Java XNIL
and JSON

Document Processing for Java SE

Second Edition

Jeff Friesen

Apress’

Java XML and JSON

Document Processing for Java SE

Second Edition

Jeff Friesen

Apress’

Java XML and JSON: Document Processing for Java SE

Jeff Friesen
Dauphin, MB, Canada

ISBN-13 (pbk): 978-1-4842-4329-9 ISBN-13 (electronic): 978-1-4842-4330-5
https://doi.org/10.1007/978-1-4842-4330-5

Library of Congress Control Number: 2018968598

Copyright © 2019 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4329-9. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4330-5

To my parents.

Table of Contents

About the AUtROFccciiemmissnmmmssnnmmsssmsssssnssssnsssssnsesssnsessansessannesssnnesssnnesssnnssssnnsssnns Xi
About the Technical REVIEWETcccussesrsssssssssanssssansssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss xiii
Acknowledgments.......ccccuuuisssnmmmnmmmmmmssssssssssnnnmmmssssssssssnnnnneesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
INtroduCtionccuiisemmmissnnmsssnnmsssnnmsssnnssssnnssssnnnsssannessannessannessannessannesssnnesssnnnsssnnssssnns xvii
Part I: Exploring XML........ccoucemmmmmmnnnnanmmmmsssssnnmmssssssssnnnssssssnsnnnsssssssnsnnsssssnnnns 1
Chapter 1: Introducing XML.........ccoirmmmmmmmmmmmmmmsssssssnmmmmmmssssssssssssseessssssssssssssssessssnns 3
WRAL IS XIIL? ...ttt se e se s e e sa s se s sr e ns e enesansnssnnnsnens 3
Language FRALUIES TOUF.......ccocoveeereererresere s s s s se s s se e s s 5

D LI T=T o = (3 OSSO 5
Elements and ALIHDULEScccvrinnirin e e 7
Character References and CDATA SECHIONS........coueerrrererenerssesssesesesess s ses e 10
NAMESPACES ... ceuerreieiiriere st e e b e e e Re b e e e R b e e e e R b e e e R s 12
Comments and Processing INStrUCHIONSccccoveeernresnesers e 17
Well-Formed DOCUMENTScccvieriiiiiiisresersis e s s ss e sn e s s s n e s s sesnesnennnns 17
Valid DOCUMENTS ... 18
Document Type DefiNition........cccvvvrrrininnrrsre e e 19

1T 1T 3 TS 26

E 111 4= 7R 34
Chapter 2: Parsing XML Documents with SAX.......c.cocemmmmmssmmnmmssssnnnnnssssnssssssssssnsenss 35
WRAL IS SAX?....eeeeeeresie e se s e p s e p e ne e ne e 35
EXPIOFNgG the SAX APLL.....c.ooeeeceeecr s 36
0DbtaiNINg @ SAX 2 PAISEcovveeereeresesesese s e sss e ses s 36
Touring XMLReader MEthods..........couorerrerersenerenereeseresesessese s sesessssessssesessesesssssssssssssssessenens 37
Touring the Handler and ReSOIVEr INTEIfACESccoveererererensmresesesese e sennenens 42

TABLE OF CONTENTS

Demonstrating the SAX APL.......ccvvvrirere s se s sss s e ssssessessessesssssssessesaessssessesaes 47
Creating a Custom Entity RESOIVET ... 59
1] 4= OSSPSR 65
Chapter 3: Parsing and Creating XML Documents with DOMccocmmmmmnnecnsssnns 67
WRHAL IS DOM? ...ttt s bbb 67
ATrEE OF NOUEScciriecirree e r e e e e nn s 68
EXPIOring the DOM APccoieirierene st sere s se s s s e s s ss s saesa e e s saesa e e s naenaes 71
Obtaining a DOM Parser/Document BUIlAEc.covvevverevenensenene s sessesessesessessessesessessessens 71
Parsing and Creating XML DOCUMENTScccovvererererrerienesessense e ssssessessessessssessessessssessessenes 73
Demonstrating the DOM APLL........ccoceerrrrierere s ses s se s saessssessessessssessessesaessssessesaes 77
Parsing an XML DOCUMENTccccveverrerieresensensesessesessessessesssssssessesssssssessessessssessessesssssssessees 77
Creating an XML DOCUMENL..........cccvoveerierrnserseressesesseressessesesessessessssessessesssssssessessessssensessens 82
Working With Load @and SAVEcccceververierererrerierensssessesesessssessessesssssssessessesssssssessesssssssessessens 85
Loading an XML Document into @ DOM TFEEcevvvererrereereerenserersesessessessessssessessessessssensessens 86
CONFIGUIING @ PAISEE ...ucivevveiererersesesserersessssesessessessssessessessessssessessesssssssesssssessssessessesssssnsessens 90
Filtering an XML Document While Parsingccccverrrvnnnnieninsinsn s s sessesssessessessens 96
Saving a DOM Tree to an XML DOCUMENLcccovvrierierernseniereresessessessessssessessessessssessessens 100
Working with Traversal and RaNge..........ccvvirvrierinnsnsne s s ssssessesne s 102
Performing TraverSals..........ccucverieninsnienie s s s s s 102
Performing Range Operationsccccvinennnneninsc s sssseses e s sesaes 107
SUMIMANY ..ttt R e e e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renns 111
Chapter 4: Parsing and Creating XML Documents with StAX.........ccccmnsnmmnnnnnnnnas 113
WRAL IS STAX?Z.....eectectrtre ettt s e e e e ae bt e R R e e ae s 113
EXPIOFING STAX ...t sa e s s s b ne e s e a e e s ae e ne e e e e e nne e 114
Parsing XML DOCUMENTScccceverererierieresensessessessssessessessesessessessessssessessesssssssessesasssssessesses 115
Creating XIML DOCUMENTScccevererrereriesssseresseseesessessessessssessessesassessessesassessessessesssnsssesneses 125

£ 1134 7R 138

TABLE OF CONTENTS

Chapter 5: Selecting Nodes with XPath...........cccceinnnnnmmnmnnnssnnmnnssssnmmsssssenssssnn 139
WRAL IS XPAEN?.......ccccecrcess s bbb 139
XPath Language PIIMET ... st st ss s s 139

Location Path EXPreSSIONS.........ccivvririeresnsinsesess s e s s ssssss e s sasssssessessesssssssesnens 140
GENEral EXPrESSIONSccueiriirireriisis e s s s se s s s bbb e s 143
XPath @nd DOM ..o s re e ne e nne e 145
AdVANCEU XPALN ... 154
NamMESPACE CONTEXLS.....ciiiriiriire it e s s e s 154
Extension Functions and Function RESOIVErS...........ccovevrenmrenennnesesesese s 156
Variables and Variable RESOIVELS..........cccvveernnennesenese s s sessessssenens 161
10T 111 1T o SRS 164

Chapter 6: Transforming XML Documents with XSLTcccoimnsemmnmmssssnnsssssssnnns 165
WRAL IS XSLT? ... ss et 165
EXPIOFNgG the XSLT APl ...t st s st e st e 166
Demonstrating the XSLT APLL........crrnnr s s sse s st sessesnens 170
Going Beyond XSLT 1.0 @and XPath 1.0cccccrrerrinereserrsesere s sesse s sessenenns 179

Downloading and Testing SAXON-HE 9.9.........cccccrinnmnnnenerese s 179
Playing With SAXON-HE 9.9..........oorrcrreree s 180
B30T 111 T o OSSR 183

Part II: Exploring JSONcccuscmmmmmssmnmmssssnnmssssnsmssssnssessssnsssssnnnesssnnnsessnnnnss 185

Chapter 7: Introducing JSONcccuscmmmsmmmsnmmsanmssssmsssmsssnsssssssssssssnsssassssnsssansssans 187
WRAL IS JSONT? ... bbb e e e 187
JSON SYNTAX TOUceeeeeeeeceeeere e e s e e e sre e r e e s e e nnnnens 188
Demonstrating JSON With JaVaSCriPL.......ccovoeirerrnsrnerere e 190
Validating JSON ODJECES.......cccerirerrnisineere e s s 195
£ 11134 RS 202

vii

TABLE OF CONTENTS

Chapter 8: Parsing and Creating JSON Objects with mJson...........cccuseennrnsssnnnnns 205
WhEL IS MUSON? ... e e e e e nnn e 205
Obtaining and USING MUJSON........cccoiniriinnrne s s ses e ssa s 206
EXploring the JSON Class.........cucirinininnesssinsese s st sss s s ssssessessessssessesnens 206
Creating JSon ODJECTS........ccccinncn s 207
Learning About JSON ODJECTS.......ccvcreienc s 213
Navigating Json Object HierarChies..........ccocucvvrinnnninininnnsn s 223
Modifying JSON ODJECESccvceiercrr s 225

L1220 Lo TSR 232
Customization Via FACIOMIEScccccerrerereesmsererises s sssnnes 235
£ T TS 242
Chapter 9: Parsing and Creating JSON Objects with GSONcccceeevsssssssssnnnnnnnns 243
WREL IS GSON?evieiriceriee st nr e r g e ne e b e e e nenrnne e 243
Obtaining and USING GSONccccevirernennnese s s ss e sessesesssssssssesessssssssssssans 244
EXPIOFING GSOMNeevuerieteiererestsserse s ssesessesse e s s e s e saesae e s e ssesaese s e ssesaess e e ssesaesaesennesaessessnnsnsesnens 244
Introducing the GSON ClASS........ccivvrreriereninsirsere s s s sa e sae s 245
Parsing JSON Objects Through Deserialization............cccvvvnrnieniennsniene e sessenns 248
Creating JSON Objects Through Serialization.............ccevivvnvnininnnnsni e 258
Learning More ADOUL GSONcccvverrneseriserrnsese s e ss s e s s e ses s ssssessans 267

£ 1§14 R 298
Chapter 10: Extracting JSON Values with JsonPath............cccinssemmnrnssnnnnnnsssnnnns 299
WhaL IS JSONPALNT ...t 299
Learning the JSOnNPath LANQUAQEccccvvereriiinrninn s sse s ss s sss e s ssessssessesnens 300
Obtaining and Using the JsonPath LiDrary...........coooeernnnnesnescsnseseseses s 304
Exploring the JSONPath LiDrary ... ssssesenns 306
Extracting Values from JSON ODJECLS.......cccueerererernserrneseseness s e ssesesennes 306
Using Predicates t0 Filter HemScoocoivirnsnncse s 309
L1134 RS 321

viil

TABLE OF CONTENTS

Chapter 11: Processing JSON with JACKSONcccccssseensrsssssnnsssssssnnssssssssssssssssnnnss 323
WRAL IS JACKSONTcveceecereres e nensans 323
Obtaining and USING JACKSONc.cccevieriiinernesise s sesss s ses e sesss e sesessessssssesssnes 324
Working with Jackson’s BasiC FEAtUIEScccvivrcninnnsnnne s 325
SErBAMINGeiveeir i e E e e s b e e e Re e e e nne s 325
TrEE IMOEL ... e s ae e e e e nne s 334
Data BiNGiNgccoeiiirrenesirere s e e e e e 340
Working with Jackson’s Advanced FEAtUrES...........covvrrererencrnseseseness s e sessenens 350
ANNOTALION TYPES ... s e e s e nne e 350
CuStOm Pretly PriNtErS ..o s 390
Factory, Parser, and Generator FEatUres...........ccovvinvninnnnnnn s sessesnes 398

£ 11T 7 S 402
Chapter 12: Processing JSON with JSON-P........cccsccrmssannmsssnsssssnsssssnsssssanssssnnssssns 405
WRAL IS JSON-PY ... 405
JSON-P 1.0 et 405
JSON-P 1.1 e bbb 408
Obtaining and USING JSON-Pcovririnirrine s saessssessessessssessesaeees 410
Working With JSON=P 1.0.......ccoiiirnniininine e sssss s 411
Working with the Object MOEl APcccccvererrirrerere s ssssessessesnes 411
Working with the Streaming Model APlcoovvrvrinrnniniene e ssssessessesnes 418
Working with JSON-P 1.1°’s Advanced FEAtUIES.........c.ccvvrrerrrerrerseressssensesessessssesessessssessessees 423
JSON POINTET ...ttt 424
JSON PAICH.....cviceiicice e 431
B0 T 0T (v O 440
Editing/Transformation OpPerationsS.........cccvvvrrerievnsensensesesessese s sese s sessessesaessssessesaes 447
JAVA SE 8 SUPPOIvevetecerere e sirere s e sss e se s sae e s e ssessessesessesaesaesas e ssesaesassessesaesasssnsensessens 449
31111117 OO RS 456

ix

TABLE OF CONTENTS

Part lll: APPENAIXES ..eeeeeeeeemnnnnnnnnsssssssssssssssssssssssssssssssssnsssnnnnnnnnnnnnnsnsnsnsnsnnnns 459
Appendix A: ANSWers t0 EXEICISeS .uuuuuuumssssmmmsmmmmssssssssssnnnnnsssssssssssssnnnnnnsssssssssnsnnnns 461
Chapter 1: Introducing XML..........cccoinennrnenine s se s se s ses e sens 461
Chapter 2: Parsing XML Documents With SAX ... 466
Chapter 3: Parsing and Creating XML Documents with DOM............ccoovevrenrsnnnsenessesesensenenns 474
Chapter 4: Parsing and Creating XML Documents with StAX.........cccovvvnrenninsnnsesennesenensesens 486
Chapter 5: Selecting Nodes With XPathcccviriinininnnsniene e sessesses 493
Chapter 6: Transforming XML Documents With XSLTc.ccocevvrminienenensensesiessssessessessesessessenses 497
Chapter 7: Introducing JSON.......ccccvererrrererr s se s s ses e s sse e sessesaessssessesaesassessesaesaes 501
Chapter 8: Parsing and Creating JSON Objects with mJson.........ccccocevnvnininnsnsnsnesnsenennn, 503
Chapter 9: Parsing and Creating JSON Objects With GSON..........ccoceerniererenersnerensesesee e 506
Chapter 10: Extracting JSON Values with JsonPath.............ccocvveerennnnnnnesensscsssesesesesesenens 510
Chapter 11: Processing JSON With JACKSONcccucerererernsennnesesese s ssse e 511
Chapter 12: Processing JSON With JSON-P ... s saeenes 515
1T - . 519

About the Author

Jeff Friesen is a freelance teacher and software developer
with an emphasis on Java. In addition to authoring Java 1/0,
NIO and NIO.2 (Apress), Java Threads and the Concurrency
Utilities (Apress), and the first edition of this book, Jeff has
written numerous articles on Java and other technologies
(such as Android) for JavaWorld (JavalWorld.com), informIT
(InformIT.com), Java.net, SitePoint (SitePoint.com),

and other web sites. Jeff can be contacted via his web site

at JavaJeff.ca or via his LinkedIn (LinkedIn.com) profile
(www.linkedin.com/in/javajeff).

xi

http://www.linkedin.com/in/javajeff

About the Technical Reviewer

Massimo Nardone has more than 24 years of experiences
in Security, web/mobile development, Cloud, and IT
architecture. His true IT passions are Security and Android.
He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and
MySQL for more than 20 years.
He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer,
Research Engineer, Chief Security Architect, Information
Security Manager, PCI/SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA
Architect for many years.

His technical skills include Security, Android, Cloud, Java, MySQL, Drupal, Cobol,
Perl, web and mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj,
and he is member of ISACA Finland Chapter Board.

Massimo has been reviewing more than 45 IT books for different publishing
companies, and he is the coauthor of Pro Android Games (Apress, 2015), Pro JPA 2 in
Java EE 8 (APress 2018), and Beginning EJB in Java EE 8 (Apress, 2018).

xiii

Acknowledgments

I thank Apress Acquisition Editor Jonathan Gennick and the Apress Editorial Board for
giving me the opportunity to create this second edition. I also thank Editor Jill Balzano
for guiding me through the book development process. Finally, I thank my technical
reviewer and copy editor for catching mistakes and making the book look great.

Introduction

XML and (the more popular) JSON let you organize data in textual formats. This book
introduces you to these technologies along with Java APIs for integrating them into your
Java code. This book introduces you to XML and JSON as of Java 11.

Chapter 1 introduces XML, where you learn about basic language features (such
as the XML declaration, elements and attributes, and namespaces). You also learn
about well-formed XML documents and how to validate them via the Document Type
Definition and XML Schema grammar languages.

Chapter 2 focuses on Java's SAX API for parsing XML documents. You learn how to
obtain a SAX 2 parser; you then tour XMLReader methods along with handler and entity
resolver interfaces. Finally, you explore a demonstration of this API and learn how to
create a custom entity resolver.

Chapter 3 addresses Java’s DOM API for parsing and creating XML documents. After
discovering the various nodes that form a DOM document tree, you explore the DOM
API, where you learn how to obtain a DOM parser/document builder and how to parse
and create XML documents. You then explore the Java DOM APIs related to the Load
and Save, and Traversal and Range specifications.

Chapter 4 places the spotlight on Java’s StAX API for parsing and creating XML
documents. You learn how to use StAX to parse XML documents with stream-based and
event-based readers and to create XML documents with stream-based and event-based
writers.

Moving on, Chapter 5 presents Java’s XPath API for simplifying access to a DOM
tree’s nodes. You receive a primer on the XPath language, learning about location path
expressions and general expressions. You also explore advanced features starting with
namespace contexts.

Chapter 6 completes my coverage of XML by targetting Java’'s XSLT API. You learn
about transformer factories and transformers, and much more. You also go beyond the
XSLT 1.0 and XPath 1.0 APIs supported by Java.

xvii

INTRODUCTION

Chapter 7 switches gears to JSON. You receive an introduction to JSON, take a tour of
its syntax, explore a demonstration of JSON in a JavaScript context (because Java doesn’t
yet officially support JSON), and learn how to validate JSON objects in the context of
JSON Schema.

You'll need to work with third-party libraries to parse and create JSON
documents. Chapter 8 introduces you to the mJson library. After learning how
to obtain and use mJson, you explore the Json class, which is the entry point for
working with mJSon.

Google has released an even more powerful library for parsing and creating JSON
documents. The Gson library is the focus of Chapter 9. In this chapter, you learn how
to parse JSON objects through deserialization, how to create JSON objects through
serialization, and much more.

Chapter 10 focuses on the JsonPath API for performing XPath-like operations on
JSON documents.

Chapter 11 introduces you to Jackson, a popular suite of APIs for parsing and
creating JSON documents.

Chapter 12 introduces you to JSON-P, an Oracle API that was planned for inclusion in
Java SE, but was made available to Java EE instead.

Each chapter ends with assorted exercises that are designed to help you master the
content. Along with long answers and true/false questions, you are often confronted
with programming exercises. Appendix A provides the answers and solutions.

Thanks for purchasing this book. I hope you find it helpful in understanding XML
and JSON in a Java context.

Jeff Friesen (October 2018)

Note You can download this book’s source code by pointing your web browser to
www.apress.com/9781484243299 and clicking the Source Code tab followed
by the Download Now link.

xviii

http://www.apress.com/9781484243299

PART |

Exploring XML

CHAPTER 1

Introducing XML

Applications commonly use XML documents to store and exchange data. XML defines
rules for encoding documents in a format that is both human-readable and machine-
readable. Chapter 1 introduces XML, tours the XML language features, and discusses
well-formed and valid documents.

What Is XML?

XML (eXtensible Markup Language) is a meta-language (a language used to describe
other languages) for defining vocabularies (custom markup languages), which is the key
to XML's importance and popularity. XML-based vocabularies (such as XHTML) let you
describe documents in a meaningful way.

XML vocabulary documents are like HTML (see http://en.wikipedia.org/
wiki/HTML) documents in that they are text-based and consist of markup (encoded
descriptions of a document’s logical structure) and content (document text not
interpreted as markup). Markup is evidenced via tags (angle bracket-delimited syntactic
constructs), and each tag has a name. Furthermore, some tags have attributes (name/

value pairs).

Note XML and HTML are descendants of Standard Generalized Markup Language
(SGML), which is the original meta-language for creating vocabularies—XML is
essentially a restricted form of SGML, while HTML is an application of SGML. The
key difference between XML and HTML is that XML invites you to create your own
vocabularies with their own tags and rules, whereas HTML gives you a single
pre-created vocabulary with its own fixed set of tags and rules. XHTML and other
XML-based vocabularies are XML applications. XHTML was created to be a cleaner
implementation of HTML.

© Jeff Friesen 2019
J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_1

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/HTML

CHAPTER 1 INTRODUCING XML

If you haven'’t previously encountered XML, you might be surprised by its simplicity
and how closely its vocabularies resemble HTML. You don’t need to be a rocket scientist
to learn how to create an XML document. To prove this to yourself, check out Listing 1-1.

Listing 1-1. XML-Based Recipe for a Grilled Cheese Sandwich

<recipe>
<title>
Grilled Cheese Sandwich
</title>
<ingredients>
<ingredient qty="2">
bread slice
</ingredient>
<ingredient>
cheese slice
</ingredient>
<ingredient qty="2">
margarine pat
</ingredient>
</ingredients>
<instructions>
Place frying pan on element and select medium heat.
For each bread slice, smear one pat of margarine on
one side of bread slice. Place cheese slice between
bread slices with margarine-smeared sides away from
the cheese. Place sandwich in frying pan with one
margarine-smeared side in contact with pan. Fry for
a couple of minutes and flip. Fry other side for a
minute and serve.
</instructions>
</recipe>

CHAPTER 1 INTRODUCING XML

Listing 1-1 presents an XML document that describes a recipe for making a grilled
cheese sandwich. This document is reminiscent of an HTML document in that it consists
of tags, attributes, and content. However, that’s where the similarity ends. Instead of
presenting HTML tags such as <html>, <head>, , and <p>, this informal recipe
language presents its own <recipe>, <ingredients>, and other tags.

Note Although Listing 1-1’s <title> and </title> tags are also found in
HTML, they differ from their HTML counterparts. Web browsers typically display

the content between these tags in their title bars or tab headers. In contrast, the
content between Listing 1-1’s <title> and </title> tags might be displayed as
a recipe header, spoken aloud, or presented in some other way, depending on the
application that parses this document.

Language Features Tour

XML provides several language features for use in defining custom markup languages:
XML declaration, elements and attributes, character references and CDATA sections,
namespaces, and comments and processing instructions. You will learn about these
language features in this section.

XML Declaration

An XML document usually begins with the XML declaration, special markup telling an
XML parser that the document is XML. The absence of the XML declaration in Listing 1-1
reveals that this special markup isn’t mandatory. When the XML declaration is present,
nothing can appear before it.

The XML declaration minimally looks like <?xml version="1.0"?> in which the
nonoptional version attribute identifies the version of the XML specification to which
the document conforms. The initial version of this specification (1.0) was introduced in
1998 and is widely implemented.

CHAPTER 1 INTRODUCING XML

Note The World Wide Web Consortium (W3C), which maintains XML, released
version 1.1 in 2004. This version mainly supports the use of line-ending characters
used on EBCDIC platforms (see http://en.wikipedia.org/wiki/EBCDIC)
and the use of scripts and characters that are absent from Unicode (see http://
en.wikipedia.org/wiki/Unicode) 3.2. Unlike XML 1.0, XML 1.1 isn’t widely
implemented and should be used only when its unique features are needed.

XML supports Unicode, which means that XML documents consist entirely of
characters taken from the Unicode character set. The document’s characters are
encoded into bytes for storage or transmission, and the encoding is specified via the
XML declaration’s optional encoding attribute. One common encoding is UTF-8 (see
http://en.wikipedia.org/wiki/UTF-8), which is a variable-length encoding of the
Unicode character set. UTF-8 is a strict superset of ASCII (see http://en.wikipedia.
org/wiki/ASCII), which means that pure ASCII text files are also UTF-8 documents.

Note In the absence of the XML declaration or when the XML declaration’s
encoding attribute isn’t present, an XML parser typically looks for a special
character sequence at the start of a document to determine the document’s
encoding. This character sequence is known as the byte-order-mark (BOM) and
is created by an editor program (such as Microsoft Windows Notepad) when it
saves the document according to UTF-8 or some other encoding. For example,
the hexadecimal sequence EF BB BF signifies UTF-8 as the encoding. Similarly,
FE FF signifies UTF-16 (see http://en.wikipedia.org/wiki/UTF-16) big
endian, FF FE signifies UTF-16 little endian, 00 00 FE FF signifies UTF-32
(see http://en.wikipedia.org/wiki/UTF-32) big endian, and FF FE 00
00 signifies UTF-32 little endian. UTF-8 is assumed when no BOM is present.

If you'll never use characters apart from the ASCII character set, you can probably
forget about the encoding attribute. However, when your native language isn’t English
or when you're called to create XML documents that include non-ASCII characters, you
need to properly specify encoding. For example, when your document contains ASCII
plus characters from a non-English Western European language (such as ¢, the cedilla

http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-32

CHAPTER 1 INTRODUCING XML

used in French, Portuguese, and other languages), you might want to choose IS0-8859-1
as the encoding attribute’s value—the document will probably have a smaller size when
encoded in this manner than when encoded with UTF-8. Listing 1-2 shows you the
resulting XML declaration.

Listing 1-2. An Encoded Document Containing Non-ASCII Characters

<?xml version="1.0" encoding="IS0-8859-1"?>

<movie>
<name>Le Fabuleux Destin d'Amélie Poulain</name>
<language>francais</language>

</movie>

The final attribute that can appear in the XML declaration is standalone. This
optional attribute, which is only relevant with DTDs (discussed later), determines
whether or not there are external markup declarations that affect the information passed
from an XML processor (a parser) to the application. Its value defaults to no, implying
that there are or may be such declarations. A yes value indicates that there are no such
declarations. For more information, check out “The standalone pseudo-attribute is only
relevant if a DTD is used” (www.xmlplease.com/xml/standalone/).

Elements and Attributes

Following the XML declaration is a hierarchical (tree) structure of elements, where an
element is a portion of the document delimited by a start tag (such as <name>) and an end
tag (such as </name>), or is an empty-element tag (a standalone tag whose name ends
with a forward slash [/], such as <break/>). Start tags and end tags surround content and
possibly other markup, whereas empty-element tags don’t surround anything. Figure 1-1
reveals Listing 1-1’s XML document tree structure.

http://www.xmlplease.com/xml/standalone/

CHAPTER 1 INTRODUCING XML

recipe
Y Y Y
title ingredients instructions
Y Y Y
ingredient ingredient ingredient

Figure 1-1. Listing 1-1’s tree structure is rooted in the recipe element

As with HTML document structure, the structure of an XML document is anchored
in a root element (the topmost element). In HTML, the root element is html (the <html>
and </html> tag pair). Unlike in HTML, you can choose the root element for your XML
documents. Figure 1-1 shows the root element to be recipe.

Unlike the other elements, which have parent elements, recipe has no parent. Also,
recipe and ingredients have child elements: recipe’s children are title, ingredients,
and instructions; and ingredients’ children are three instances of ingredient. The
title, instructions, and ingredient elements don’t have child elements.

Elements can contain child elements, content, or mixed content (a combination of
child elements and content). Listing 1-2 reveals that the movie element contains name
and language child elements and also reveals that each of these child elements contains
content (e.g., Language contains francais). Listing 1-3 presents another example that
demonstrates mixed content along with child elements and content.

Listing 1-3. An Abstract Element Containing Mixed Content

<?xml version="1.0"?>
<article title="The Rebirth of JavaFX" lang="en">
<abstract>
JavaFX 2 marks a significant milestone in the history
of JavaFX. Now that Sun Microsystems has passed the
torch to Oracle, JavaFX Script is gone and
JavaFX-oriented Java APIS (such as

CHAPTER 1 INTRODUCING XML

<code>javafx.application.Application</code>) have
emerged for interacting with this technology. This
article introduces you to this refactored JavaFX,
where you learn about JavaFX 2 architecture and key
APIs.

</abstract>

<body>

</body>

</article>

This document’s root element is article, which contains abstract and body child
elements. The abstract element mixes content with a code element, which contains
content. In contrast, the body element is empty.

Note As with Listings 1-1 and 1-2, Listing 1-3 also contains whitespace (invisible
characters such as spaces, tabs, carriage returns, and line feeds). The XML
specification permits whitespace to be added to a document. Whitespace appearing
within content (such as spaces between words) is considered part of the content. In
contrast, the parser typically ignores whitespace appearing between an end tag and
the next start tag. Such whitespace isn’t considered part of the content.

An XML element’s start tag can contain one or more attributes. For example,
Listing 1-1’s <ingredient> tag has a qty (quantity) attribute, and Listing 1-3’s
<article> taghas title and lang attributes. Attributes provide additional details
about elements. For example, qty identifies the amount of an ingredient that can be
added, title identifies an article’s title, and lang identifies the language in which the
article is written (en for English). Attributes can be optional. For example, when gty

isn’t specified, a default value of 1 is assumed.

Note Element and attribute names may contain any alphanumeric character
from English or another language and may also include the underscore (_), hyphen
(<), period (.), and colon (:) punctuation characters. The colon should only be used
with namespaces (discussed later in this chapter), and names cannot contain
whitespace.

CHAPTER 1 INTRODUCING XML

Character References and CDATA Sections

Certain characters cannot appear literally in the content that appears between a start
tag and an end tag or within an attribute value. For example, you cannot place a literal
< character between a start tag and an end tag because doing so would confuse an XML
parser into thinking that it had encountered another tag.

One solution to this problem is to replace the literal character with a character
reference, which is a code that represents the character. Character references are
classified as numeric character references or character entity references:

e A numeric character reference refers to a character via its Unicode
code point and adheres to the format &#nnnn; (not restricted to
four positions) or &#xhhhh; (not restricted to four positions), where
nnnn provides a decimal representation of the code point and hhhh
provides a hexadecimal representation. For example, 8#0931; and
Σ represent the Greek capital letter sigma. Although XML
mandates that the x in &#xhhhh; be lowercase, it’s flexible in that
the leading zero is optional in either format and in allowing you
to specify an uppercase or lowercase letter for each h. As a result,
Σ, Σ, and Σ are also valid representations of the
Greek capital letter sigma.

o A character entity reference refers to a character via the name of
an entity (aliased data) that specifies the desired character as its
replacement text. Character entity references are predefined by XML
and have the format &name;, in which name is the entity’s name.
XML predefines five character entity references: < (<), > (>), & (&),
' ('), and " ().

Consider <expression>6 < 4</expression>.You could replace the < with numeric
reference 8#60;, yielding <expression>6 < 4</expression>, or better yet with <,
yielding <expression>6 < 4</expression>.The second choice is clearer and easier to
remember.

10

CHAPTER 1 INTRODUCING XML

Suppose you want to embed an HTML or XML document within an element. To
make the embedded document acceptable to an XML parser, you would need to replace
each literal < (start of tag) and & (start of entity) character with its < and & predefined
character entity reference, a tedious and possibly error-prone undertaking—you might
forget to replace one of these characters. To save you from tedium and potential errors,
XML provides an alternative in the form of a CDATA (character data) section.

A CDATA section is a section of literal HTML or XML markup and content
surrounded by the <! [CDATA[prefix and the]]> suffix. You don’t need to specify
predefined character entity references within a CDATA section, as demonstrated in
Listing 1-4.

Listing 1-4. Embedding an XML Document in Another Document’s CDATA
Section

<?xml version="1.0"?>
<svg-examples>
<example>
The following Scalable Vector Graphics document
describes a blue-filled and black-stroked
rectangle.
<![CDATA[<svg width="100%" height="100%"
version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<rect width="300" height="100"
style="fill:rgb(0,0,255);stroke-width:1;
stroke:rgb(0,0,0)"/>
</svg>1]>
</example>
</svg-examples>

Listing 1-4 embeds a Scalable Vector Graphics (SVG) [see http://en.wikipedia.
org/wiki/Scalable Vector Graphics] XML document within the example element of
an SVG examples document. The SVG document is placed in a CDATA section, obviating
the need to replace all < characters with < predefined character entity references.

11

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

CHAPTER 1 INTRODUCING XML

Namespaces

It's common to create XML documents that combine features from different XML
languages. Namespaces are used to prevent name conflicts when elements and other
XML language features appear. Without namespaces, an XML parser couldn’t distinguish
between same-named elements or other language features that mean different things, for
example, two same-named title elements from two different languages.

Note Namespaces aren’t part of XML 1.0. They arrived about a year after

this specification was released. To ensure backward compatibility with XML 1.0,
namespaces take advantage of colon characters, which are legal characters in XML
names. Parsers that don’t recognize namespaces return names that include colons.

A namespace is a Uniform Resource Identifier (URI)-based container that helps
differentiate XML vocabularies by providing a unique context for its contained
identifiers. The namespace URI is associated with a namespace prefix (an alias for the
URI) by specifying, typically on an XML document’s root element, either the xmlns
attribute by itself (which signifies the default namespace) or the xmlns : prefix attribute
(which signifies the namespace identified as prefix), and assigning the URI to this
attribute.

Note A namespace’s scope starts at the element where it’s declared and applies
to all of the element’s content unless overridden by another namespace declaration
with the same prefix name.

When prefix is specified, the prefix and a colon character are prepended to the name
of each element tag that belongs to that namespace—see Listing 1-5.

Listing 1-5. Introducing a Pair of Namespaces

<?xml version="1.0"?>
<h:html xmlns:h="http://www.w3.0rg/1999/xhtml"
xmlns:r="http://www.javajeff.ca/">
<h:head>
<h:title>

12

CHAPTER 1

Recipe
</h:title>
</h:head>
<h:body>
<r:recipe>
<r:title>
Grilled Cheese Sandwich
</r:title>
<r:ingredients>
<h:ul>
<h:1i>
<r:ingredient qty="2">
bread slice
</r:ingredient>
</h:1i>
<h:1i>
<r:ingredient>
cheese slice
</r:ingredient>
</h:1i>
<h:1i>
<r:ingredient qty="2">
margarine pat
</r:ingredient>
</h:1i>
</h:ul>
</r:ingredients>
<h:p>
<r:instructions>
Place frying pan on element and select medium
heat. For each bread slice, smear one pat of
margarine on one side of bread slice. Place
cheese slice between bread slices with
margarine-smeared sides away from the cheese.
Place sandwich in frying pan with one

INTRODUCING XML

13

CHAPTER 1 INTRODUCING XML

margarine-smeared side in contact with pan.
Fry for a couple of minutes and flip. Fry
other side for a minute and serve.
</r:instructions>
</h:p>
</r:recipe>
</h:body>
</h:html>

Listing 1-5 describes a document that combines elements from the XHTML (see
http://en.wikipedia.org/wiki/XHTML) language with elements from the recipe
language. All element tags that associate with XHTML are prefixed with h:, and all
element tags that associate with the recipe language are prefixed with r:.

The h: prefix associates with the waw.w3.0rg/1999/xhtml URI, and the r: prefix
associates with the www. javajeff.ca URL. XML doesn’t mandate that URIs point to
document files. It only requires that they be unique to guarantee unique namespaces.

This document’s separation of the recipe data from the XHTML elements makes it
possible to preserve this data’s structure while also allowing an XHTML-compliant web
browser (such as Mozilla Firefox) to present the recipe via a web page (see Figure 1-2).

File Edit View History Bookmarks Tools Help

Recipe

& C @ filey///D:/work/books/my_books/xmljson2e/ch oo w »

Grilled Cheese Sandwich

® bread slice
e cheese slice
e margarine pat

Place frying pan on element and select medium heat. For each bread slice, smear one pat of
margarine on one side of bread slice. Place cheese slice between bread slices with margarine-
smeared sides away from the cheese. Place sandwich in frying pan with one margarine-
smeared side in contact with pan. Fry for a couple of minutes and flip. Fry other side for a
minute and serve.

Figure 1-2. Mozilla Firefox presents the recipe data via XHTML tags

14

http://en.wikipedia.org/wiki/XHTML
http://www.w3.org/1999/xhtml
http://www.javajeff.ca

CHAPTER 1 INTRODUCING XML

A tag’s attributes don’t need to be prefixed when those attributes belong to the
element. For example, qty isn’t prefixed in <r:ingredient qty="2">. However, a prefix
is required for attributes belonging to other namespaces. For example, suppose you want
to add an XHTML style attribute to the document’s <r:title> tag to provide styling
for the recipe title when displayed via an application. You can accomplish this task by
inserting an XHTML attribute into the title tag, as follows:

<r:title h:style="font-family: sans-serif;">

The XHTML style attribute has been prefixed with h: because this attribute belongs
to the XHTML language namespace and not to the recipe language namespace.

When multiple namespaces are involved, it can be convenient to specify one of these
namespaces as the default namespace to reduce the tedium in entering namespace
prefixes. Consider Listing 1-6.

Listing 1-6. Specifying a Default Namespace

<?xml version="1.0"?>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:r="http://www.javajeff.ca/">
<head>
<title>
Recipe
</title>
</head>
<body>
<r:recipe>
<r:title>
Grilled Cheese Sandwich
</r:title>
<r:ingredients>

<r:ingredient qty="2">
bread slice
</r:ingredient>
</1i>

15

CHAPTER 1 INTRODUCING XML

<r:ingredient>
cheese slice
</r:ingredient>
</1i>

<r:ingredient qty="2">
margarine pat
</r:ingredient>
</1i>

</r:ingredients>
<p>
<r:instructions>
Place frying pan on element and select medium
heat. For each bread slice, smear one pat of
margarine on one side of bread slice. Place
cheese slice between bread slices with
margarine-smeared sides away from the cheese.
Place sandwich in frying pan with one
margarine-smeared side in contact with pan.
Fry for a couple of minutes and flip. Fry
other side for a minute and serve.
</r:instructions>
</p>
</r:recipe>
</body>
</html>

Listing 1-6 specifies a default namespace for the XHTML language. No XHTML
element tag needs to be prefixed with h:. However, recipe language element tags must
still be prefixed with the r: prefix.

16

