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Foreword

This is the most comprehensive book on the subject of transcranial direct current 
stimulation (tDCS) yet written. Its editors and authors are some of the most accom-
plished scientists in their fields. They are intelligent, hardworking, and passionate 
about their research in a way that helps them to succeed where others fail. Few of 
them started their careers focused on tDCS, but came to it through a variety of 
avenues: engineering, electronics, psychology, neuroscience, medicine, and others. 
All have found through the course of their professions that brain stimulation, and 
tDCS in particular, might fill a niche that has been lacking until now.

Over the last decade, brain stimulation has undergone extraordinary growth for 
the study of the healthy human brain and for the study and treatment of brain and 
mental illness. In terms of brain stimulation, tDCS is becoming the most wide-
spread method. Many advantages of tDCS have helped to fuel this growth. Its most 
basic requirements are a source of controlled current and electrodes that can be 
temporarily fixed to the body. Compared with most other methods of stimulation, 
and pharmaceuticals, this makes tDCS technically simpler and much less expensive 
to administer. Also, as we can find in this book, it appears to be safe. This combina-
tion of low cost, simplicity, and safety has generated a lot of interest in tDCS. The 
many potential advantages of tDCS have driven efforts to increase its efficacy, with-
out which tDCS is useless. These ongoing attempts are described here with great 
detail.

The increasing use of tDCS has allowed for the testing of hypotheses regarding 
the brain basis of cognition and behavior that could not be studied in healthy humans 
until its development. One of these is how changes in behavior are associated with 
changes in activity of specific brain regions and networks. If a brain region supports 
a specific behavior, or patterns of behavior, then increasing or decreasing activity in 
that region should influence that behavior. tDCS applied to a brain region may facil-
itate brain states that improve (or suppress) different forms of cognition, such as 
learning, memory, attention, or perception. Many studies described in this book 
have shown alterations in these forms of cognition using tDCS applied to brain 
areas suspected of being involved in these forms of cognition and others that have 
failed. tDCS offers another line of evidence as to how brain areas are involved in 
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these cognitive processes. In addition, once identified, tDCS-based methods could 
be used to enhance cognition for real-world purposes. Effective and reliable meth-
ods for cognitive enhancement based on tDCS could lead to many benefits in neu-
roergonomics, which is the use of our understanding of the mind and brain to 
enhance work and technology, along with a variety of other endeavors including 
education, science, sports, music, and art. Indeed, all areas of human endeavor 
could benefit from a reliable method of altering cognition.

In addition, it offers hope for new forms of treatment that could reduce suffering 
for the many millions of patients with clinical disorders who are currently not 
helped or are even being hindered by available medical treatments. Those suffering 
from disorders such as addiction, depression, anxiety, psychosis, chronic pain, trau-
matic brain injury, stroke, dementia, and many others have a need for medical solu-
tions that are safer, more effective, and more economical than what is currently 
available. The huge physical, emotional, and economic drain on society makes it 
imperative that we leave no stone unturned in looking for answers. tDCS offers us 
at least a chance to reduce this suffering. Many of the latest advances using tDCS to 
reduce the impact of these disorders are described in this book. There is definite 
progress in improving the ability of tDCS to help fight these disorders.

At the same time, tDCS has suffered many problems often associated with new 
technologies. Early successes lead to exuberance and high expectations for the tech-
nology’s future potential. Eventually though, some early results cannot be repli-
cated in subsequent studies, inexperienced users make mistakes that complicate the 
literature, and the hype associated with a few early successes does not play out. This 
can turn into indifference and even resentment on the part of the media and broader 
scientific community, stifling funding and publications needed for potentially 
important and useful research. In addition, if one considers the vast number of ways 
that tDCS can be applied, and the even larger number of ways that electric current 
can be modulated in time, it can be concluded that a nearly infinite variety of meth-
ods for applying TES are available. A single unsuccessful attempt is often described 
as a “failure of tDCS.” However, one failed attempt leaves many millions of alterna-
tives yet untried, with those that succeed still waiting to be discovered.

Finding new successes for tDCS is a large focus of this book. Methods to opti-
mize tDCS effects described here include modeling of current pathways combined 
with neuroimaging of individual differences in brain structure and organization, 
leading to individualized electrode montages. Optimization of more general experi-
mental procedures across laboratories is also called for. A large variety of methods, 
which vary in current intensity, density, and duration, electrode types, methods of 
electrode placement, sham control, and blinding procedures, can be found in the 
studies described throughout this book. While beneficial in terms of discovery (e.g., 
one method may result in a new discovery, while another equally valid method does 
not for some reason), this makes it very difficult to compare across studies and labo-
ratories. Such problems contribute to the perceived lack of replication in the field, 
but this may result from procedural differences across studies, with few “true” rep-
lications actually being performed.

Foreword
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While this book has much to say about the success stories of tDCS, and hope for 
its future, this is not hype. It relates the hard science of what tDCS is about and its 
limitations. Its main points regarding the technical and experimental underpinnings 
of tDCS research are meant to inform, not inflame, and to give the reader a sense of 
the underlying reality of this method, at least as it is understood today. The reader 
will undoubtedly come away with a much better grasp of the current status of this 
dynamic and still expanding field, along with many questions. One of these is: What 
is the full description of the effects of tDCS at each level of the nervous system? 
tDCS interacts with the nervous system at every level, from the molecular up 
through to the systems and gross anatomical levels, with both neurons and glia, all 
to different degrees depending on their physical properties and the exact tDCS pro-
tocol used. Some of these interactions may also vary minute by minute as tDCS 
progresses. As with pharmaceuticals, it is impossible to know for sure if we have 
captured every point of interaction between a treatment and the human body and 
every aspect of this very complex process. Chances are good that we are missing 
something with an important influence on brain and behavior. Only further study 
can help to answer these questions.

From its beginning, tDCS has pointed out many flaws and inadequacies in our 
understanding of the nervous system. How could this low a level of current cross the 
skull and enter the brain? When action potential threshold is 10–20 mV above rest-
ing potential for a typical neuron, how could a change of 0.5 mV or less have any 
effect? Uncertainty regarding mechanisms such as these leaves many other details 
of tDCS uncertain. What is the spatial resolution of tDCS? That is, how far can an 
electrode be moved while still producing similar results within an individual? Most 
importantly, what is the tDCS electrode size and placement and stimulation polarity, 
amplitude, and duration that will produce the best results for a given application?

As with most areas of science, there is no real end to this process of discovery. 
Along the way, we may find a few nuggets of truth that stand up to further study, and 
many more questions will arise. With so many people around the world lacking safe 
and effective medical care, the hope is that this work will lead to new forms of treat-
ment that will help to reduce their suffering. The ultimate goal of all science is to 
increase our understanding of the world around us and to use this in order to help 
give people a better quality of life that is less burdened by suffering and despair. 
This effort, and the hope behind it, is what shines through this book most of all.

Albuquerque, NM, USA Vincent P. Clark

Foreword
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Preface

The field of brain stimulation has enormously expanded over the past decades. 
Technological progress in biomedical and engineering sciences facilitated advances 
in understanding physiological and pathological neural dynamics in the central ner-
vous system that represent functional targets for brain stimulation and mechanisms 
that underlie the brain stimulation effects.

Among specific techniques of noninvasive stimulation, transcranial direct cur-
rent stimulation (tDCS) has gained steadily growing interest by scientists, clini-
cians, and the public. This is not surprising, as tDCS research can facilitate insight 
into neurophysiological mechanisms underlying the development and maintenance 
of difficult-to-treat disorders and symptoms, as well as provide insight into the link-
age between neurophysiological characteristics of neural networks and functional 
and behavioral outcomes. Further, aiming for enduring alterations of neuronal activ-
ity, tDCS bears enormous clinical potential in a broad range of medical disciplines, 
such as neurology, psychiatry, pain management, or neurorehabilitation, because 
pathological changes in neural activity are common in many diseases and neuro-
stimulation techniques can be employed to attempt functional normalization of the 
neural circuitry.

Hand in hand with growing interest in tDCS, new questions and challenges have 
emerged, and a need for tDCS professional education and training has tremendously 
expanded. This Practical Guide to Transcranial Direct Current Stimulation is the 
first comprehensive textbook for tDCS; it provides an overview and in-depth discus-
sion of principles, mechanisms, procedures, and applications of tDCS, as well as 
methodological considerations, ethics, and professional conduct pertaining to this 
technique. We hope that this book helps bridge the existing gap in tDCS instruc-
tional materials for those who engage in research or clinical applications of this 
promising technique.

New York, NY, USA Helena Knotkova
Dortmund, Germany Michael A. Nitsche
New York, NY, USA Marom Bikson 
Gainesville, FL, USA Adam J. Woods
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Chapter 1
Transcranial Direct Current Stimulation 
Among Technologies for Low-Intensity 
Transcranial Electrical Stimulation: 
Classification, History, and Terminology

Nigel Gebodh, Zeinab Esmaeilpour, Devin Adair, Pedro Schestattsky, 
Felipe Fregni, and Marom Bikson

 Classification of tDCS Among Other Brain Stimulation 
Techniques

 Classification of tDCS Among Techniques

The field of brain stimulation dates to the discovery of electrical phenomena, which is 
not surprising given that human and animal responses to electrical shock are among 
the earliest evidence for the existence of electricity (Bischoff 1801; Galvani and Aldini 
1792; Volta 1800). Research and human trials on electrical brain stimulation, and 
underling bioelectric phenomena, has been continuous. Modern brain stimulation as a 
field has branched and evolved into many different categories of devices and tech-
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niques, but whose commonality remains to alter brain or specific nervous system  
functions by introducing electrical currents through electricity or magnetism. The con-
temporary landscape of stimulation techniques covers a vast expanse of applications 
and nomenclatures, many with overlapping aspects. An introduction to tDCS should 
therefore place it among this landscape of brain stimulation techniques. This includes 
presenting a simplified mapping and categorization of selected historical and contem-
porary stimulation techniques and showing how they are categorically interrelated. 
This by no means should be taken as a complete assortment of stimulation techniques 
(Guleyupoglu et al. 2013), but rather to clarify the unique features and historical role 
of tDCS in modern neuromodulation.

When it comes to the categorizing methods of stimulation, several different 
approaches can be taken. A first simple arrangement is to group stimulation meth-
ods into invasive and non-invasive procedures (Fig. 1.1). At this level of division, 
the obvious distinction lies in the placement of stimulating electrodes. Invasive 
brain stimulation techniques involve patients undergoing anesthesia or receiving 
analgesics and having stimulating electrodes surgical implanted in specified regions 
of the brain, spinal cord, subcutaneously, or around nerves. These implanted elec-
trodes are then activated and used to deliver electrical stimulation to specific regions 
of the brain, the spinal cord, or specific nerves. Primary stimulation targets are con-
sidered local and adjacent to implanted electrodes (McIntyre et al. 2004). Non-
invasive techniques, on the other hand, involves the external placement of electrodes 
(or magnetic coils) without breaking the skin or entering the body cavity, and do not 
require surgical procedures for application. These noninvasive electrodes or stimu-
lation apparatuses are placed on areas like the scalp, forehead, or shoulders, though 
which electricity or magnetism is then delivered. Regions that are influenced by 
stimulation depend on both the electrode montage and individual anatomy 
(Dmochowski et al. 2011).

Both invasive and noninvasive categorizations can be further divided into tech-
niques intended to either stimulate the brain (transcranial or intracranial) and those 
techniques targeting extra-cranial structures (non-transcranial or non-intracranial). 
For non-invasive brain stimulation (NIBS), transcranial encompasses stimulation 
techniques that intend to pass electricity, magnetism, or sound through the skull and 
have specific sub-cranial brain (cortical) targets, whereas non-transcranial encom-
passes delivering current to extra-cranial targets and thus having non-cortical targets. 
For invasive brain stimulation (IBS), intracranial techniques include deep brain stim-
ulation (DBS), which targets but is not exclusive to specific limbic, basal ganglia, 
and thalamic brain areas. Non-intracranial IBS techniques include implants such 
spinal cord stimulation (SCS) – used to treat chronic pain – (Cameron 2004) and 
direct peripheral nerve stimulation (DPNS) that involves the implantation of an elec-
trode on a nerve (Oh et al. 2004). Other examples of non-intracranial IBS techniques 
include invasive cranial nerve electrical stimulation (iCNES) techniques. Some 
iCNES techniques include vestibular prostheses (VP; Golub et al. 2014); optic nerve 
stimulation (ONS), used for the restoration of vision (Brelen et al. 2010); vagus 
nerve stimulation (VNS), first approved by the FDA to treat epilepsy (Beekwilder 
and Beems 2010); and direct trigeminal nerve stimulation (DTNS), which involves 
implanting electrode cuffs or arrays directly on a nerve (Slavin et al. 2006). In terms 

N. Gebodh et al.
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of noninvasive brain stimulation (NIBS) that targets sub-cranial regions, techniques 
can involve the use of electrical stimulation through electrodes on the scalp, mag-
netic stimulation with a coil near the scalp, or stimulation with ultrasonic sound 
through an ultrasound transducer placed on the scalp. Thus, NIBS with transcranial 
targets is divided into the broad categories of transcranial magnetic stimulation 
(TMS), transcranial electrical stimulation (tES), and the emerging field of transcra-
nial ultrasound (TUS) modulation (Fig. 1.1; Legon et al. 2014).

Non-transcranial electrical stimulation techniques include transcutaneous electrical 
nerve stimulation (TENS; Robertson et al. 2006), and noninvasive cranial nerve elec-
trical stimulation (nCNES); both of which utilize electrical currents to stimulate 
nerves. TENS targets all peripheral nerves, whereas nCNES techniques specifically 
target cranial nerves. nCNES can be subdivided into repetitive transorbital alternative 

Fig. 1.1 Arrangement of stimulation techniques with common terminology (light blue), terms and 
methods that are rarely or no longer used (gray), and highlights of seizure-inducing techniques 
(red). tDCS is highlighted (dark blue) to show its place among the selected techniques

1 Transcranial Direct Current Stimulation Among Technologies for Low-Intensity
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current stimulation (rtACS; Gall et al. 2010; Bola et al. 2014), trigeminal nerve stimu-
lation (TNS; DeGiorgio et al. 2011; Schoenen et al. 2013), galvanic vestibular stimula-
tion (GVS; Fitzpatrick and Day 2004), transcutaneous vagus nerve stimulation (tVNS; 
Frangos et al. 2015; Hein et al. 2013; Kraus et al. 2013), and cranial nerve noninvasive 
neuromodulation (CN-NINM; Danilov et al. 2014). As the name implies, GVS is his-
torically applied using direct current, however with different vestibular targets emerg-
ing, the technique has expanded to include stochastic/noisy GVS (Samoudi et al. 2012; 
Yamamoto et al. 2005) and sinusoidal GVS (Coats 1972).

TMS techniques’ main distinction from tES is the use magnetic coils to induce elec-
trical current in the brain (George and Aston-Jones 2010). TMS can be sub-categorized 
to include repetitive TMS (rTMS; Lefaucheur et al. 2014), seizure-inducing magnetic 
seizure therapy (MST; Kayser et al. 2015; Lisanby et al. 2003), and the relatively new 
transcranial static magnetic stimulation (tSMS; Gonzalez-Rosa et al. 2015) and low-
field magnetic stimulation (LFMS; Rohan et al. 2004).

Transcranial electrical stimulation approaches pass electrical current directly to 
the brain via electrodes on the head (Paulus et al. 2013). These techniques include 
tDCS, transcranial alternating current stimulation (tACS; Antal and Paulus 2013), 
transcranial random noise stimulation (tRNS; Terney et al. 2008), transcranial 
pulsed current stimulation (tPCS; Morales-Quezada et al. 2015; Fitzgerald 2014), 
oscillating tDCS (o-tDCS D'Atri et al. 2015) or sinusoidal oscillating tDCS (so-
tDCS; Eggert et al. 2013), and seizure-inducing electroconvulsive therapy (ECT) 
with the subset, focal electrically administered seizure therapy (FEAST; Spellman 
et al. 2009). The o-tDCS /so-tdcs technique can further be broken down to include 
transcranial sinusoidal stimulation (tSDCS). On the other hand, tPCS can be further 
broken down into “TES”, a supra threshold form of tPCS (Kalkman et al. 1992; 
Zentner et al. 1989); transcutaneous cranial electrical stimulation (TCES; Limoge 
et al. 1999), a derivative of electroanesthesia (EA; Smith et al. 1967; Wilson et al. 
1968) which can include high frequency currents (Limoge et al. 1999); and cranial 
electrotherapy stimulation (CES; Schmitt et al. 1986), which was derived from 
electrosleep (ES; Dimitrov and Ralev 2015) and later called cranial electro-stimu-
lation therapy (CET; Knutson et al. 1956). Though ECT can also involve the use of 
pulsed waveforms, it involves unique stimulation schemes, and is not a tPCS sub-
category here.

tDCS, like other techniques, is associated with derivative nomenclature and vari-
ants. These variants are rooted in the same principles of tDCS (delivering direct 
current across the head); however, they both take different approaches to how direct 
current is delivered. For instance, High Definition-tDCS (HD-tDCS) aims to focal-
ize current distribution across the brain so that specific regions are better targeted. 
There are numerous montage variations of HD-tDCS (Borckardt et  al. 2012; 
Dmochowski et al. 2011; Kuo et al. 2013; Nikolin et al. 2015) including the most 
common 4 × 1 HD-tDCS montage (Alam et al. 2016; Datta et al. 2009; Hill et al. 
2017; Shekhawat et  al. 2015; Shen et  al. 2016). Another tDCS derivative is 
transcranial micropolarization (TCMP), which aims to deliver current intensities 
(700–1000 μA) on that are much less than conventional tDCS (Ilyukhina et al. 2005; 
Shelyakin et al. 1998). Other terminology associated with tDCS exists, such as 

N. Gebodh et al.
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“anodal/cathodal tDCS” or “lateralized” montages, however these are descriptive of 
the intended outcome of stimulation and not necessarily distinct technique catego-
ries (see below).

The fundamental distinction between tDCS and other categorizations of tES is the 
waveform delivered to the brain during stimulation (Fig. 1.2). tDCS is the only class 
of neuromodulation technique that delivers a sustained direct current (DC). Almost 
all other techniques (and essentially all invasive and magnetic techniques) use pulsed 
stimulation (such as tPCS) while other non-invasive variants include AC waveforms 
(such as tACS) or random noise (such as tRNS). Thus, the use of a sustained direct 
current is a characteristic feature of tDCS, and one that should be kept in mind when 
considering any unique neurophysiologic, cognitive, or behavioral outcomes.

tDCS waveform
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Fig. 1.2 Waveforms of different tES techniques. The tDCS waveform is shown for anodal (blue) 
and cathodal (light blue) electrodes, which must always be active concurrently. Typically, the cur-
rent is increased to or ramped up to the desired current intensity and when said intensity is reached 
the current intensity is held at that level for the duration of stimulation. The tACS waveform shows 
a typical oscillatory current delivery between electrodes. The tRNS waveform shows a generalized 
random noise current intensity being delivered during stimulation. The tPCS waveform shows a 
generalized pulse train of current. Here the duration of pulse on and pulse off time can vary 
depending on the type of tPCS being done
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 The Case for Simplicity of tDCS

Direct current represents the most simplistic waveform – though this does not pre-
clude tDCS from producing unique and profound neuromodulatory effects that arise 
from a sustained current. Nonetheless, regarding the development and adoption of 
tDCS, we propose that this simplicity underpins the unique role of tDCS in the 
emergence of modern non-invasive neuromodulation and its grounding in science. 
Decades of modern work have firmly established that direct current stimulation 
(DCS) changes neuronal excitability and plasticity. To explain the unique role of 
tDCS in modern neuromodulation, some historical context is necessary.

Direct current was the first form of brain stimulation generated using a device (as 
opposed to electric fish or static electricity) since it was the simplest to build – con-
necting a “voltaic pile” (early battery) to the body. Thus, this approach was the earli-
est example of electrical stimulation in humans and animals (leading to early 
theories of the role of electricity in physiology). Later, the first demonstration of 
long term potentiation was made using direct current (Bindman et al. 1964; Gartside 
1968; Gartside and Lippold 1967), preceding the well cited studies of Bliss and 
Lomo (1973). Monophasic pulse stimulation later integrated mechanical methods to 
rapidly connect and disconnect the DC battery.

The emergence of other stimulation waveforms (e.g. complex pulsed patterns) 
paralleled development in electronics (Guleyupoglu et al. 2013). For example, the 
emergence of the microcontroller allowed for the generation of any arbitrary wave-
form. Enabled by this flexibility, the twentieth century saw the emergence of numer-
ous variations in waveforms, most of which were claimed to be unique and 
proprietary. The purported uniqueness facilitated marketing of devices but also 
resulted in reduced transparency of performance. For example, at the end of the 
twentieth century, devices FDA-cleared for CES each promised a unique waveform 
(Fig. 1.3). In a sense this uniqueness (exclusivity) impeded clinical research which 
benefits from uniformity across labs (reproducibility) and transparency. At the turn 
of the century though, even career researchers in neuromodulation often could not 
explain the difference in nomenclature (e.g. does electro-sleep use direct current? is 
CES and CET the same? Guleyupoglu et al. 2013).

In this context, the early work on tDCS that emerged circa 2000 was character-
ized by (1) high transparency in a simple and reproducible waveform (e.g. 1 mA 
sustained for 10 min); and (2) a foundation based, not on clinical experience, but on 
neurophysiological data (e.g. modulation of TMS evoked responses; Fig.  1.4). 
These two fundamental characteristics, followed by dozens of rigorous human neu-
rophysiology trials (including multiple independent replications) and animal elec-
trophysiology (steming from our own group; Bikson et  al. 2004) established the 
scientific foundation of tDCS.  Work on tDCS, in turn, supported a new era in 
modern NIBS research. For example, modern tACS approaches mimicked tDCS 
 montages, similarly used a basic and well-defined waveform (single sinusoid), and 
identical neurophysiology markers of response prior to clinical trials. Clinical trials 
that used tDCS (starting from our group; Fregni 2005; Fregni et al. 2006b) were 
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