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Numerical Analysis and Tests on Selected
Dynamic Parameters of Shooting Stand Frame

Paweł Abratowski(&)
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Abstract. To build a machine gun on a helicopter board sufficiently rigid frame
of shooting stand is required. The construction of the frame ensures changing a
shoot direction in the vertical and rotation in the horizontal plane. The frame is
hinged and can be pivoted to the inside of a helicopter. The frame design
requires dynamic analysis and appropriate laboratory tests. The paper presents
calculated results of the systems response to the applied dynamic loads in
comparison to the laboratory tests results.

Keywords: FEM dynamic analysis � Stand frame tests � Clearance modeling

1 Introduction

One of the topics implemented by Institute of Aviation was laboratory tests and
numerical analysis of the frame of a shooting stand designed by customer of the
institute. Preliminary analysis of a similar new designed column stand for aircraft
multi-barrel machine gun was also carried out and published in [2]. Similar shooting
stand frames are described also in [1]. The frame, which is the subject of this article, is
mounted in emergency exit of Mi-17 helicopter. The frame consist of welded steel
pipes, steel sheets and hinges as one part. The hinges allow the frame to be pivoted to
inside of the helicopter. On the other side the special pin (on a spring) makes it possible
to lock the frame in working position. A rotary base is attached to the frame on which
the machine gun is mounted. 7.62 mm multi-barrel machine gun weights 30 kg. The
frequency of shots is 70 Hz. The steel 30HGSA is used as the material of the structure.
The frame construction with a machine gun is shown on Fig. 1.

Laboratory frame test included:

– Static test
– Dynamic test – damped free vibrations test. The machine gun replaced by mass

substitute
– Dynamic test – load of dynamic force. The loads has been realised in 3-seconds

cycles. The assumed firing frequency of the machine gun was 70 Hz but there was
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applied 35 Hz due to the limitations of the test stand. The structure was loaded
calculated force as if the machine gun was mounted, therefore the tests were per-
formed without mass of the gun.

The purpose of the analysis is to examine the system’s response to a static and
dynamic load and compare it to the test results. Fatigue tests and calculations are not
taken into account in this article.

2 The Loads and Numerical Model

The dynamic force, shown in Fig. 2, is used directly from the laboratory test stand [3].
The duration of the dynamic force is limited to 1.5 s. Two variants model are made:
variant 1 – without clearance, variant 2 – modification of variant 1 with clearance
simulation. Geometric model with the method of applying support and load is shown in
Fig. 3. The loads variants used for analysis are shown in Table 1. The value of U1 is
maximum absolute value obtained in the test. This is initial displacement boundary
condition.

Fig. 1. Shooting stand frame with the machine gun

Table 1. Loads

Analysis variant Name Description Value

Static analysis, nonlinear Load 1 Static force F1 = −1329 N
Load 2 Static force F2 = 818 N

Dynamic analysis, free
vibrations

Load 3 Displacement U1 = −0.253 mm

Dynamic analysis, time
dependent force load

Load 4 Course of calculated
dynamic force f(t)

Fig. 2
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The numerical model including the frame together with rotary base is developed
using ANSYS program. The mesh model is shown on Fig. 4. The FE models are
developed using 4-nodal shell elements (6 degrees of freedom at each node), 8-nodal
solid elements (4 degrees of freedom at each node), beam elements (6 degrees of
freedom at each nodes), mass element (the machine gun, forced vibrations) and 2-nodal
contact element for clearance modeling. Simplified contact model is shown in Fig. 3.

Fig. 3. Loads, supports and clearance model

Fig. 2. Dynamic force F(t) [N]
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3 Static Analysis

Static nonlinear analysis is performed using two models (as mentioned in Chap. 2).
First – without clearance in supports and second – the clearance is applied in the P3
support (Fig. 3). The clearance values is determined based on the results of the tests
and the model without clearance. The clearance is selected so as obtain approximate U0

displacement to the tested model. The chart shown in Fig. 5 shows displacement U0

(Fig. 3) for the test results [3], model without clearance results and model with applied
clearance.

Fig. 4. FE discretization

Fig. 5. U0 [mm] displacement static results
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4 Dynamic Analysis

Dynamic transient implicit analysis is performed using Newmark method [4]. Default
Newmark parameters in Ansys are applied. In the frame structure the Rayleigh model
damping [5] is applied:

C½ � ¼ a M½ � þ b K½ �; ð1Þ

where, a = 0, three coefficients b are applied: 0.0007, 0.001 and 0.0015.
Free vibration analysis is performed using model with mass substitute of the gun

m = 30 kg (as mentioned in Chap. 1). The initial displacement is applied such that U1

is equal to the maximum amplitude of the test result. The results (shown in Fig. 6)
shows U1 time dependent displacements for three b damping coefficients in comparison
to the test results [3]. The test results are also published in [6].

The chart shows the difference in the course of the damping between the test and
calculations results. It can be seen that the result for assumed b = 0.0015 is the nearest
to the test result (on the negative side), whereas the vibration period increases at the
fastest rate.

The frame analysis with dynamic force load is performed without the mass (as in
laboratory tests). During the tests, the load of time dependent force was performed in
series. There were performed above 85000 series. Due to the limited volume of this
article, there was selected one typical test result for comparison. The test and calcu-
lation results for the b = 0.0015 coefficient are shown in Fig. 7.

Fig. 6. Free vibrations. U1 [mm] displacement results
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The chart shows the difference in the maximum amplitude values between test and
calculations results. The minimum difference for the maximum absolute displacements
is 0.241 mm at about t = 0.05 s. At steady state (from about t = 1.25 s) the difference
in maximum displacement is 0.227 (4%), whereas the amplitude of the calculated
results is approximately twice the tests.

The Fig. 8 shows the frame on the test bench with marked characteristic measuring
points.

5 Summary and Conclusions

1. Static analysis shows high accuracy in comparison to test results, especially model
stiffness. There is possible to set the clearance value in the frame at a high level of
accuracy basing on comparison of the calculations and the test results.

Fig. 7. U0 displacement results [mm]

Fig. 8. The frame mounted on the test bench. Configuration of the test stand for: (a) – free
vibrations test, (b) – tests with dynamic loads
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2. Free vibrations analysis shows the differences. It is possible to set the damping
coefficient, whereby with a higher damping factor, the vibration period increases
faster. In the next step of the research, a non-linear damping coefficient will be
applied.

3. Although the value of the clearance may be set with the high accuracy, the cal-
culated results differ from the test results. The differences between maximum and
minimum displacements may be caused the different masses between real and
numerical model. The mass and stiffness of the dynamometer (shown in Fig. 8b) are
not take into account. It can affect the dynamic calculation results. The influence of
mass and stiffness of the dynamometer on dynamic results should be checked.
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Abstract. An electric machine for construction works is a multi-functional,
remote-controlled demolition robot which is designed to be operated in hard
work condition where the human being is not recommended due to high risks
resulting, for example high dust content, high temperature or noise. In such
machines, their parts wear out very quickly. The article presents the approach to
validate the project assumptions using experimental and numerical studies. The
experimental studies provided the information about the adverse efforts and
frequency states of the machine. The numerical calculation consigns the infor-
mation about the stress distribution in the whole arm working system.

Keywords: Demolition machine � Electric machine � Arm working system �
Numerical-experimental studies � Construction works � High-speed camera �
Testing � Finite element method

1 Introduction

As a result of the growing demand for automating the process of demolishing building
structures and for the removal of rocks and spoil in the mid-nineteenth century, the
development of specialized demolition machines took place. Over time and the need to
automate the process of demolition, the strength of human muscles has been changed to
light machines and then to heavy machines such as excavators equipped with spe-
cialized equipment for demolition. Over the years, entrepreneurs have at their disposal
cranes or excavators with a suspended sphere, excavators with specialized arms and a
mounted hydraulic hammer. The most crucial moment was the provision of an electric
demolition machine, whose dimensions allowed for demolition of elements inside
buildings. The use of electric demolition machines allows to optimize the working
environment of the machine in terms of operator safety. The use of electric drive allows
the machine to move in closed rooms without causing it to become smoky or producing
harmful exhaust gases as in the case of machines with the use of an exhaust system [9]
(Fig. 1).
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2 Experimental Studies

Several measurement methods can be used for measurements in the machine’s working
environment. Themost often used is a strain gauges, and to eliminatemeasurement errors
in its application resulting from environmental conditions and for validation of the
computational model to determine resonant frequencies a high-speed camera can be used
[1, 2]. Comparing the determined resonance frequencieswith those calculated in the FEM
analysis, we gain assurance of the adopted assumptions and simplifications in the con-
struction of a computational model [7]. Due to the need to eliminate the harmful effects of
the environment on the results of measurements, a high-speed camera was used.

The measurements were carried out in the working environment of the machine and
the element which has been subjected to the breaking process was a block of reinforced
concrete, which was a fragment of the foundation of the building. In the case of such
positioning of the machine, the maximum possible extension of the cylinders was chosen
so that the position of the arms could generate the greatest possible torque at the rotating
element of the working system. This case is the worst possible case of the work system in
this environment. Figure 2 shows the machine in the work environment together with the
prepared measuring stand and the basic parameters of the measurement.

Fig. 1. Visualization of the electric D-REX demolition machine

Speed of the camera: 10 000 frames 
per second

Density of sampling of displacement 
signal: 0.001 m

Fig. 2. Work environment of the machine, test stand and parameters of the measurement
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The measurement concerned the work of the hammer, which hit the concrete block,
destroying the forged material. The obtained graph of displacement in relation to time
presents the vertical component of motion, the horizontal one was negligibly small, so
it was decided not to plot its dependence and not to apply it in the simulation process
(Fig. 3) [3].

To obtain the correct results, image scaling was performed by determining the
actual distance between two points in the mounting system (distance between pins).
Thanks to the TEMA Motion software and the registered image was analyzed. Having
the measured displacement of the system and the time of the measurement, the speed of
the desired point was determined and then its acceleration. The minimum size of the
pixel can be 20 um, and a change in its size can affect the measurement error. In the
measuring the natural frequency of the system, acceleration diagrams were determined
from time, and then the relationship between acceleration and frequency was plotted
thanks to FFT analysis [4] (Fig. 4).

Time [ms]

D
is

pl
ac

em
en

ts
 [

m
] 

Fig. 3. Displacement of the fastening system point during breaking

Fig. 4. The spectrum of the signal recorded on the last arm and hammer during operation in the
range up to 150 Hz
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3 Computational Model

In order to check the strength of the designed working system, a discrete model was
built [6, 8]. Discrete model was built on the basis of shell and beam-rod and rigid
elements. The geometrical assembly model is built without pins, actuators and addi-
tional connecting elements that is modeled as connections in the process of building a
computational model [5]. The discreet model with simplifications used in the form of
additional elements and named parts is shown in Fig. 5.

Numerical analyzes were carried out in two stages: in the first stage, the resonance
frequencies of the working system were determined in order to validate the calculation
model with the real model, while in the second stage the effort of the working system,
with the given displacement, was analyzed.

4 Results of the Simulation

To assess the correctness of the preparation of the computational model, the results of
measurements using a high-speed camera and modal analysis carried out using com-
puter simulation were used. Spectral analyzes carried out in the working system,
regardless of where the measurements were made (hammer, arm tip) showed exactly
the same natural frequencies. The graphs for these measurements differ only in the
magnitude of accelerations. Table 1 presents the comparison of the natural frequency
obtained by experimental and numerical methods together with the error that the cal-
culation model was burdened with. An example of the form of natural frequencies is
shown in Fig. 6.

Mounting 

A3
A2

A1

A0 

Hammer 
mass 

Fig. 5. Discrete model of the working system
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After checking the accuracy of the calculation model, the verification of its
response to the displacement was carried out. As a result of applying displacement, the
dependence of stresses on the time occurring in the structure during the breaking
process was obtained, which is shown in Fig. 7.

With the applied force in the form of displacement and the analysis of the graph in
Fig. 7, it can be concluded that the maximum stresses occur in 0.27 s of simulation.
Maximum stresses appeared in the places where the A0 was mounted to the robot
structure. This place is stiffened in this type of analysis, so after analyzing the whole
structure, it was found that the maximum stresses in the structure amount to 122 MPa
and also appeared at the junction of two sheets of the A0. Equivalents (using H-M-H

Table 1. Comparison of exemplary natural frequencies

HS Camera (Hz) FEM (Hz) Difference (Hz)

1,5 2,6 1,1
13 14,5 1,5
25,25 26,8 1,55
38,75 44,6 5,85
52 56,8 4,8
89,63 86,2 3,43
128,75 128,1 0,65

Fig. 6. An example of the deformation of the model

Fig. 7. Dependence of stresses from time in the breaking process

theory) stress distribution are shown in Fig. 8, while the distribution of stress in indi-
vidual components is shown in Fig. 9.
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Fig. 8. Equivalents (using H-M-H theory) stress distribution along whole model

26 MPa

25 MPa

41 MPa

77 MPa 

122 MPa 

Fig. 9. Equivalents (using H-M-H theory) stress distribution in individual components
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5 Summary and Conclusions

Studies using a fast camera to measure displacements and accelerations, allowed to
precisely determine the extortion that worked on the robot’s arm during its operation. The
comparison of the resonant frequency carried out by high-speed camera and simulation
confirmed the correctness of the prepared calculation model. Resonance frequencies
obtained during experimental research are similar to the resonance frequencies obtained
during modal analysis performed by simulations using the Finite Element Method. The
computational model contained simplifications so that deviations between the values
derived from the numerical analysis and the experiment could be observed.

Analyzing FEM simulations, it can be concluded that the maximum stresses occur
in 0.27 s simulation, which is caused by the increase of displacement in the initial
violation of the cohesion of the forged material and local cracks. The maximum stresses
in the structure occur in the A0, which was an expected effect, because in this place the
largest torque acting on the structure is generated.

It can be stated that the numerical and experimental approach gives sufficient
information on the state of effort of demolition machine working systems. The use of a
high-speed camera to determine the displacement and at the same time to determine the
acceleration of the system in order to validate the calculation model limits the number
of measuring instruments used to a minimum.
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Abstract. The article presents design faults related to the carrying structure of
the bucket wheel of the SchRs4600 excavator working in the brown coal mine.
The authors analyzed cases of damages of this type of structure occurred in the
past in such machines. In order to determine the damage of the carrying structure
of the bucket-wheel excavator, non-destructive examinations were carried out
using visual and magnetic-particle methods. The real loads occurring during
operation of the machine in the case of fatigue were also determined. These
measurements were used to verify the numerical model. A strength analysis was
carried out using the Finite Element Method. The cause of fatigue cracks was
determined by measurements and numerical calculations.

Keywords: Mining � Excavator � Bucket-wheel � Cracks �
Non-destructive testing � Strain gauges � Stress analysis � Finite element method

1 Introduction

One of the basic methods of exploiting mineral raw materials such as brown coal is the
opencast method, and its systems have been described in detail in [1]. In order to
conduct brown coal mining, specialized machines operating in appropriate systems are
used [1].

One of these machines used in open cast mining are bucket-wheel excavators
(Fig. 1) and they are a part of a group of machines called basic mining machines. These
machines are working in a continuous manner and equipped with a mining head with a
number of elements, which are e.g. buckets with teeth. These machines are an integral
part of the basic technological system of the open cast mine, where they constitute its
first and one of the most important links. The construction of various types of bucket-
wheel excavators is practically the same and is based on very similar or even identical
functional systems. The construction of various types of bucket-wheel excavators is
practically the same and is based on very similar or even identical functional systems.
Small differences are described in [2]. One of the basic functional system of a bucket-
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wheel excavator is a mining system consisting of a carrying structure, which is a bucket
wheel and a mining boom.

Currently, in the design of carrying structures of basic mining machines, in this case
bucket-wheel excavators, the available standards are used. They have been developed
based on many years of experience of the manufacturers of these machines. These
standards were created at the beginning of the 20th century, and some machines
working in brown coal opencast mines were designed according to older standards,
which were less precise. The standards have some differences depending on which
parts of the world they are used in. Differences between the assumptions occurring in
individual standards concerning the design of basic mining machinery are presented in
paper [3], where the authors presented differences in terms of static, dynamic and
fatigue loads.

Due to the age of these machines, and consequently their large repair history, which
is not always correctly carried out, the size of these machines, the complexity of the
technological process and the existence of high variable loads that cannot be clearly
predicted, these machines are exposed to occurrence of various types of failures [4].
One of the first and at the same time one of the most key elements that is in contact with
the material is the bucket wheel of the machine. It is exposed to extreme dynamic loads
resulting both from the mining technique, the properties of the material being mined
and the hardly-abrasive or non-abrasive materials contained therein. Due to the high
variability of loads, sometimes this part of the structure is exposed to various types of
failures.

Research articles that have started to appear recently are the result of these failures,
and the authors present their individual approaches to determining their causes. One of
such failures of the mining system, which was the drive shaft of the bucket wheel in the
SRs 2000.32/5.0 + VR92 bucket-wheel excavator, was described in [5], where the

Fig. 1. SchRs4600 bucket-wheel excavator
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