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Chapter 1
Overview

Visual saliency computation is about detecting and understanding pertinent regions
and elements in a visual scene. Given limited computational resources, the human
visual system relies on saliency computation to quickly grasp important information
from the excessive input from the visual world [189]. Modeling visual saliency
computation can help computer vision systems to filter out irrelevant information
and thus make them fast and smart. For example, saliency detection methods have
been proposed to predict where people look [87], delineate between foreground
regions and the background [1], and localize dominant objects in images [112].
These techniques have been used in many computer vision applications, e.g. image
segmentation [69], object recognition [150], visual tracking [118], gaze estimation
[169], action recognition [125], and so on.

In this book, we present methods for both traditional and emerging saliency
computation tasks, ranging from classical low-level tasks such as pixel-level
saliency detection to emerging object-level tasks such as subitizing and salient
object detection. For low-level tasks, we focus on pixel-level image processing
approaches based on efficient distance transform. For object-level tasks, we propose
data-driven methods using deep convolutional neural networks. The book includes
both empirical and theoretic studies, together with implementation details of the
proposed methods. The rest of this chapter will introduce the background of those
saliency computation tasks and the outline of this book.

1.1 Pixel-Level Saliency Detection

Early works in visual saliency computational modelling [79, 95] aim at computing a
saliency/attention map that topographically represents humans’ attentional priority
when they view a scene. Computing such saliency maps is formulated as assigning
importance levels to each pixel of a digital image. At the beginning of this line

© Springer Nature Switzerland AG 2019
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2 1 Overview

Fig. 1.1 (a) A sample image from the DUT-Omron dataset [194]. (b) The ground truth for eye
fixation prediction. Each white spot on the map is an eye fixation position of some participant in
the free-viewing experiment. (c) The saliency map by a state-of-the-art method for eye fixation
prediction [61]. (d) The ground truth for salient region detection. (e) The saliency map by a state-
of-the-art method for salient object detection [84]

of research, the saliency values are represented based on the likelihood of human
eye gaze. Therefore, this type of saliency models are often named as eye fixation
prediction models. Later, motivated by image segmentation, people started to
compute saliency maps that delineate dominant objects from the background. This
type of saliency detection task is named interchangeably as salient object detection,
salient object segmentation, or salient region detection. In this book, we will refer to
it as salient region detection, since most of the existing works of this topic are still
based on very low-level image processing algorithms without semantic object-level
understanding.

Figure 1.1 shows the difference between the two pixel-level saliency tasks
mentioned above. Figure 1.1b, c is the ground truth eye fixation map and the
predicted saliency map, respectively. The eye fixation data is collected by eye
tracking devices from multiple subjects when they free-view the image, and the data
is expected to have a significant amount of inter-subject variance. By aggregating
the eye fixations of different subjects, the ground truth map shows that the human
eye gaze is often focused on salient regions or objects, but there is still a lot
of uncertainty about the exact positions of those eye fixations. As a result, the
predicted saliency map tends to be very blurry. In contrast, the ground truth map
for salient region detection is simply a binary foreground mask for the dominant
object in the image, and thus has much less uncertainty (see Fig. 1.1c) when there
is a well-defined dominant object. The predicted map needs to uniformly highlight
the regions of dominant objects with precise object boundary details, as shown in
Fig. 1.1d.

These two pixel-level saliency tasks are useful in many applications. Predicting
human eye fixation is useful in applications related to human–computer interaction
and graphics, e.g. gaze estimation [169], eye tracker calibration [168], non-
photorealistic rendering [47], stereoscopic disparity manipulations [92], image
retargeting [146], photo quality assessment [131], etc. Other computer vision tasks
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such as action recognition, tracking, and object detection can also benefit from this
task by analyzing relevant regions indicated by human eye fixation [118, 125, 150].
Salient region detection methods can automatically generate saliency maps to
extract dominant objects, and thus this task is useful for automatic image seg-
mentation [32] and a lot of photo editing applications that need such segmentation
[30, 37, 76].

1.2 Object-Level Saliency Computation

Object-level saliency computation is a relatively new topic. By object level, we
mean that the analysis should be performed based on the understanding of object
instances. One of the basic problems, for example, is to predict the existence
of salient object(s) in an image. Existence prediction leads to the differentiation
between object-centric images and scene-centric images, which is a very general
and fundamental attribute for image understanding.

In this book, we propose a new problem of visual saliency computation, called
salient object subitizing (SOS), which is to predict not only the existence but also
the number of salient objects in an image using holistic cues, without the need to
localize them. This task is inspired by humans’ subitizing ability to quickly and
accurately tell the number of items within the subitizing range (1–4) [90]. Because
the appearance and size of salient objects can vary dramatically from category to
category, and from image to image, the SOS problem poses very different challenges
than traditional object counting problems [3, 129].

Knowing the existence and the number of salient objects without the expensive
detection process can enable a machine vision system to select different processing
pipelines at an early stage, making the vision system more intelligent and reducing
computational cost. Furthermore, differentiating between scenes with zero, a single
and multiple salient objects can also facilitate applications such as image retrieval,
iconic image detection [11], image thumbnailing [38], robot vision [152], egocentric
video summarization [104], snap point prediction [191], etc.

Besides the subitizing task, detecting generic salient object instances in uncon-
strained images, which may contain multiple salient objects or no salient object,
is also a fundamental problem (see examples in Fig. 1.2). We refer to this task as
unconstrained salient object detection. Solving this problem entails generating a
compact set of detection windows that matches the number and the locations of
salient objects. Detecting each salient object (or reporting that no salient object
is present) can be very helpful in the weakly supervised or unsupervised learning
scenario [31, 89, 207], where object appearance models are to be learned with no
instance level annotation.

The unconstrained salient object detection task arguably solves the problem of
salient object subitizing, as the existence and the number of salient objects can
be derived from the detection result. However, salient object subitizing can be
solved by much faster and lighter-weight models, since it does not require accurate
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Fig. 1.2 Examples of unconstrained salient object detection. Note that for the input image in the
right column, there is no dominant object

localization of salient objects. Moreover, for training a subtizing model, the labor
cost for annotation is also much less than the detection model. Therefore, one can
expect that the subitizing model can do a better job in detecting the existence
and counting the number for salient objects given the same amount of labor and
computation resources. This will also be empirically verified in this book.

1.3 Book Outline

The book will cover each of the saliency computation tasks mentioned above and
present computational approaches as well as empirical and theoretic studies. Here
we provide a summary of the main content.

1.3.1 Boolean Map Saliency for Eye Fixation Prediction

A majority of existing eye fixation prediction models are based on the contrast
and the rarity properties of local image patches, e.g. [13, 19, 79]. However,
these local image properties have limited ability to model some global perceptual
phenomena [96] known to be relevant to the deployment of visual attention. One
such global perception mechanism is figure-ground segregation. Several factors are
likely to influence figure-ground segregation, e.g. size, surroundedness, convexity,
and symmetry [133]. As Gestalt psychological studies suggest, figures are more
likely to be attended to than background elements [126, 145] and the figure-ground
assignment can occur without focal attention [94]. Neuroscience findings also show
that certain responses in monkey and human brains involved in shape perception
are critically dependent on figure-ground assignment [10, 98], indicating that this
process may start early in the visual system.
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In the first part of this book, we explore the usefulness of the surroundedness
cue for eye fixation detection [201, 202]. We propose a simple, training-free, and
computationally efficient Boolean map saliency model (BMS). Our model uses
basic image processing operations to find surrounded regions in binary maps which
are generated by randomly thresholding the color channels of an image. The saliency
map is computed based on the probability that a pixel belongs to a surrounded region
in a sampled binary map. Despite its simplicity, BMS consistently achieves state-
of-the-art performance across all the testing datasets. Regarding the efficiency, BMS
can be configured to run at about 100 FPS with only a little drop in performance,
which makes it quite suitable for many time-critical applications.

1.3.2 A Distance Transform Perspective

We provide an explanation of the BMS algorithm in a perspective of image distance
transform [120, 202]. First, we propose a novel distance function, the Boolean map
distance (BMD), that defines the distance between two elements in an image based
on the probability that they belong to different components after thresholding the
image by a randomly selected threshold value. We show that the BMS algorithm
is a straightforward implementation to compute the Boolean map distance of each
pixel to the image border.

Then we draw a connection between the Boolean map distance and the minimum
barrier distance (MBD) [166]. We prove that the Boolean map distance gives a lower
bound approximation of the minimum barrier distance. As such it shares many of
the favorable properties of the MBD discovered in [40, 166], while offering some
additional advantages such as more efficient distance transform computation and
straightforward extension to multi-channel images. These analyses provide insight
into why and how BMS can capture the surroundedness cue via Boolean maps.

Finally, we discuss efficient algorithms for computing the Boolean map distance
and the minimum barrier distance. In the next chapter, we propose a fast raster-
scanning algorithm to approximate BMD and MBD, and show how to use that for
real-time salient region detection.

1.3.3 Efficient Distance Transform for Salient Region
Detection

Due to the emerging applications on mobile devices and large-scale datasets, a
desirable salient region detection method should not only output high quality
saliency maps, but should also be highly computationally efficient. In this chapter,
we address both the quality and speed challenges for salient region detection using
an efficient distance transform algorithm.
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The surroundedness prior, also known as the image boundary connectivity prior,
assumes that background regions are usually connected to the image borders. This
prior is shown to be effective for salient region detection [187, 194, 201, 208].
To leverage this prior, previous methods, geodesic-distance-based [187, 208] or
diffusion-based [84, 194], rely on a region abstraction step to extract superpixels.
The superpixel representation helps remove irrelevant images details, and/or makes
these models computationally feasible. However, this region abstraction step also
becomes a speed bottleneck for this type of methods.

To boost the speed, we propose a method to exploit the image boundary
connectivity prior without region abstraction [203]. Inspired by the connection
between our BMS eye fixation prediction method and the minimum barrier distance
(MBD) [40, 166], we use the MBD [40, 166] to measure a pixel’s connectivity to
the image boundary. Compared with the widely used geodesic distance, the MBD
is much more robust to pixel value fluctuation. Since the exact algorithm for the
MBD transform is not very efficient, we present FastMBD, a fast raster-scanning
algorithm for the MBD transform, which provides a good approximation of the
MBD transform in milliseconds, being two orders of magnitude faster than the
exact algorithm [40]. The proposed salient region detection method runs at about 80
FPS using a single thread, and achieves comparable or better performance than the
leading methods on four benchmark datasets. Compared with methods with similar
speed, our method gives significantly better performance.

1.3.4 Salient Object Subitizing

We introduce a new computer vision task, salient object subitizing (SOS), to
estimate the existence and the number of salient objects in a scene [199, 200]. To
study this problem, we present a salient object subitizing image dataset of about
14K everyday images. The number of salient objects in each image was annotated by
Amazon Mechanical Turk (AMT) workers. The resulting annotations from the AMT
workers were analyzed in a more controlled offline setting; this analysis showed a
high inter-subject consistency in subitizing salient objects in the collected images.

We formulate the SOS problem as an image classification task, and aim to
develop a method to quickly and accurately predict the existence and the number of
generic salient objects in everyday images. We propose to use an end-to-end trained
deep convolutional neural network (CNN) model for our task, and show that an
implementation of our method achieves very promising performance. In particular,
the CNN-based subitizing model can approach human performance in identifying
images with no salient object and with a single salient object. To further improve the
training of the CNN SOS model, we propose a method to leverage synthetic images.
Moreover, we demonstrate the application of our CNN-based SOS method in salient
object detection and image retrieval.
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1.3.5 Unconstrained Salient Object Detection

We introduce another new task, called unconstrained salient object detection. Many
previous so-called “salient object detection” methods [1, 12, 34, 85, 113, 158]
only solve the task of salient region detection, i.e. generating a dense foreground
mask (saliency map). These methods do not individuate each object and assume
the existence of salient objects. In contrast, we present a salient object detection
system that directly outputs a compact set of instance detection windows for an
unconstrained image, which may or may not contain salient objects. Our system
leverages the high expressiveness of a convolutional neural network (CNN) model
to generate a set of scored salient object proposals for an image. Inspired by
the attention-based mechanisms of [8, 102, 127], we propose an adaptive region
sampling method to make our CNN model “look closer” at promising images
regions, which substantially increases the detection rate. The obtained proposals
are then filtered to produce a compact detection set.

A key difference between salient object detection and object class detection is
that saliency greatly depends on the surrounding context. Therefore, the salient
object proposal scores estimated on local image regions can be inconsistent with
the ones estimated on the global scale. This intrinsic property of saliency detection
makes our proposal filtering process very challenging. Using the common greedy
non-maximum suppression (NMS) method often leads to suboptimal results for our
proposals. To attack this problem, we propose a subset optimization formulation
based on the maximum a posteriori (MAP) principle, which jointly optimizes
the number and the locations of detection windows. The effectiveness of our
optimization formulation is validated on three benchmark datasets, where our
formulation attains about 15% relative improvement in average precision (AP)
over the NMS approach. Moreover, our method also attains about 15–35% relative
improvement in AP over previous methods on these datasets.


