondere dass es sich als echtes
Anwenderhandbuch flr Rotierende Verdrangerpumpen in der Prozesstechnik bewah-
ren moge.

Gerhard Vetter
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1. Pumpen - Allgemeine Grundlagen

1.1 Wirkungsweise

Pumpen dienen zum Transport flieBféhiger Stoffe oft gegen betrachtlichen Gegendruck
(bis mehrere 1000 bar). Ihr Anwendungsbereich reicht von Flissiggasen (z.B. O,) bis zu
stichfestem Klarschlamm und umfasst einen Viskositatsbereich von mindestens sieben
Zehnerpotenzen (mPas). Das Spektrum flieBféhiger Stoffe reprasentiert alles, was in
Prozess-, Ver- und Entsorgungstechnik vorkommt mit allen Anforderungen an die
mechanischen, physikalischen und chemischen Eigenschaften.

Der Férderstrombereich reicht von Bruchteilen von mi/h bis zu vielen 1000 m3/h. Die
haushoch Uberwiegende Zahl der Pumpenanwendungen betrifft allerdings tropfbare,
wenig viskose Flissigkeiten, die kaum kompressibel sind. Der Ubergang zwischen
Pumpen und Kompressoren wird im Bereich superkritischer Fluide flieBend.

In der Prozesstechnik dienen Pumpen Uber das Férdern hinaus zum Dosieren, Inji-
zieren, Umwalzen und Abziehen.

Der Transport hydraulischer Energie mit Hydraulikpumpen, die Gberwiegend mit spe-
ziellen HydraulikflUssigkeiten erfolgt, gehdrt nicht zum Themenbereich dieses Buches.

Wohl aber die Pumpenanwendung zur Erzeugung von Fluidenergie als Werkzeug zum
Umformen, Filtern, Spllen, Trennen, Homogenisieren, Dispergieren sowie Wasser-
strahlreinigen bzw. -schneiden.

Die heute verfligbare groBe Vielfalt von Pumpenbauarten ist die Antwort auf die man-
nigfaltigen Anforderungen. Die beiden groBen Bauartengruppen (Bild 1.1) — hydrostati-

PUMPEN

HYDROSTATISCHE HYDRODYNAMISCHE
VERDRANGERPUMPEN KINETIKPUMPEN

Oszillierende Verdréangerpumpen
Dosier- und Férderpumpen,
Membran-,Kolben-,Plungerbauart,
Reihen-,Axial-,Radialanordnung
Rotierende Verdrangerpumpen
Zahnrad-,Spindel-,Dreh-/Kreiskolben-,
(Flugel) Zellen-,Schlauchpumpen,...

Kreiselpumpen

radiale, diagonale, axiale Laufrader,
ein- bis mehrstufig
Seitenkanal-,Peripheralradpumpen
Pitotrohrpumpen

Strahlpumpen

V| \% 7 \% \Y /
7
Q//Q,/' //Q/
w7, Q
A >
T /R
7
H.Ap Y(n,h) H,Ap Y(n)
Drosselkennnlinie Stellkennlinie Drosselkennnlinie Stellkennlinie

Bild 1.1: Pumpenubersicht
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sche Verdrangerpumpen und hydrodynamische Kinetikpumpen — unterscheiden sich
im angewandten Prinzip zur Energiewandlung.

Die Verdrangerpumpen Ubertragen die Energie auf das Fluid durch mechanisch
bewegte Wéande (= Verdranger), wobei der Arbeitsraum stets den Differenzdruck durch
mindestens eine Dichtung abstutzt. Das hydrostatische Verdrangerprinzip ist in seiner
Wirksamkeit unabhéngig von der Fluidstromungsgeschwindigkeit, die typischerweise
klein ist (0,5 — 10 m/s). Daher sind beispielsweise langsam laufende Verdrédngerpumpen
fur viskose Fluide bestens geeignet.

Die Kinetikpumpen, die man als ,,Strdomungsmaschinen“ bezeichnet (obwohl auch in
allen andern Pumpenbauarten Fluide stromen), Ubertragen die Energie auf das Fluid
durch Fluidbeschleunigung und Wandlung der kinetischen (Geschwindigkeits-) in
potentielle (Druck-)Energie, was meistens im Zentrifugalfeld (daher Zentrifugal- oder
Kreiselpumpe) erfolgt. Der Arbeitsraum bleibt stets offen, und der Differenzdruck wird
allein durch den auf dynamische Weise erzeugten Druck abgestitzt. Typischerweise
erfordern Kinetikpumpen groBe Strémungsgeschwindigkeiten (10 — 100 m/s) zur Erzie-
lung der gewlinschten Differenzdriicke. Sie sind daher fiir héher viskose Fluide wegen
der groBen Druckverluste bei hoher Stromungsgeschwindigkeit ungeeignet.

Trotz aller Unterschiede bestehen groBe Gemeinsamkeiten zwischen den Pumpenbau-
arten. In den folgenden Erdrterungen bleibt der Aspekt des zeitlich pulsierenden For-
derstromes, wie dies bei Verdrangerpumpen teilweise zutrifft, zundchst unbeachtet.

1.2 Forderverhalten, Kennlinien

Zur Charakterisierung des Forderverhaltens dienen in erster Linie die Drossel- und
Stellkennlinien. Die Drosselkennlinie stellt den Zusammenhang zwischen Foérder-
strom und Forderdruck bei bestimmter Pumpendrehzahl dar. Da Verdrangerpumpen
meist kleine interne Leckverluste aufweisen, zeigen sie drucksteife Kennlinien. Viele
Bauarten eignen sich daher zum volumetrischen Dosieren von Fluiden. Die Drossel-
kennlinie von Kinetikpumpen ist immer druckweich, was durch die betréchtlichen inter-
nen Druck- und Leckverluste entsteht. Die Stellkennlinien der Verdrangerpumpen
sind meist linear; daher sind derartige Pumpen gut fir Regel- und Stellaufgaben
geeignet.

Dagegen sind Stellkennlinien von Kinetikpumpen nicht nur unlinear, sondern auch
stark druckabhéngig (Bild 1.1). Aufgrund der druckweichen Drosselkennlinie kénnen
Kinetikpumpen durch Drosseln im Volumenstrom verstellt werden; Verdrangerpumpen
selbstversténdlich nicht, sie brauchen zur Absicherung gegen Uberdruck Uberstrém-
bzw. Sicherheitsventile.

1.2.1 Férderhéhe

Mit der Bernoulli-Gleichung findet man die Férderhohe H (in m Flissigkeitssaule) pul-
sationsfrei férdernder Pumpen (Bild 1.2, s. dort Bezeichnungen):

Bezogen auf Saug-/Druckflansch:
2

2
— Cc,—C
H=M+u+(zd—zs) (1.1)
P9 29

Bezogen auf Saug-/Druckbehélter:
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Bild 1.2:
Installationsschema
Pa
v
Ca
Pe
% pb Hvd
Ce | o
Nw Ncn N
'q) ps pd
N _
Hye C? V4 ,,
Cs— N N

H:%+%+(za—ze)+(HVS+Hvd)

Die spezifische Forderarbeit Y ist unabhangig vom Fluid (g Erdbeschleunigung):

i:N_m:ﬁ] (1.3)

Y=H-
g[kg kg 2

Die Strémungsdruckverluste H, im Installationssystem riihren von Fluidreibung in Rohr-
leitungen sowie StoBverlusten an Strdmungswiderstdnden her und werden aus den
Einzelbeitragen fir Saug- und Druckseite aufsummiert (Lg; dg Rohrleitungslange und -

innendurchmesser fur i Teilstlicke):
LRi V2
= E o E = 1.4
HV ( }\'I dR + CI) 29 ( )

Rohrreibungszahl A und Widerstandsbeiwerte C sind bei Newton’schen Fluiden von der
Reynoldszahl (Re) etwa nach folgender Naherung (v Strdmungsgeschwindigkeit)

abhéngig (C4, C, Konstanten):

iA=—+C
g no T2

Re:E
v
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Daraus ergibt sich grundsétzlich fiir HV(V):

turbulente Strémung Hy ~ V2 (1.7)

laminare Strémung H, ~ V (1.8)

Die Anlagenkennlinie H(V) verlauft parabelférmig fir turbulente und linear fiir lamina-
re Stromung (Bild 1.3). Sie verlauft waagerecht, wenn die Strémungsverluste ver-
schwindend klein sind (A4), und geht durch den Ursprung (A,), wenn weder statischer
Differenzdruck noch geodatische Hdhendifferenz vorhanden sind.

Beispiele A4: Kesselspeisepumpe

A,: Feuerwehrspritze

Der Betriebspunkt ergibt sich als Schnittpunkt von Drossel- und Anlagenkennlinie.

Verdrangerpumpen pragen ihren Férderstrom dem System ein, die Betriebspunkt-
bestimmung ist hier daher durch die Pumpenauslegung weitgehend vorweggenom-
men.

By, \Bm

by G- LD

Vv

Bild 1.3: Anlagenkennlinie, Betriebspunkt
AT - turbulente Strémung, AL — laminare Strdomung, C — Pumpenkennlinie Kreiselpumpen,
D — Pumpenkennlinie Verdrangerpumpen, A1, A2 — s. Text, B — Betriebspunkte
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1.2.2 Leistungsbedarf, Wirkungsgrad

Die nutzbare Foérderleistung ergibt sich aus:

Der Leistungsbedarf bezogen auf die Pumpenantriebswelle bzw. die Pumpenkupplung
betragt:

P.
P =L (1.10)
nk

wobei ni auch ,Kupplungswirkungsgrad® der Pumpe genannt wird.

Der Leistungsbedarf des gesamten Pumpenaggregats P, einschlieBlich Antriebs- und
Hilfseinrichtungen betrégt

Py =L (1.11)
MNa

wobei n, den Wirkungsgrad des Gesamtaggregats bezeichnet (Bild 1.4).

Bild 1.4:
Leistungsbedarf, Py |6
Wirkungsgrad c—t— e
1 Pumpe, % 3 >>\\

2 Kupplung, N P, {
3 Getriebe, NS

4 Antriebsmotor, ! \ T M.

5 Energieversorgung,
6 Forderleitung & N

1.3 Saugverhalten

Die meisten Pumpen sind storanfallig gegen unplanméBigen Phasenwechsel des For-
derfluids, und sie missen Uberhaupt ansaugen konnen, um ihrer Aufgabe gerecht zu
werden.

1.3.1 Pumpenentliiftung

Selbstentliiftendes Ansaugen (SEA) mit oder ohne Gegendruck (Bild 1.5) verlangt von
der Pumpe die Fahigkeit zur voribergehenden Gas(Luft)-Forderung. Trockenes SEA
bedeutet, dass die Pumpe bei Saugbeginn trocken ist. Bei nassem SEA hat die Pumpe
eine benetzende bzw. funktional bedingte Fluidfillung (z.B. Anordnung ,im Sack®: s.
Bild 1.5 a links). Die Ansaugfahigkeit einer Pumpe unter SEA-Bedingungen muss durch
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b)

c)

|||<1

Pe K

ZE-ZS

-2,

®
»

pb Ce

KO

Booster

2
+ C,
Pe pb+ e .

29

Bild 1.5:
Ansaugverhéltnisse

Analyse der Fahigkeit zur Gas-
forderung und -kompression
geklart werden. Beim trocke-
nen selbstentliftenden Ansau-
gen ist Gegendruck generell
hinderlich. Verdrédngerpumpen
mit internen Spalten erfahren
durch Leckagerlckstrémung,
insbesondere von Flussigkei-
ten, eine Ansaughilfe. Verdran-
gerpumpen eignen sich — ins-
besondere mit benetzten Spal-
ten — meist gut zum SEA, Kine-
tikpumpen in der Regel nur mit
speziell dafiir gestalteten Bau-
arten.

Geflutetes Ansaugen (,Zu-
lauf") liegt vor, wenn das Fluid
durch eine verfligbare Zulauf-
hoéhe oder eine zusatzliche
Boosterpumpe der Pumpe frei
zur Entliftung zuflieBt (Bild 1.5
b und c).

Die erforderliche Bedingung ist,
dass die verflgbare Zulaufho-
he zur Flutung des Systems bis
zur Entliftungsstelle ausreicht
(Hpooster FOrderhdhe der Boos-
terpumpe, sonstige Bezeich-
nungen s. Bild 1.5):

(Ze"zs)'*'HBooster >%+(ZE—ZS)+HP (1.12)

Das bedeutet, dass die Gesamtdruckhéhe gegebenenfalls einschlieBlich der Férderho-
he einer Boosterpumpe groBer als die an einer Entliftungsstelle vorhandene Druckhd-
he sein soll. Widerstande, die der Beflillung des Systems einschlieBlich Pumpe (H) ent-
gegenwirken, sind zu berlicksichtigen.
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1.3.2 Saugbedingungen
Kavitation

Hohlraum- bzw. Blasenbildung im Fluid wird Kavitation genannt. Entsprechend dem
physikalischen Effekt, der die Blasenbildung bewirkt — Gas- oder Dampfblasen -
bezeichnet man die Erscheinung préziser mit Gas- oder Dampfkavitation.

In der Regel soll die Bildung von Gas- oder Dampfblasen wahrend des Ansaug-
vorgangs im Pumpenarbeitsraum vermieden werden.

Die Bildung von Gas(Luft)-Blasen entsteht durch die Druckabsenkung beim Fluideintritt,
wenn der Gasséttigungsdruck unterschritten wird. Da meist gas(luft)-gesattigte Fluide
angesaugt werden, ist diese Gefahr hdufig gegeben. Gaskavitation richtet keine der
Dampfkavitation vergleichbaren Schaden an Pumpenbauteilen an, sie kann aber die
Funktion volumetrischer Dosierpumpen stéren.

Mit der Bildung von Gasblasen in der FlUssigkeit sinken der Fdrderstrom oder der
erzielbare Férderdruck. Kommt es zu periodischer Ansammlung oder Abfiihrung von
Gasblasen im Arbeitsraum, so entstehen entsprechende Férderstromschwankungen.

Dampfkavitation entsteht, wenn im Arbeitsraum der Dampfdruck des Fluids erreicht
wird. Die dann gebildeten Dampfblasen senken nicht nur den Férderstrom der Pumpe,
sondern implodieren an Stellen héheren Drucks unter DruckstéBen mit der Folge von
Kavitationserosion bis zur totalen Pumpenzerstérung.

Da Fluide in der Regel unter den gegebenen Pumpendruckbedingungen sowohl ausga-
sen als auch verdampfen, liegt oft Dampf- und Gaskavitation als Mischform vor. Das
akzeptable AusmaB der Kavitation beziglich wirtschaftlichem und zuverldssigem
Pumpenbetrieb wird bei den einzelnen Pumpenbauarten detailliert betrachtet.

Der Begriff ,,Kavitation“ wird haufig auch im Sinne von ,Kavitationsschaden” benutzt.

Kriterium fir Dampfkavitation

Zur Definition der Pumpenbedingungen mit Bezug auf Kavitationsgefahr dient interna-
tional die (Netto) Energieh6he liber Dampf- oder Sattigungsdruck am Bezugsquer-
schnitt (meist Mitte Saugstutzen), die NPSH (Net Positive Suction Head) genannt wird.

Die von der Anlage zur Verfigung gestellte NPSHA (Net Positive Suction Head Availa-
ble) betrégt bei zeitlich konstant (also pulsationsfrei) féordernden Pumpen (ppg
Dampf-, Sattigungsdruck):

_ 2
NPSHA = Pe TP ZFDS , Be (7, 7 )4, (1.13)
pg 29

Gl. (1.13) stellt eine saugseitige Anlagenkennlinie fir NPSHA dar, die bei pulsationsfrei
férdernden Pumpen allein von der Stromungsgeschwindigkeit im saugseitigen Rohrlei-
tungssystem abhangig ist (wegen H, ~ V 2 ~ v2 bei turbulenter Strémung; s. Gl. 1.7 und 1.8).

Die fir die Pumpe zur Vermeidung von Kavitation geforderte NPSHR (Net Positive
Suction Head Required) stellt eine meist experimentell zu bestimmende charakteristi-
sche PumpenkenngréBe dar, welche die erforderliche Energiehdhe Uber Dampfdruck
am Pumpeneintritt bestimmt, so dass im Pumpenarbeitsraum Kavitation in akzeptablen
Grenzen bleibt.



24 1. Pumpen: Saugverhalten

Zur Vermeidung von Kavitation muss dann die Bedingung
NPSHA > NPSHR (1.14)

erflllt sein.

Da die NPSHR-Bestimmung Uberwiegend experimentell erfolgt, ist es im Pumpenbau
allgemein Ublich, NPSHR 3 %-Werte fiir Wasser anzugeben, die einem Betriebszustand
bei 3 % Forderstrom- bzw. Férderhéhenabfall durch bereits eingetretene Kavitation ent-
sprechen. Diese Methode liegt in der einfachen experimentellen Ermittlung von NPSHR
3 % begrlndet.

Da in diesem Betriebszustand jedoch in der Regel bereits ein hohes Potenzial fir Kavi-
tationsschaden existiert, wird das Kriterium nach GIl. 1.14 mit erfahrungsgemaBen
Sicherheitszuschlagen angewendet.

Weitere Erdrterungen zum Kavitationsverhalten, dessen Modellierung sowie die
Umrechnung auf andere Fluiddaten folgen jeweils bei den einzelnen Pumpenbauarten.

1.4 Pumpenauswahl
1.4.1 Lebenszykluskosten

Die wirtschaftlichste Pumpe fur einen Anwendungsfall verursacht die geringsten Kos-
ten wahrend ihrer Lebenszeit (Lebenszykluskosten, Life Cycle Costs = LCC). Die
Lebenszykluskostenbewertung, bereits bewahrt in anderen Technikbereichen, gewinnt
auch im Pumpenbau zunehmend Bedeutung [1-5]. Allerdings fehlen fir die praktische
Anwendung oft noch die erforderlichen Kostendaten, die nur durch langerfristige Erfas-
sungen gewonnen werden kdnnen.

Nach [6] bestehen die Lebenszykluskosten (LCC) aus den initialen Investitionskosten
fur die betreffende Pumpe (AC), den daflr erforderlichen initialen Installationskosten
(IC), den Betriebs- und Wartungskosten (OC), den Betriebsausfallkosten (LP) sowie
Austauschkosten (RC).

LCC=AC+IC+0OC +LP +RC (1.15)

Die einzelnen Kosten bedirfen préziser Definition und Abgrenzung. Des weiteren muUs-
sen bei deren Bestimmung die Wertstellung und Preisindices beachtet werden.

Zu den Einzelbetragen in Gl. (1.15) noch einige Bemerkungen:

Die initialen Investitionskosten (AC + IC) umfassen die betriebsfertige Installation ein-
schlieBlich Testphasen, Kontrollen, Nachweiserbringungen und Ubernahmezertifikaten.

Die Betriebskosten (OC) umfassen zunéchst Energiekosten und andere Versorgungs-
und Entsorgungskosten (Warme, Kiihlung, Spllung, Dekontamination etc.). Bei Fluidar-
beitsmaschinen gewinnen die Energiekosten mit zunehmenden Werten fiir Einschalt-
dauer (Ein-/Ausschaltbetrieb bis Dauerbetrieb) und Leistungsbedarf wachsende Domi-
nanz. Die Wartungs- und Unterhaltskosten (OC) umfassen nicht nur Arbeits- und
Ersatzteilkosten, sondern auch beispielsweise damit verbundene Inspektionen, Test-,
Dokumentations- und Trainingsaufwendungen.

Die Produktionsausfallkosten (LP) stehen in direktem Zusammenhang mit der Zuver-
lassigkeit und Verfugbarkeit der betroffenen Einrichtung, der installierten Redundanz
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LCC g
120 : =

Kosten

100

N

80

# ACHIC

60

40

o OC+LP
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- I e

0 20 40 60 80 100 120 k$ 160
Investitionskosten (AC+IC) ———

Bild 1.6: LCC fur einen Druckluftverdichter (nach [6])

sowie der als optimal erkannten Wartungsphilosophie (geplant, zustandsorientiert,
Notfall).

Die Austauschkosten (RC) fallen an, wenn eine Reparatur (s. Unterhalt) unwirtschaft-
lich ware. In diesem Fall sind Ein-/Ausbau, Dekontamination, Reinigung, Entsorgung,
Tests sowie Inspektionen neben den Aufwendungen fiir die Austauschteile anzusetzen.

Die LCC-Analyse bietet die Mdglichkeit zur Bestimmung der wirtschaftlichsten Investi-
tionskosten (Bild 1.6). Dem Beispiel (aus [6]) liegt zu Grunde, dass die Kostenanteile OC
+ LP mit steigenden Investitionskosten (AC + IC) abnehmen und ein Kostenminimum
die optimalen Investitionskosten anzeigt.

Die LCC-Analyse bietet darlber hinaus klare Einblicke zur Auswahl optimaler Design-,
Instandhaltungs- und Wartungskonzepte.

1.4.2 Pumpenauswahl nach Energieverbrauch bzw. Wirkungsgrad

Bei Pumpen, die im Dauerbetrieb (Einschaltdauer 100 %) arbeiten, sind meist die Ener-
giekosten der dominante Kostenfaktor.

Zur Grobabgrenzung zwischen Kreisel(Kinetik)- und Verdranger(Hydrostatik)-Pumpen
eignet sich der Vergleich der Wirkungsgradpotenziale auf Basis der spezifischen Dreh-
zahl ng, einer auf Ahnlichkeitsbetrachtungen berunhenden PumpenkenngréBe (n in min-
1, Vin m3/s; H in m):

(1.16)

T ‘<-
S| N]=

Die urspriinglich von [7] stammende Darstellungsweise hat [8] erst kirzlich mit neuen
Daten aktualisiert (Bild 1.7); sie gilt fir Verdrangerpumpen und einstufige Kreiselpum-
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Bild 1.7: Optimale energetische Pumpenwirkungsgrade n ., in Abhéngigkeit der spezifi-

schen Drehzahl n (nach [8])



1. Pumpen: Pumpenauswahl 27

Oszillierende Verdrangerpumpen
[ ] ----- Rotierende Verdrangerpumpen
bar m
o} T
x [0} > ¢ Triplex
S 3 < 4 %
.g 10"+ Q 10"+ Prozess- Prolf;ssgnéz
N 5] u. Dosier- , \_ _ pump
o - P CE TS
g 1024 5 10°+ 2w pumpe’n’, Rotierende
= L gg‘ ,*" Verdrangerpumpe
° 088 [~
10+ 10°+ £8€ |[,”  Niederdruck
=04 A Membran-
R4 Dosierpumpe
1+ 10+ Ir'
'
'
1 !
10 t } } } } }
10° 10° 10* 10° 10° 10" 1 10°
| | .
1 ml/h 11/h Volumenstrom V. ——

Bild 1.8: Verdréangerpumpen-Leistungstibersicht im V/H-Diagramm

pen der jeweils optimalen Bauart (radiales, halbaxiales, axiales Laufrad) und bestimmte
Fluidbedingungen (Kreiselpumpen: Wasser 1 mPas; Verdrdngerpumpen: Ol 24 mPas).

Zu Bild 1.7 noch folgende weiteren Erlauterungen:

— Fur Strahlpumpen wird wegen der hier fehlenden Drehzahl die spezifische Drehzahl
mit dem Zusammenhang nq = 158 ¢* (0™ Schnelllaufzahl nach [8]) bestimmt.

— Fur beide Pumpenarten — Kreisel- und Verdrangerpumpen - sind einhtllende obere
Grenzkurven des Wirkungsgrades angegeben; jene fur Kreiselpumpen entspricht
dem theoretisch erreichbaren Wirkungsgrad nach [9, 10].

— Kreiselpumpen zeigen eine deutliche Wirkungsgradaufwertung (MaBstabseffekt) mit
zunehmender PumpengroBe (Volumenstrom).

Bild 1.7 ist fUr die Praxis insofern ntzlich, weil klar daraus die wirkungsgradginstige
Kreiselpumpenanwendung flr den Bereich héherer spezifischer Drehzahlen hervorgeht.
Da Verdrangerpumpen oberhalb von Volumenstrémen im Bereich 200 — 400 m3/h auch
wegen BaugréBe und Investitionskosten meist unwirtschaftlich sind (s. schraffierte
Lucke in Bild 1.7), ergibt sich die einfache Daumenregel (bei Kreiselpumpen ist ng mit
der jeweiligen Stufenforderhdhe zu ermitteln):

ng<10-20 Verdrangerpumpen zeigen meist héhere Wirkungsgrade
ng<1-20 Verdrangerpumpen zeigen haushoch héhere Wirkungsgrade
ng <1 fast unangefochtener Optimalbereich von Verdrangerpumpen

Das Wirkungsgradverhalten der verglichenen hydrodynamischen und hydrostatischen
Pumpenwerte hat physikalische Griinde. Die direkte mechanische Energiewandlung mit
geringer Strdomungsgeschwindigkeit bei dichten Arbeitsrdumen, wie bei Verdrénger-
pumpen gegeben, ist bei kleinen Volumenstromen und hohem Differenzdruck der
hydrodynamischen Energiewandlung mit hohen Strémungsgeschwindigkeiten und
inneren Leckverlusten Uberlegen.
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Eine Umfrage bei Pumpenherstellern ergab nach [11] fir Pumpen im Ublichen Leis-
tungsbereich des kommerziellen Angebots (Bild 1.8), entsprechend dem Bereich spe-
zifischer Drehzahlen von etwa 10-3 bis 5, Pumpenwirkungsgrade, die in den Bildern 1.9
und 1.10 (fur Fluidviskositat < 102 bzw. < 103 mPas) tber dem Volumenstrom darge-
stellt sind.

Erganzend zum Wirkungsgradvergleich auf Basis der spezifischen Drehzahl nach Bild
1.7 werden die real erwartbare Streuung der Wirkungsgrade von Verdrangerpumpen
(103 < ngq < 5 - 100) sowie die auch hier vorhandenen MaBstabseffekte deutlich. Physi-
kalische Ursachen flr die Streuung der Pumpenwirkungsgrade sind in der teilweise
groBen mechanischen Reibung (Schlauch-, Exzenterschnecken-, Getriebepumpen)
sowie der Antriebstechnik (pneumatische Antriebe) zu suchen. Der Einfluss der inneren
Fluidreibung erscheint beim betrachteten schmalen Viskositatsbereich unbedeutend.
Da aber Verdrangerpumpen in einem sieben Zehnerpotenzen umfassenden Viskositats-
bereich der ,Forderfluide” (bis stichfest!) eingesetzt werden (> 107 mPas), stellt bei der-
artigen Anwendungen die innere Fluidreibung oft den entscheidenden Parameter dar,
der Pumpenwirkungsgrade deutlich < 50 % bewirken kann (s. auch Kap. 3).

1.4.3 Pumpenauswahl nach Férderkennlinie

Die bereits in Abschnitt 1.1 und 1.2 erlauterten fundamentalen Unterschiede bei den
Drossel- und Stellkennlinien kdnnen fir die Pumpenauswahl entscheidende Kriterien
darstellen. Verdrangerpumpen zeigen generell drucksteife Drosselkennlinien und
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Bild 1.9: Erreichbare Pumpenwirkungsgrade, Férderfluid < 100 mPas (nach [11])
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Bild 1.10: Erreichbare Pumpenwirkungsgrade, Férderfluid < 1000 mPas (nach [11])

lineare Stellkennlinien. Diese Kennlinieneigenschaften werden in der Regel durch
hdhere Fluidviskositét noch ausgeprégter, weil die durch die internen Spalte entstehen-
den Leckverluste mit zunehmender Fluidviskositdt mehr und mehr verschwinden.
Bild 1.11 zeigt diesbezlglich den gegenléufig gerichteten Einfluss von Fluidviskositat
und Differenzdruck auf den Volumenstrom anhand der Stellkennlinien von Verdranger-
pumpen mit internen Dichtspalten. Verdrangerpumpen fordern daher bei héher visko-
sen Fluiden weitgehend unabhé&ngig von der Fluidviskositéat, und sie pragen den For-
derstrom aufgrund ihrer Drucksteifigkeit der bestehenden Anlage gegen alle Widerstén-
de ein. Aus diesem Grund miissen zur Druck- bzw. Uberlastungsbegrenzung Siche-
rungseinrichtungen (Uberdruckventile) vorgesehen werden (Bild 1.12 APpruckbegr)- Tritt
beispielsweise eine Rohrleitungsblockierung auf, so kénnte der Foérderdruck der Ver-
drangerpumpe bis Ap* (V = 0) sehr stark ansteigen, in Grenzfillen bis zum elektrischen
und mechanischen Uberlastungsstopp.

Bild 1.12 zeigt vergleichsweise die Betriebspunkte von Kreisel- und Verdrangerpumpen
bei konstanter Drehzahl, jedoch variablem Forderdruck Ap und unterschiedlicher Fluid-
viskositat (v4 < v,) anhand der Drosselkennlinien. Trotz starker Veranderungen der Anla-
genkennlinien (A4, A,) bleibt der Férderstrom unter Férderdruck- und Viskositatsein-
fluss bei Verdrangerpumpen kaum veréndert (Bild 1.12, ausgeflllte Punkte), auch weil
die Drosselkennlinien V mit der Viskositatserhdhung drucksteifer werden (V,4, V,5).

Verdrangerpumpen eignen sich aufgrund reproduzierbarer, wenig stérgréBenunterwor-
fener linearer Stellkennlinien zum volumetrischen Dosieren von Flissigkeiten.
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Bild 1.11: Stellkennlinien einer Verdrangerpumpe mit internen Spalten (Schema)
oben: DifferenzdruckeinfluB (rechts Drosselkennlinie)
unten: ViskositatseinfluB (rechts Viskositatskennlinie)
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\
APes Ap Druckbegr.

\

Bild 1.12:

Forderverhalten unter Diffe-
renzdruck- und Viskositatsein-
fluB (Drosselkennlinien,
Betriebspunkt), Vergleich:
Kreisel(K)- und
Verdranger(V)-Pumpen
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