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This sixth volume of Recent Advances in Polyphenol Research is dedicated to the mem-
ory of Ragai Ibrahim, Emeritus Professor of Biology at the University of Concordia, 
Montreal, Canada, who passed away on 19th November 2017, aged 88. Dr Ibrahim was 
an active member of Groupe Polyphénols since 1980, the organizer of the XIVth 
International Conference on Polyphenols in St Catharines, Ontario, Canada in 1988, 
and a role model for many scientists in the field, both within Groupe Polyphenols and 
beyond. He was internationally renowned for his cutting‐edge research on the structure 
and biosynthetic pathways of flavonoids. His research group has been instrumental in 
the description of sulfated and prenylated flavonoid derivatives, the discovery of novel 
enzymes involved in their biosynthesis, and the study of their distribution and role in 
plants. His generous donation made possible the Ragai Ibrahim Prize, which has been 
since 2012, awarded every two years to an active graduate student or postdoctoral fel-
low who has co‐authored during his/her doctoral studies a particularly relevant original 
scientific article.

Further, the editors also wish to memorialize in this volume the life and work of Takua 
Okuda, Professor of Pharmacognosy and Phytochemistry at the Okayama University, 
Japan, who sadly passed away on 31st December 2016, aged 89. Professor Okuda was a 
world‐renowned expert in the structural characterization of bioactive plant polyphe-
nols, in particular the most structurally complex polyphenols of the ellagitannin classes. 
The contributions of his research team over several decades have constituted major 
milestones in the acquisition of sound knowledge on these unique and fascinating natu-
ral products. Among his many awards and recognitions are the 2004 Tannin Award and 
the 2014 Groupe Polyphénols Medal.

Finally, the editors would like this volume to serve in remembrance of Werner Heller, 
who passed away on 18th March 2018, aged 72. Werner Heller was a key researcher in 
the plant biochemistry laboratory of Professor Grisebach at the University of Freiburg, 
Germany, and as such contributed significantly to the elucidation of many key reactions 
of the flavonoid pathway. He was internationally recognized for his series of reviews on 
the advances in research into flavonoid biosynthesis, which he wrote together with Gert 
Forkmann, and for his studies on the effects of UV‐B radiation on secondary metabo-
lites in plants.

In memoriam
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Polyphenols are secondary metabolites that are widely distributed in the plant 
kingdom and characterized by a large diversity of chemical structures. As supported 
by the international academic society Groupe Polyphénols, which organizes the bien-
nial International Conference on Polyphenols (ICP), the term polyphenol should be 
exclusively used for plant secondary metabolites derived from the phenylpropanoid 
and/or polyketide pathway(s), featuring more than one phenolic ring and being devoid 
of any nitrogen‐based functional group (www.groupepolyphenols.com/the‐society/
why‐bother‐with‐polyphenols). Several thousand structures have been isolated and 
characterized from plants so far, ranging from quite simple phenolic molecules to 
highly polymerized compounds with molecular weights of more than 30 000 Da. As a 
result of the huge diversity of structures, polyphenols possess diverse physicochemical 
properties. Over the years, scientists from all over the world have been fascinated by 
these molecules, trying to shed light on their chemistry, properties and physiological 
relevance in plants, humans and ecosystems. In addition, there is increasing interest 
in the valorization of polyphenols obtained as natural by‐products from, for example, 
the lignocellulose industry or agroindustrial waste streams for use as bioactive 
substances in dietary supplements and functional food, additives in food and cosmetic 
products to mediate antioxidant activity, natural coloration or flavours, and as raw 
materials for emerging products such as multifunctional polymer coatings or 
antibacterial packaging.

The book series Recent Advances in Polyphenol Research started in 2008 upon the 
occasion of the 24th ICP in Salamanca, Spain. The content of the first volume was 
mostly based on review articles written by plenary lecturers of the previous ICP, which 
had taken place in Winnipeg, Canada. Since then, this flagship publication of the 
Groupe Polyphénols has been released every two years to provide the reader with 
authoritative updates on various topics of polyphenol research written by ICP plenary 
lecturers and invited expert contributors.

This sixth volume of the series presents chapters representing a distillation of the 
topics covered during the 28th ICP, which was organized and hosted by the Technische 
Universität Wien in July 2016 in Vienna, Austria. This beautiful setting is represented 
on the cover by a photo of the dome of the stunning Art Nouveau church by Otto 
Wagner in Vienna. Participants were given a chance to visit this church in person during 
one of the social events organized during the conference.

Five main topics of the polyphenol sciences were selected for the scientific programme 
of this memorable ICP 2016 edition.

Preface
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●● Chemistry and Physicochemistry, covering structures, reactivity, organic synthesis, 
molecular modelling, fundamental aspects, chemical analysis, spectroscopy, molecu-
lar associations, and interactions of polyphenols.

●● Biosynthesis, Genetics and Metabolic Engineering, covering molecular biology, 
genetics, enzymology, gene expression and regulation, trafficking, biotechnology, 
horticultural science, and molecular breeding related to polyphenols.

●● Roles in Plants and Ecosystems, covering plant growth and development, biotic and 
abiotic stress, resistance, ecophysiology, sustainable development, valorization, plant 
environmental system, forest chemistry, and lignin and lignan.

●● Food, Nutrition and Health, covering food ingredients, nutrient components, 
functional food, mode of action, bio‐availability and metabolism, food processing, 
influence on food and beverage properties, cosmetics, antioxidant activity of 
polyphenols.

●● Applied Polyphenolics, covering new findings on sources of isolated and standard-
ized polyphenolic fractions and novel epigenetic polyphenol mechanisms, as well as 
industrial implementations of newly gleaned knowledge on polyphenols.

The 13 chapters of this volume highlight advances in our understanding of (i) polyphenol 
biosynthesis with a focus on (sub)cellular distribution and organization of the pathways, 
novel genes and transcription factors, (ii) bioactive and dietary compounds with a focus 
on health and taste, (iii) innovative sources of polyphenol compounds and their 
characterization and (iv) emerging products such as thermosetting polymers.
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1.1  Introduction

Nature has long served as an important source of therapeutics, and lignans represent a 
large class of pharmacologically active compounds (Cunha et al. 2012). This family of 
molecules demonstrates a wide range of biological activities, which plants use as a 
front‐line chemical defence against pathogens (Figure 1.1). Additionally, the anticancer, 
antimiotic, antiangiogenesis and antiviral properties possessed by lignans have made 
them appealing drug candidates, as well as starting points for drug discovery. Lignans 
currently employed for healthcare include (−)‐podophyllotoxin (1), a treatment for 
warts, and its derivatives (−)‐etoposide (2) and (−)‐teniposide (3), two potent chemo-
therapeutic agents (Liu et al. 2007). Other members of this class with promising biologi-
cal activities include (+)‐gomisin J (4) and (+)‐pinoresinol (5). Due to the established 
benefits of the lignans, both their biosynthesis and synthetic strategies to access them 
have been areas of extensive research.

In addition to their varied biological activities, lignans comprise a vast array of struc-
turally distinct skeletons (Figure 1.2), including 6‐ and 8‐membered carbocycles (6, 7), 
linear dibenzylbutanes (8), and diversely oxidized tetrahydrofurans (9–11). Remarkably, 
their biosynthesis originates from a regio‐ and stereoselective, oxidative coupling of 
relatively simple monolignols (propenyl phenols) (12), to form the key 8–8 bond that 
serves to characterize all lignan natural products. Subsequent transformations, includ-
ing cyclization and oxidation of the parent scaffold, convert the initially formed dimer 
to various family members, imparting unique functionalities. While this blueprint has 
served as a key source of inspiration for decades of biomimetic synthetic approaches 
to the lignans, issues of selectivity in the oxidative coupling have led researchers to 
alternative, target‐oriented routes, which are often specific for an individual structural 
class. In this review, we summarize these recent efforts from 2009 to 2016, and provide 
an overview of contemporary research efforts interrogating the lignans. Previous 
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reviews on this subject cover 2000–2004 (Saleem et al. 2005), 2005–2008 (Pan et al. 
2009), and 2009–2015 (Teponno et al. 2016).

1.2  Biosynthesis of Lignans

Due to their biological activity and fundamental importance to plant biology, significant 
efforts have been made to elucidate lignan biosynthesis (Suzuki and Umezawa 2007; 
Umezawa 2009; Petersen et al. 2010). Lignans originate from cinnamic acids, which are 
themselves biosynthesized from phenylalanine (Scheme 1.1). The shikimate pathway, 
which produces several aromatic amino acids including phenylalanine (16), is preceded 
by the synthesis of shikimic acid (15) from phosphoenolpyruvate (13) and erythrose‐4‐
phosphate (14). The conversion of phenylalanine to cinnamic acid (17) is carried out by 
phenylalanine ammonia‐lyase (PAL). Substitution of the aromatic ring is performed by 
cinnamate hydroxylases (C4H and C3H), to access coumaric acid (18) and caffeic acid 
(19). The methyl ether found in ferulic acid (20) is installed by caffeic acid O‐
methyltransferase (CAOMT). Several additional steps convert the carboxylic acid to 
the primary alcohol, affording coniferyl alcohol (21). This propenyl phenol undergoes 
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Figure 1.2  Structural classes of lignans.



O
OH

O

P

HO

OH
O

O
O

OH

OH

P

HO

OH
O

steps OH

O

HO

HO

OH
NH2

OH

Oshikimate
pathway

HO

OH
MeO

laccase

O

O

OH

HO

O

OH
MeO O

OH

OMe

OH

O

MeO
dirigent protein

H H

OH

O

OH

O

HO

OH

O

HO

HO
OH

O

HO

MeO

phosphoenolpyruvate (13)

erythrose-4-phosphate (14)

shikimic acid (15) phenylalanine (16) cinnamic acid (17)

coumaric acid (18)caffeic acid (19)ferulic acid (20)coniferyl alcohol (21)

22 23 (+)-pinoresinol (5)

PAL

C4H

C3HCAOMTsteps

H

H

MeO
OMe

Scheme 1.1  Biosynthesis of (+)‐pinoresinol.



The Lignans 5

an oxidative coupling, the first step in the biosynthesis of pinoresinol (5). The oxidative 
coupling has been extensively investigated (Hapiot et  al. 1994; Gavin and Huai‐Bing 
1997; Halls et al. 2004; Pickel et al. 2010), and involves a unique mechanism, starting 
with a one‐electron oxidation of the phenol, believed to be carried out by a laccase. Two 
phenoxyl radicals (22) are then proposed to combine in the presence of a dirigent pro-
tein to form a bis‐para‐quinone methide (23), which undergoes subsequent cyclization 
to provide the furofuran 5.

Several dirigent proteins have been isolated, including those that are selective for either 
enantiomer of pinoresinol. They display a unique ability to control the regio‐ and stere-
oselectivity of phenoxyl C–C coupling, despite not having any oxidative activity them-
selves. This has led to a biosynthetic proposal that requires an exogenous oxidant, followed 
by diffusion of the phenoxyl radicals into the dirigent protein’s active site. In their absence, 
the oxidative coupling of coniferyl alcohol leads to a complex mixture (Scheme 1.2), from 
which pinoresinol is isolated in only trace quantities. The first crystal structure of such 
proteins was obtained from a pea plant, Pisum sativum (Figure 1.3), affording (+)‐pinores-
inol (Kim et al. 2015). While it was not co‐crystallized with the substrate, several aspects 
of the protein are consistent with the proposed biosynthesis. A trimer structure was 
determined, which was observed to have six conserved residues in the proposed active 
site with other proteins that produce (+)‐pinoresinol. These include arginine and aspartic acid 
residues that are on opposite sides of the pocket but are sufficiently close to co‐ordinate 
to the phenolic and primary hydroxylic oxygens of the oxidized substrate. However, since 
several loops surrounding the potential binding cavity were not resolved in the structure, 
alternative modes of substrate binding and coupling could not be confirmed.

While the exact mechanistic steps involved in the dimerization have not been conclu-
sively determined, it is now accepted that the dirigent protein is critical for controlling 
selectivity during the oxidative coupling. This is readily apparent from numerous studies 
on the free radical coupling of monolignols (Table 1.1). In the presence of various oxi-
dants, coniferyl alcohol rarely forms pinoresinol but instead affords dimers arising from 
radical coupling at carbon 8 with carbon 5 and oxygen 4 (Scheme 1.2a and b), along with 
extensive polymerization and decomposition. Attempts at directly mimicking the bio-
synthetic pathway by employing laccases (Wan et  al. 2007; Lu and Miyakoshi 2012) 
(Table 1.1, entries 1–4) and peroxidases (Chioccara et al. 1993; Mitsuhashi et al. 2008; 
Matsutomo et al. 2013) (entries 5–7) afford mixtures that vary significantly depending 
on the specific enzyme used, as well as the method of isolation and purification of the 
oxidase. Due to the sensitivity of the enzymes, temperature and pH play a large role in 
the product distribution. More traditional synthetic oxidants, such as peroxides 
(Dellagreca et al. 2008) (entry 8) and metal salts (Brežný and Alföldi 1982; Vermes et al. 
1991; Kasahara et al. 2006; Lancefield and Westwood 2015) (entries 9–12), have been 
utilized and suffer from similar challenges with regioselectivity and decomposition.

These issues of selectivity result from delocalization of the phenoxyl radical, which 
places partial spin density at carbons 1, 3, 5, 8 and oxygen 4 (Scheme 1.2c) (Sangha et al. 
2012). Although the calculated spin density at carbons 1 and 3 is higher than at other 
carbons, steric factors and the inability to restore aromaticity make coupling at these 
positions unlikely. Calculated enthalpic values show that 8–O–4, 8–8, and 8–5 dimers 
are 5–20 kcal mol−1 more stable than the 5–O–4, 5–5, and 8–1 dimers. The 8–5 and 
8–O–4 linkages allow for rearomatization by nucleophilic attack of the para‐quinone 
methide (Scheme 1.2d). Intramolecular cyclization by the phenol in the 8–5 dimer and 
an external nucleophilic attack on the 8–O–4 dimer provide the core structures of the 
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neolignan class of molecules. The 8–O–4 linkage is the most thermodynamically 
favourable, which is consistent with experimental studies. Additionally, this coupling is 
the predominant interunit linkage observed in lignin, the plant polymer synthesized 
from the oxidation of monolignols. The ability of plants to form other linkages in both 
the polymer and the lignans is thus likely to result from factors controlling the orienta-
tion of the radicals during coupling. Without the dirigent protein to position the phe-
noxyl radicals appropriately, controlling selectivity remains a significant challenge.

The C–C linkage adjoining two units of coniferyl alcohol is conserved in all the lignan 
natural products, with subsequent transformations of this core structure leading to 
downstream derivatives (Scheme 1.3). These steps have been carefully studied for the 
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