
Java XML
and JSON

Document Processing for Java SE
—
Second Edition
—
Jef f Friesen

Java XML and JSON
Document Processing for Java SE

Second Edition

Jeff Friesen

Java XML and JSON: Document Processing for Java SE

ISBN-13 (pbk): 978-1-4842-4329-9			 ISBN-13 (electronic): 978-1-4842-4330-5
https://doi.org/10.1007/978-1-4842-4330-5

Library of Congress Control Number: 2018968598

Copyright © 2019 by Jeff Friesen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4329-9. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jeff Friesen
Dauphin, MB, Canada

https://doi.org/10.1007/978-1-4842-4330-5

To my parents.

v

Table of Contents

Part I: �Exploring XML��� 1

Chapter 1: Introducing XML��� 3

What Is XML?��� 3

Language Features Tour��� 5

XML Declaration��� 5

Elements and Attributes��� 7

Character References and CDATA Sections�� 10

Namespaces��� 12

Comments and Processing Instructions��� 17

Well-Formed Documents��� 17

Valid Documents�� 18

Document Type Definition��� 19

XML Schema��� 26

Summary��� 34

Chapter 2: Parsing XML Documents with SAX��� 35

What Is SAX?�� 35

Exploring the SAX API��� 36

Obtaining a SAX 2 Parser��� 36

Touring XMLReader Methods�� 37

Touring the Handler and Resolver Interfaces��� 42

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

vi

Demonstrating the SAX API�� 47

Creating a Custom Entity Resolver��� 59

Summary��� 65

Chapter 3: Parsing and Creating XML Documents with DOM���������������������������������� 67

What Is DOM?�� 67

A Tree of Nodes�� 68

Exploring the DOM API��� 71

Obtaining a DOM Parser/Document Builder��� 71

Parsing and Creating XML Documents��� 73

Demonstrating the DOM API��� 77

Parsing an XML Document��� 77

Creating an XML Document�� 82

Working with Load and Save��� 85

Loading an XML Document into a DOM Tree�� 86

Configuring a Parser��� 90

Filtering an XML Document While Parsing��� 96

Saving a DOM Tree to an XML Document��� 100

Working with Traversal and Range�� 102

Performing Traversals��� 102

Performing Range Operations�� 107

Summary��� 111

Chapter 4: Parsing and Creating XML Documents with StAX�������������������������������� 113

What Is StAX?��� 113

Exploring StAX��� 114

Parsing XML Documents�� 115

Creating XML Documents��� 125

Summary��� 138

Table of Contents

vii

Chapter 5: Selecting Nodes with XPath��� 139

What Is XPath?��� 139

XPath Language Primer��� 139

Location Path Expressions��� 140

General Expressions��� 143

XPath and DOM�� 145

Advanced XPath��� 154

Namespace Contexts�� 154

Extension Functions and Function Resolvers��� 156

Variables and Variable Resolvers��� 161

Summary��� 164

Chapter 6: Transforming XML Documents with XSLT�� 165

What Is XSLT?�� 165

Exploring the XSLT API��� 166

Demonstrating the XSLT API��� 170

Going Beyond XSLT 1.0 and XPath 1.0��� 179

Downloading and Testing SAXON-HE 9.9�� 179

Playing with SAXON-HE 9.9�� 180

Summary��� 183

Part II: �Exploring JSON�� 185

Chapter 7: Introducing JSON��� 187

What Is JSON?��� 187

JSON Syntax Tour��� 188

Demonstrating JSON with JavaScript�� 190

Validating JSON Objects�� 195

Summary��� 202

Table of Contents

viii

Chapter 8: Parsing and Creating JSON Objects with mJson��������������������������������� 205

What Is mJson?��� 205

Obtaining and Using mJson�� 206

Exploring the Json Class�� 206

Creating Json Objects�� 207

Learning About Json Objects�� 213

Navigating Json Object Hierarchies�� 223

Modifying Json Objects�� 225

Validation�� 232

Customization via Factories��� 235

Summary��� 242

Chapter 9: Parsing and Creating JSON Objects with Gson������������������������������������ 243

What Is Gson?�� 243

Obtaining and Using Gson�� 244

Exploring Gson��� 244

Introducing the Gson Class��� 245

Parsing JSON Objects Through Deserialization�� 248

Creating JSON Objects Through Serialization��� 258

Learning More About Gson��� 267

Summary��� 298

Chapter 10: Extracting JSON Values with JsonPath�� 299

What Is JsonPath?��� 299

Learning the JsonPath Language�� 300

Obtaining and Using the JsonPath Library��� 304

Exploring the JsonPath Library�� 306

Extracting Values from JSON Objects��� 306

Using Predicates to Filter Items��� 309

Summary��� 321

Table of Contents

ix

Chapter 11: Processing JSON with Jackson��� 323

What Is Jackson?��� 323

Obtaining and Using Jackson��� 324

Working with Jackson’s Basic Features�� 325

Streaming��� 325

Tree Model�� 334

Data Binding��� 340

Working with Jackson’s Advanced Features�� 350

Annotation Types�� 350

Custom Pretty Printers��� 390

Factory, Parser, and Generator Features��� 398

Summary��� 402

Chapter 12: Processing JSON with JSON-P��� 405

What Is JSON-P?�� 405

JSON-P 1.0��� 405

JSON-P 1.1��� 408

Obtaining and Using JSON-P�� 410

Working with JSON-P 1.0��� 411

Working with the Object Model API�� 411

Working with the Streaming Model API�� 418

Working with JSON-P 1.1’s Advanced Features��� 423

JSON Pointer�� 424

JSON Patch��� 431

JSON Merge Patch�� 440

Editing/Transformation Operations��� 447

Java SE 8 Support�� 449

Summary��� 456

Table of Contents

x

Part III: �Appendixes��� 459

Appendix A: Answers to Exercises�� 461

Chapter 1: Introducing XML��� 461

Chapter 2: Parsing XML Documents with SAX��� 466

Chapter 3: Parsing and Creating XML Documents with DOM��� 474

Chapter 4: Parsing and Creating XML Documents with StAX��� 486

Chapter 5: Selecting Nodes with XPath��� 493

Chapter 6: Transforming XML Documents with XSLT��� 497

Chapter 7: Introducing JSON�� 501

Chapter 8: Parsing and Creating JSON Objects with mJson�� 503

Chapter 9: Parsing and Creating JSON Objects with Gson��� 506

Chapter 10: Extracting JSON Values with JsonPath��� 510

Chapter 11: Processing JSON with Jackson�� 511

Chapter 12: Processing JSON with JSON-P��� 515

�Index�� 519

Table of Contents

xi

About the Author

Jeff Friesen is a freelance teacher and software developer

with an emphasis on Java. In addition to authoring Java I/O,

NIO and NIO.2 (Apress), Java Threads and the Concurrency

Utilities (Apress), and the first edition of this book, Jeff has

written numerous articles on Java and other technologies

(such as Android) for JavaWorld (JavaWorld.com), informIT

(InformIT.com), Java.net, SitePoint (SitePoint.com),

and other web sites. Jeff can be contacted via his web site

at JavaJeff.ca or via his LinkedIn (LinkedIn.com) profile

(www.linkedin.com/in/javajeff).  

http://www.linkedin.com/in/javajeff

xiii

About the Technical Reviewer

Massimo Nardone has more than 24 years of experiences

in Security, web/mobile development, Cloud, and IT

architecture. His true IT passions are Security and Android.

He has been programming and teaching how to program

with Android, Perl, PHP, Java, VB, Python, C/C++, and

MySQL for more than 20 years.

He holds a Master of Science degree in Computing

Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer,

Research Engineer, Chief Security Architect, Information

Security Manager, PCI/SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA

Architect for many years.

His technical skills include Security, Android, Cloud, Java, MySQL, Drupal, Cobol,

Perl, web and mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,

Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking

Laboratory of the Helsinki University of Technology (Aalto University). He holds four

international patents (PKI, SIP, SAML, and Proxy areas).

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj,

and he is member of ISACA Finland Chapter Board.

Massimo has been reviewing more than 45 IT books for different publishing

companies, and he is the coauthor of Pro Android Games (Apress, 2015), Pro JPA 2 in

Java EE 8 (APress 2018), and Beginning EJB in Java EE 8 (Apress, 2018).

xv

Acknowledgments

I thank Apress Acquisition Editor Jonathan Gennick and the Apress Editorial Board for

giving me the opportunity to create this second edition. I also thank Editor Jill Balzano

for guiding me through the book development process. Finally, I thank my technical

reviewer and copy editor for catching mistakes and making the book look great.

xvii

Introduction

XML and (the more popular) JSON let you organize data in textual formats. This book

introduces you to these technologies along with Java APIs for integrating them into your

Java code. This book introduces you to XML and JSON as of Java 11.

Chapter 1 introduces XML, where you learn about basic language features (such

as the XML declaration, elements and attributes, and namespaces). You also learn

about well-formed XML documents and how to validate them via the Document Type

Definition and XML Schema grammar languages.

Chapter 2 focuses on Java’s SAX API for parsing XML documents. You learn how to

obtain a SAX 2 parser; you then tour XMLReader methods along with handler and entity

resolver interfaces. Finally, you explore a demonstration of this API and learn how to

create a custom entity resolver.

Chapter 3 addresses Java’s DOM API for parsing and creating XML documents. After

discovering the various nodes that form a DOM document tree, you explore the DOM

API, where you learn how to obtain a DOM parser/document builder and how to parse

and create XML documents. You then explore the Java DOM APIs related to the Load

and Save, and Traversal and Range specifications.

Chapter 4 places the spotlight on Java’s StAX API for parsing and creating XML

documents. You learn how to use StAX to parse XML documents with stream-based and

event-based readers and to create XML documents with stream-based and event-based

writers.

Moving on, Chapter 5 presents Java’s XPath API for simplifying access to a DOM

tree’s nodes. You receive a primer on the XPath language, learning about location path

expressions and general expressions. You also explore advanced features starting with

namespace contexts.

Chapter 6 completes my coverage of XML by targetting Java’s XSLT API. You learn

about transformer factories and transformers, and much more. You also go beyond the

XSLT 1.0 and XPath 1.0 APIs supported by Java.

xviii

Chapter 7 switches gears to JSON. You receive an introduction to JSON, take a tour of

its syntax, explore a demonstration of JSON in a JavaScript context (because Java doesn’t

yet officially support JSON), and learn how to validate JSON objects in the context of

JSON Schema.

You’ll need to work with third-party libraries to parse and create JSON

documents. Chapter 8 introduces you to the mJson library. After learning how

to obtain and use mJson, you explore the Json class, which is the entry point for

working with mJSon.

Google has released an even more powerful library for parsing and creating JSON

documents. The Gson library is the focus of Chapter 9. In this chapter, you learn how

to parse JSON objects through deserialization, how to create JSON objects through

serialization, and much more.

Chapter 10 focuses on the JsonPath API for performing XPath-like operations on

JSON documents.

Chapter 11 introduces you to Jackson, a popular suite of APIs for parsing and

creating JSON documents.

Chapter 12 introduces you to JSON-P, an Oracle API that was planned for inclusion in

Java SE, but was made available to Java EE instead.

Each chapter ends with assorted exercises that are designed to help you master the

content. Along with long answers and true/false questions, you are often confronted

with programming exercises. Appendix A provides the answers and solutions.

Thanks for purchasing this book. I hope you find it helpful in understanding XML

and JSON in a Java context.

Jeff Friesen (October 2018)

Note  You can download this book’s source code by pointing your web browser to
www.apress.com/9781484243299 and clicking the Source Code tab followed
by the Download Now link.

Introduction

http://www.apress.com/9781484243299

PART I

Exploring XML

3
© Jeff Friesen 2019
J. Friesen, Java XML and JSON, https://doi.org/10.1007/978-1-4842-4330-5_1

CHAPTER 1

Introducing XML
Applications commonly use XML documents to store and exchange data. XML defines

rules for encoding documents in a format that is both human-readable and machine-

readable. Chapter 1 introduces XML, tours the XML language features, and discusses

well-formed and valid documents.

�What Is XML?
XML (eXtensible Markup Language) is a meta-language (a language used to describe

other languages) for defining vocabularies (custom markup languages), which is the key

to XML’s importance and popularity. XML-based vocabularies (such as XHTML) let you

describe documents in a meaningful way.

XML vocabulary documents are like HTML (see http://en.wikipedia.org/

wiki/HTML) documents in that they are text-based and consist of markup (encoded

descriptions of a document’s logical structure) and content (document text not

interpreted as markup). Markup is evidenced via tags (angle bracket–delimited syntactic

constructs), and each tag has a name. Furthermore, some tags have attributes (name/

value pairs).

Note  XML and HTML are descendants of Standard Generalized Markup Language
(SGML), which is the original meta-language for creating vocabularies—XML is
essentially a restricted form of SGML, while HTML is an application of SGML. The
key difference between XML and HTML is that XML invites you to create your own
vocabularies with their own tags and rules, whereas HTML gives you a single
pre-created vocabulary with its own fixed set of tags and rules. XHTML and other
XML-based vocabularies are XML applications. XHTML was created to be a cleaner
implementation of HTML.

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/HTML

4

If you haven’t previously encountered XML, you might be surprised by its simplicity

and how closely its vocabularies resemble HTML. You don’t need to be a rocket scientist

to learn how to create an XML document. To prove this to yourself, check out Listing 1-1.

Listing 1-1.  XML-Based Recipe for a Grilled Cheese Sandwich

<recipe>

 <title>

 Grilled Cheese Sandwich

 </title>

 <ingredients>

 <ingredient qty="2">

 bread slice

 </ingredient>

 <ingredient>

 cheese slice

 </ingredient>

 <ingredient qty="2">

 margarine pat

 </ingredient>

 </ingredients>

 <instructions>

 Place frying pan on element and select medium heat.

 For each bread slice, smear one pat of margarine on

 one side of bread slice. Place cheese slice between

 bread slices with margarine-smeared sides away from

 the cheese. Place sandwich in frying pan with one

 margarine-smeared side in contact with pan. Fry for

 a couple of minutes and flip. Fry other side for a

 minute and serve.

 </instructions>

</recipe>

Chapter 1 Introducing XML

5

Listing 1-1 presents an XML document that describes a recipe for making a grilled

cheese sandwich. This document is reminiscent of an HTML document in that it consists

of tags, attributes, and content. However, that’s where the similarity ends. Instead of

presenting HTML tags such as <html>, <head>, , and <p>, this informal recipe

language presents its own <recipe>, <ingredients>, and other tags.

Note A lthough Listing 1-1’s <title> and </title> tags are also found in
HTML, they differ from their HTML counterparts. Web browsers typically display
the content between these tags in their title bars or tab headers. In contrast, the
content between Listing 1-1’s <title> and </title> tags might be displayed as
a recipe header, spoken aloud, or presented in some other way, depending on the
application that parses this document.

�Language Features Tour
XML provides several language features for use in defining custom markup languages:

XML declaration, elements and attributes, character references and CDATA sections,

namespaces, and comments and processing instructions. You will learn about these

language features in this section.

�XML Declaration
An XML document usually begins with the XML declaration, special markup telling an

XML parser that the document is XML. The absence of the XML declaration in Listing 1-1

reveals that this special markup isn’t mandatory. When the XML declaration is present,

nothing can appear before it.

The XML declaration minimally looks like <?xml version="1.0"?> in which the

nonoptional version attribute identifies the version of the XML specification to which

the document conforms. The initial version of this specification (1.0) was introduced in

1998 and is widely implemented.

Chapter 1 Introducing XML

6

Note  The World Wide Web Consortium (W3C), which maintains XML, released
version 1.1 in 2004. This version mainly supports the use of line-ending characters
used on EBCDIC platforms (see http://en.wikipedia.org/wiki/EBCDIC)
and the use of scripts and characters that are absent from Unicode (see http://
en.wikipedia.org/wiki/Unicode) 3.2. Unlike XML 1.0, XML 1.1 isn’t widely
implemented and should be used only when its unique features are needed.

XML supports Unicode, which means that XML documents consist entirely of

characters taken from the Unicode character set. The document’s characters are

encoded into bytes for storage or transmission, and the encoding is specified via the

XML declaration’s optional encoding attribute. One common encoding is UTF-8 (see

http://en.wikipedia.org/wiki/UTF-8), which is a variable-length encoding of the

Unicode character set. UTF-8 is a strict superset of ASCII (see http://en.wikipedia.

org/wiki/ASCII), which means that pure ASCII text files are also UTF-8 documents.

Note  In the absence of the XML declaration or when the XML declaration’s
encoding attribute isn’t present, an XML parser typically looks for a special
character sequence at the start of a document to determine the document’s
encoding. This character sequence is known as the byte-order-mark (BOM) and
is created by an editor program (such as Microsoft Windows Notepad) when it
saves the document according to UTF-8 or some other encoding. For example,
the hexadecimal sequence EF BB BF signifies UTF-8 as the encoding. Similarly,
FE FF signifies UTF-16 (see http://en.wikipedia.org/wiki/UTF-16) big
endian, FF FE signifies UTF-16 little endian, 00 00 FE FF signifies UTF-32
(see http://en.wikipedia.org/wiki/UTF-32) big endian, and FF FE 00
00 signifies UTF-32 little endian. UTF-8 is assumed when no BOM is present.

If you’ll never use characters apart from the ASCII character set, you can probably

forget about the encoding attribute. However, when your native language isn’t English

or when you’re called to create XML documents that include non-ASCII characters, you

need to properly specify encoding. For example, when your document contains ASCII

plus characters from a non-English Western European language (such as ç, the cedilla

Chapter 1 Introducing XML

http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/UTF-32

7

used in French, Portuguese, and other languages), you might want to choose ISO-8859-1

as the encoding attribute’s value—the document will probably have a smaller size when

encoded in this manner than when encoded with UTF-8. Listing 1-2 shows you the

resulting XML declaration.

Listing 1-2.  An Encoded Document Containing Non-ASCII Characters

<?xml version="1.0" encoding="ISO-8859-1"?>

<movie>

 <name>Le Fabuleux Destin d'Amélie Poulain</name>

 <language>français</language>

</movie>

The final attribute that can appear in the XML declaration is standalone. This

optional attribute, which is only relevant with DTDs (discussed later), determines

whether or not there are external markup declarations that affect the information passed

from an XML processor (a parser) to the application. Its value defaults to no, implying

that there are or may be such declarations. A yes value indicates that there are no such

declarations. For more information, check out “The standalone pseudo-attribute is only

relevant if a DTD is used” (www.xmlplease.com/xml/standalone/).

�Elements and Attributes
Following the XML declaration is a hierarchical (tree) structure of elements, where an

element is a portion of the document delimited by a start tag (such as <name>) and an end

tag (such as </name>), or is an empty-element tag (a standalone tag whose name ends

with a forward slash [/], such as <break/>). Start tags and end tags surround content and

possibly other markup, whereas empty-element tags don’t surround anything. Figure 1-1

reveals Listing 1-1’s XML document tree structure.

Chapter 1 Introducing XML

http://www.xmlplease.com/xml/standalone/

8

As with HTML document structure, the structure of an XML document is anchored

in a root element (the topmost element). In HTML, the root element is html (the <html>

and </html> tag pair). Unlike in HTML, you can choose the root element for your XML

documents. Figure 1-1 shows the root element to be recipe.

Unlike the other elements, which have parent elements, recipe has no parent. Also,

recipe and ingredients have child elements: recipe’s children are title, ingredients,

and instructions; and ingredients’ children are three instances of ingredient. The

title, instructions, and ingredient elements don’t have child elements.

Elements can contain child elements, content, or mixed content (a combination of

child elements and content). Listing 1-2 reveals that the movie element contains name

and language child elements and also reveals that each of these child elements contains

content (e.g., language contains français). Listing 1-3 presents another example that

demonstrates mixed content along with child elements and content.

Listing 1-3.  An Abstract Element Containing Mixed Content

<?xml version="1.0"?>

<article title="The Rebirth of JavaFX" lang="en">

 <abstract>

 JavaFX 2 marks a significant milestone in the history

 of JavaFX. Now that Sun Microsystems has passed the

 torch to Oracle, JavaFX Script is gone and

 JavaFX-oriented Java APIS (such as

recipe

title ingredients

ingredient ingredient ingredient

instructions

Figure 1-1.  Listing 1-1’s tree structure is rooted in the recipe element

Chapter 1 Introducing XML

9

 <code>javafx.application.Application</code>) have

 emerged for interacting with this technology. This

 article introduces you to this refactored JavaFX,

 where you learn about JavaFX 2 architecture and key

 APIs.

 </abstract>

 <body>

 </body>

</article>

This document’s root element is article, which contains abstract and body child

elements. The abstract element mixes content with a code element, which contains

content. In contrast, the body element is empty.

Note A s with Listings 1-1 and 1-2, Listing 1-3 also contains whitespace (invisible
characters such as spaces, tabs, carriage returns, and line feeds). The XML
specification permits whitespace to be added to a document. Whitespace appearing
within content (such as spaces between words) is considered part of the content. In
contrast, the parser typically ignores whitespace appearing between an end tag and
the next start tag. Such whitespace isn’t considered part of the content.

An XML element’s start tag can contain one or more attributes. For example,

Listing 1-1’s <ingredient> tag has a qty (quantity) attribute, and Listing 1-3’s

<article> tag has title and lang attributes. Attributes provide additional details

about elements. For example, qty identifies the amount of an ingredient that can be

added, title identifies an article’s title, and lang identifies the language in which the

article is written (en for English). Attributes can be optional. For example, when qty

isn’t specified, a default value of 1 is assumed.

Note E lement and attribute names may contain any alphanumeric character
from English or another language and may also include the underscore (_), hyphen
(-), period (.), and colon (:) punctuation characters. The colon should only be used
with namespaces (discussed later in this chapter), and names cannot contain
whitespace.

Chapter 1 Introducing XML

10

�Character References and CDATA Sections
Certain characters cannot appear literally in the content that appears between a start

tag and an end tag or within an attribute value. For example, you cannot place a literal

< character between a start tag and an end tag because doing so would confuse an XML

parser into thinking that it had encountered another tag.

One solution to this problem is to replace the literal character with a character

reference, which is a code that represents the character. Character references are

classified as numeric character references or character entity references:

•	 A numeric character reference refers to a character via its Unicode

code point and adheres to the format &#nnnn; (not restricted to

four positions) or &#xhhhh; (not restricted to four positions), where

nnnn provides a decimal representation of the code point and hhhh

provides a hexadecimal representation. For example, Σ and

Σ represent the Greek capital letter sigma. Although XML

mandates that the x in &#xhhhh; be lowercase, it’s flexible in that

the leading zero is optional in either format and in allowing you

to specify an uppercase or lowercase letter for each h. As a result,

Σ, Σ, and Σ are also valid representations of the

Greek capital letter sigma.

•	 A character entity reference refers to a character via the name of

an entity (aliased data) that specifies the desired character as its

replacement text. Character entity references are predefined by XML

and have the format &name;, in which name is the entity’s name.

XML predefines five character entity references: < (<), > (>), & (&),

' ('), and " (").

Consider <expression>6 < 4</expression>. You could replace the < with numeric

reference <, yielding <expression>6 < 4</expression>, or better yet with <,

yielding <expression>6 < 4</expression>. The second choice is clearer and easier to

remember.

Chapter 1 Introducing XML

11

Suppose you want to embed an HTML or XML document within an element. To

make the embedded document acceptable to an XML parser, you would need to replace

each literal < (start of tag) and & (start of entity) character with its < and & predefined

character entity reference, a tedious and possibly error-prone undertaking—you might

forget to replace one of these characters. To save you from tedium and potential errors,

XML provides an alternative in the form of a CDATA (character data) section.

A CDATA section is a section of literal HTML or XML markup and content

surrounded by the <![CDATA[prefix and the]]> suffix. You don’t need to specify

predefined character entity references within a CDATA section, as demonstrated in

Listing 1-4.

Listing 1-4.  Embedding an XML Document in Another Document’s CDATA

Section

<?xml version="1.0"?>

<svg-examples>

 <example>

 The following Scalable Vector Graphics document

 describes a blue-filled and black-stroked

 rectangle.

 <![CDATA[<svg width="100%" height="100%"

 version="1.1"

 xmlns="http://www.w3.org/2000/svg">

 <rect width="300" height="100"

 style="fill:rgb(0,0,255);stroke-width:1;

 stroke:rgb(0,0,0)"/>

 </svg>]]>

 </example>

</svg-examples>

Listing 1-4 embeds a Scalable Vector Graphics (SVG) [see http://en.wikipedia.

org/wiki/Scalable_Vector_Graphics] XML document within the example element of

an SVG examples document. The SVG document is placed in a CDATA section, obviating

the need to replace all < characters with < predefined character entity references.

Chapter 1 Introducing XML

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

12

�Namespaces
It’s common to create XML documents that combine features from different XML

languages. Namespaces are used to prevent name conflicts when elements and other

XML language features appear. Without namespaces, an XML parser couldn’t distinguish

between same-named elements or other language features that mean different things, for

example, two same-named title elements from two different languages.

Note N amespaces aren’t part of XML 1.0. They arrived about a year after
this specification was released. To ensure backward compatibility with XML 1.0,
namespaces take advantage of colon characters, which are legal characters in XML
names. Parsers that don’t recognize namespaces return names that include colons.

A namespace is a Uniform Resource Identifier (URI)-based container that helps

differentiate XML vocabularies by providing a unique context for its contained

identifiers. The namespace URI is associated with a namespace prefix (an alias for the

URI) by specifying, typically on an XML document’s root element, either the xmlns

attribute by itself (which signifies the default namespace) or the xmlns:prefix attribute

(which signifies the namespace identified as prefix), and assigning the URI to this

attribute.

Note A namespace’s scope starts at the element where it’s declared and applies
to all of the element’s content unless overridden by another namespace declaration
with the same prefix name.

When prefix is specified, the prefix and a colon character are prepended to the name

of each element tag that belongs to that namespace—see Listing 1-5.

Listing 1-5.  Introducing a Pair of Namespaces

<?xml version="1.0"?>

<h:html xmlns:h="http://www.w3.org/1999/xhtml"

 xmlns:r="http://www.javajeff.ca/">

 <h:head>

 <h:title>

Chapter 1 Introducing XML

13

 Recipe

 </h:title>

 </h:head>

 <h:body>

 <r:recipe>

 <r:title>

 Grilled Cheese Sandwich

 </r:title>

 <r:ingredients>

 <h:ul>

 <h:li>

 <r:ingredient qty="2">

 bread slice

 </r:ingredient>

 </h:li>

 <h:li>

 <r:ingredient>

 cheese slice

 </r:ingredient>

 </h:li>

 <h:li>

 <r:ingredient qty="2">

 margarine pat

 </r:ingredient>

 </h:li>

 </h:ul>

 </r:ingredients>

 <h:p>

 <r:instructions>

 Place frying pan on element and select medium

 heat. For each bread slice, smear one pat of

 margarine on one side of bread slice. Place

 cheese slice between bread slices with

 margarine-smeared sides away from the cheese.

 Place sandwich in frying pan with one

Chapter 1 Introducing XML

14

 margarine-smeared side in contact with pan.

 Fry for a couple of minutes and flip. Fry

 other side for a minute and serve.

 </r:instructions>

 </h:p>

 </r:recipe>

 </h:body>

</h:html>

Listing 1-5 describes a document that combines elements from the XHTML (see

http://en.wikipedia.org/wiki/XHTML) language with elements from the recipe

language. All element tags that associate with XHTML are prefixed with h:, and all

element tags that associate with the recipe language are prefixed with r:.

The h: prefix associates with the www.w3.org/1999/xhtml URI, and the r: prefix

associates with the www.javajeff.ca URI. XML doesn’t mandate that URIs point to

document files. It only requires that they be unique to guarantee unique namespaces.

This document’s separation of the recipe data from the XHTML elements makes it

possible to preserve this data’s structure while also allowing an XHTML-compliant web

browser (such as Mozilla Firefox) to present the recipe via a web page (see Figure 1-2).

Figure 1-2.  Mozilla Firefox presents the recipe data via XHTML tags

Chapter 1 Introducing XML

http://en.wikipedia.org/wiki/XHTML
http://www.w3.org/1999/xhtml
http://www.javajeff.ca

15

A tag’s attributes don’t need to be prefixed when those attributes belong to the

element. For example, qty isn’t prefixed in <r:ingredient qty="2">. However, a prefix

is required for attributes belonging to other namespaces. For example, suppose you want

to add an XHTML style attribute to the document’s <r:title> tag to provide styling

for the recipe title when displayed via an application. You can accomplish this task by

inserting an XHTML attribute into the title tag, as follows:

<r:title h:style="font-family: sans-serif;">

The XHTML style attribute has been prefixed with h: because this attribute belongs

to the XHTML language namespace and not to the recipe language namespace.

When multiple namespaces are involved, it can be convenient to specify one of these

namespaces as the default namespace to reduce the tedium in entering namespace

prefixes. Consider Listing 1-6.

Listing 1-6.  Specifying a Default Namespace

<?xml version="1.0"?>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:r="http://www.javajeff.ca/">

 <head>

 <title>

 Recipe

 </title>

 </head>

 <body>

 <r:recipe>

 <r:title>

 Grilled Cheese Sandwich

 </r:title>

 <r:ingredients>

 <r:ingredient qty="2">

 bread slice

 </r:ingredient>

Chapter 1 Introducing XML

16

 <r:ingredient>

 cheese slice

 </r:ingredient>

 <r:ingredient qty="2">

 margarine pat

 </r:ingredient>

 </r:ingredients>

 <p>

 <r:instructions>

 Place frying pan on element and select medium

 heat. For each bread slice, smear one pat of

 margarine on one side of bread slice. Place

 cheese slice between bread slices with

 margarine-smeared sides away from the cheese.

 Place sandwich in frying pan with one

 margarine-smeared side in contact with pan.

 Fry for a couple of minutes and flip. Fry

 other side for a minute and serve.

 </r:instructions>

 </p>

 </r:recipe>

 </body>

</html>

Listing 1-6 specifies a default namespace for the XHTML language. No XHTML

element tag needs to be prefixed with h:. However, recipe language element tags must

still be prefixed with the r: prefix.

Chapter 1 Introducing XML

