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Preface

Since its early development in the 1960s, the field of homogeneous catalysis has
led to a plethora of industrially applied organometallic catalysts and, not the least,
to an in-depth fundamental understanding of the reactivity of transition metal
complexes. The threefold awarding of the Nobel Prize to the field of homoge-
neous catalysis in the very beginning of the twenty-first century highlights the
impact the homogeneous catalysis field has made on chemistry and synthesis
in general [1–3]. Remarkably, the reactions for which these awards have been
given predominantly make use of noble, platinum group metals. This illustrates
the historical importance and dominance of the use of noble metals in the field of
homogeneous catalysis at large, from gram-scale, exploratory organic synthesis
in pharmaceutical labs to large-scale industrial processes.

Although non-noble metals such as iron have been investigated from the early
days of catalysis on, their noble counterparts have quickly and durably come to
occupy the center of the stage. However, many recent endeavors in the field shift
the focus back to non-noble metals, sometimes referred to as “base metals,” in
the development of new homogeneous catalysts. This move is largely driven by
economic and environmental considerations. Not only are market prices of noble
metals generally high, which is largely due to their relatively low abundancy in the
earth crust, but these prices are often rather volatile as well. In addition, many of
the noble metals are associated with toxicity issues for humans and the environ-
ment. As a consequence, the use of noble metal catalysts in, e.g., later stages of
active pharmaceutical ingredient synthesis requires stringent purification proce-
dures with the associated energetic and financial costs.

Motivated by many of these considerations, the scientific community has
become interested in the study and development of homogeneous catalysts that
are based on non-noble metals. The practical use of metals such as manganese,
iron, and cobalt promises to alleviate, at least partly, some of these issues. A
recent analysis by the EU on the criticality of raw materials furthermore shows
that the late first-row transition metals are all above the economic importance
threshold, whereas all except cobalt are below the supply risk threshold [4].
This is in contrast with many other raw materials, including the platinum group
metals, where geopolitical issues come in to play as well.
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One should not forget, though, that the current blossoming of the field of
non-noble metal catalysis is for a large part simply born out of scientific curios-
ity. The availability of multiple oxidation states, often spaced by one-electron
differences, and the strong tendency to adopt high-spin electron configurations
lead to markedly different chemistry for non-noble metals with respect to noble
metals, e.g. in terms of kinetic lability and lifetimes of intermediates. The inves-
tigation of non-noble metals in homogeneous catalysis is therefore expected to
unravel fundamentally new reactivity patterns, leading to new catalysts, and,
not unimportantly, to new applications. In contrast to the early days of catalysis,
the current availability of advanced spectroscopic and analytical tools, including
density functional theory and other computational methods, now allows for
a detailed characterization and understanding of non-noble metal complexes,
catalysts, and reactive intermediates. This situation is clearly different from the
times when Kochi was exploring iron-mediated C—C coupling chemistry in the
1940s (see Chapter 11 by Neidig et al.).

Although the terms “non-noble metals” and “base metals” are broadly defined,
we opted to focus this book on the late, first-row transition metals Mn, Fe,
Co, Ni, and Cu, given the volume of recent interest in and the development of
the catalytic chemistry of these metals. Only in selected cases will examples
using other metals be discussed, and if so mainly to put recent developments in
perspective. In this sense, the book adds on and complements earlier books on
related topics, such as the book edited by Bullock on “catalysis without precious
metals” [5].

The first four chapters of the book deal with conceptual aspects of non-noble
metal catalysis in order to provide the reader with some further background.
These chapters include discussions on non-innocent ligands (de Bruin,
Chapter 1), computational methods (Ye, Neese, Chapter 2), multinuclear
complexes (Mankad, Chapter 3), and industrial applications (Alsters, Le Fort,
Chapter 4). Subsequent chapters discuss typical reaction classes, such as addi-
tions to C=C , C=N, and C=O double bonds (Chapters 5–10), the formation
of C—C and C—hetero atom bonds through cross-coupling (Chapters 11–13),
(formal) oxidation reactions (Chapters 14–16), and small-molecule activation
(Chapters 16–20). These reaction classes are chosen to be representative of the
broad range of reactions for which non-noble metal catalysts are being investi-
gated. These chapters are presented from the point of view of synthetic method
development or of catalyst development and may focus on the use of a single
metal for a particular reaction or on a particular reaction itself. Accordingly, a
particular reaction or catalyst may appear in more than one chapter.

We hope this book provides the more experienced reader with a contemporary
overview of the current standing in the field of homogeneous non-noble metal
catalysis and appeals to the less experienced reader in raising further interest in
the field.

A big “thank you” not only goes out to all the contributors to this book, who
have kept up with us as editors, but also the support staff at Wiley for their help
and patience. We would also like to thank our collaborators within the European
training network NoNoMeCat on homogeneous “non-noble metal catalysis” for
the joint and stimulating efforts in further developing the field and training the
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next general generation of researchers in the field [6]. Not surprisingly, many of
these collaborators are contributors to this book.

Utrecht, July 2018 Robertus J. M. Klein Gebbink
Marc-Etienne Moret
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1.1 Introduction

The development of efficient and selective catalysts is an important goal of mod-
ern research in chemistry – the science of matter and its transformations. Our
society needs new catalysts to become more sustainable, and a desire for selectiv-
ity and efficiency in the preparation of medicines and materials has boosted our
interest in developing new methods based on homogeneous catalysis, particu-
larly on the development of new ligands that can be fine-tuned to specific needs.
The properties of a metal complex as a whole are the result of the interaction
between the metal center and its surrounding ligands. In traditional approaches,
the steric and electronic properties of the spectator ligand are used to control the
performance of the catalyst, but most of the reactivity takes place at the metal.
Recent new approaches deviate from this concept and make use of ligands that
play a more prominent role in the elementary bond activation steps in a catalytic
cycle [1, 2]. The central idea is that the metal and the ligand can act in a synergis-
tic manner to facilitate a chemical process. In this light, complexes based on the
so-called “non-innocent” ligands offer interesting prospects and have attracted
quite some attention.

The term “non-innocent” is broadly used, and diverse authors give different
interpretations to the term. It was originally introduced by Jørgensen [3] to
indicate that assigning metal oxidation states can be ambiguous when complexes
contain redox-active ligands. As such, ligands that get reduced or oxidized
in a redox process of a transition metal complex are often referred to as “re-
dox non-innocent.” [4, 5] With modern spectroscopic techniques, combined
with computational studies, assigning metal and ligand oxidations states has
become less ambiguous, and hence, many authors started to use the term
“redox-active ligands” instead. Gradually, many authors also started to use the
term “non-innocent” for ligands that are more than just an ancillary ligand, fre-
quently involving ligands that have reactive moieties that can act in cooperative
(catalytic) chemical transformations, act as temporary electron reservoirs, or
respond to external triggers to modify the properties or reactivity of a complex.
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A common objective of many of these investigations is to achieve better control
over the catalytic reactivity of first-row transition metal complexes, with the
ultimate goal to replace the scarce, expensive noble metals currently used in a
variety of catalytic processes by cheap and abundant first-row transition metals.
Instead of providing a comprehensive overview of redox non-innocent [6, 7]
and cooperative ligands [1, 8, 9], this chapter is intended to provide a conceptual
introduction into the topic of achieving control over the catalytic reactivity of
non-noble metals using non-innocent ligands on the basis of recent examples.

Noble metals are frequently used in several catalytic synthetic methodologies
and many industrial processes [10]. Their catalytic reactivity is most frequently
based on their well-established “two-electron reactivity,” involving typical
elementary steps such as reductive elimination and oxidative addition. These
elementary steps easily occur for late (mostly second and third rows) transition
metals having two stable oxidation states differing by two electrons. However,
most noble metals are scarce and are therefore expensive (and sometimes toxic
[11]). Therefore, it is necessary to reinvestigate the use of cheaper, abundant, and
benign metals to arrive at cost-effective alternatives. This is not an easy task, as
base metals (Fe, Co, Cu, Ni, etc.) often favor one-electron redox processes,
and typical elementary steps commonly observed in noble metal catalysis
are only scarcely observed for base metals. As such, the unique properties of
non-innocent ligands are advantageous to gain better control over the reactivity
of base metals. In some cases, this leads to reactivity comparable to that of noble
metal complexes (but more cost-effective and benign), whereas in other cases,
the combination of a base metal with a “non-innocent” ligand can actually give
access to unique new types of reactivity.

This chapter has four parts. In Section 1.2, the concept of responsive ligands
is discussed, giving examples of a series of ligands that can be tuned using exter-
nal stimuli such as light, pH, or ligand-based redox reactions. These can trig-
ger a change in the properties of the ligand, thereby modifying the reactivity
of the metal. Section 1.3 deals with redox-active ligands that behave as electron
reservoirs. In the examples provided, this feature enables oxidative addition and
reductive elimination steps for first-row transition metal complexes that, with-
out the aid of redox-active ligands, are less inclined to undergo these catalytically
relevant elementary steps. Section 1.4 focuses on recent examples of coopera-
tive catalysis, in which non-noble metal reactivity is combined with ligand-based
reactivity in key substrate activation steps. The last part (Section 1.5) deals with
examples in which the coordinated substrate itself acts as a redox-active moiety in
key elementary steps of a catalytic reaction. More specifically, these coordinated
substrates get oxidized or reduced by the metal by a single electron, thus cre-
ating “substrate radicals,” which play an important role in catalytic radical-type
transformations.

1.2 Stimuli-Responsive Ligands

Common ancillary (innocent) ligands in homogeneous catalysis typically control
the activity and selectivity of the catalyst by affecting the steric and electronic
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properties around the reactive metal center. As such, changing the reactivity
of the active metal center usually requires the synthesis of new ligands, which
is often associated with elaborate synthetic procedures [6]. However, the
electronic and steric properties of ligands can sometimes be influenced in an
easier manner by using external stimuli, involving, for example, ligand proto-
nation/deprotonation, ligand oxidation/reduction, or (reversible) light-induced
ligand transformations (Scheme 1.1) [12].
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Scheme 1.1 Switching catalytic properties of a catalyst using external stimuli.

When using such responsive ligands, the metal oxidation state is typically unaf-
fected, but its reactivity is nonetheless influenced by the new electronic and steric
properties of the ligand. Furthermore, the solubility of the metal complex can
sometimes be significantly influenced by such external stimuli. In most current
literature, these ligands are nevertheless considered to be “innocent” ligands as
they are not directly involved in substrate bond making/breaking processes nor
lead to ambiguities in assigning the metal oxidation state. Stimuli-responsive lig-
ands are particularly useful to influence the catalyst during a catalytic reaction
and are therefore mainly applied to develop switchable catalytic systems.

1.2.1 Redox-Responsive Ligands

Oxidation or reduction of a complex containing one or more redox-active
ligands can lead to oxidation or reduction of the ligand rather than the metal. As
such, the ligand can switch between one or multiple oxidized and reduced states,
by which the electronic properties of the ligand (and thereby the metal) change.
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These redox processes can be triggered either chemically or electrochemically
[13]. Often metallocenes such as ferrocene or cobaltocene are used because
of their reversible oxidation and reduction cycles [14]. In other cases, the
redox-active part of the ligand of interest is actually a metallocene moiety [15].
Upon oxidation of a ferrocenyl to a ferrocenylium group attached to the ligand,
the electron density of the donor ligand decreases and thereby also that of the
metal bound to this ligand, as can be observed in a shift of the CO stretch
frequency to higher wavenumbers for carbonyl complexes [16]. Recently, a
review appeared reporting a variety of chemical oxidants and reductants that
allow the design of new catalysts with switchable ligands at a specific desired
potential [17]. Examples of the use of redox-active ligands in catalysis frequently
involve redox processes that partly occur at the redox-active ligand and partly
at the catalytic metal center (see Section 1.3). Examples of redox-responsive
ligands in catalysis wherein ligand-based redox processes affect the metal center
and its catalytic properties indirectly are rare, especially for base metals. The
main application of such reported examples is in the field of switchable catalysis.
Furthermore, the solubility of the ligand can change significantly because of
charge buildup, thus enabling separation of the catalyst from the reaction
mixture after a catalytic reaction [18].

By oxidation or reduction of the ligand, the overall charge of the complex
changes, which affects the catalytic activity of the central metal, and in some
cases, this can be used to switch a catalyst ON and OFF. Most of the recently
reported examples of such switchable catalysts involve systems based on noble
metals [18–20], but a few examples of base metals are known as described
below. One of the first redox-responsive base metal catalysts reported involves
a titanium-based salen-type ligand substituted with two ferrocene (Fc) moieties
(Figure 1.1a) [21]. The catalyst was used in the ring-opening polymerization of
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Figure 1.1 Titanium-based redox-switchable catalyst (a) and the effect of switching on the
catalysis (b) on the polymerization reaction (c).
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lactides, during which the neutral catalyst showed a 30-fold enhanced rate with
respect to the oxidized complex. Oxidation of the ferrocenyl moieties of the
catalyst does not completely shut down the catalytic activity, but by addition
of small amounts of oxidant or reductant, the catalyst can nonetheless be
switched between a more active (ON) and less active (OFF) state during catalysis
(Figure 1.1b).

More recently, new titanium and zirconium catalysts were developed based
on salfan (Y = NMe) and thiolfan (Y = S) ligands (Figure 1.2a) containing a fer-
rocene moiety closer to the metal center [22]. The reduced and oxidized cata-
lysts showed opposing rates for the ring-opening polymerization of l-lactide and
ϵ-caprolactone, respectively (Figure 1.2b). By switching between the two states
during the polymerization reaction, the catalyst can be used to generate block
copolymers with a high degree of regularity. In particular, this last example ele-
gantly shows the power of switchable catalysts for application in polymeriza-
tion reactions. Given the potential of such systems, we expect that many more
examples of redox-switchable catalysts used for a variety of other catalytic reac-
tions are likely to be disclosed in the next couple of years.

1.2.2 pH-Responsive Ligands

Ligands that can be easily protonated or deprotonated by applying relatively
mild pH changes are commonly used to affect the solubility of catalysts.
With this method, homogeneous catalysts can be easily recycled, thus sav-
ing cost and avoiding metal contamination in the products. Reversible
protonation of amine groups to obtain water-soluble complexes has been
applied to noble-metal-catalyzed reactions such as olefin metathesis [23] and
cross-coupling reactions [24]. The selectivity of rhodium metathesis catalysts
can be further altered upon protonation of the ligand [25]. By using similar

Y Y

O O
M tBu

tButBu
tBu tBu

tBu
tBu tBu

Fe

Y Y

O O
M

Fe+

Oxidation Reduction

Y = NMe, S

M = Ti(OiPr)2, Zr(OtBu)2

O O

OO

OO

(a) (b)

O
O

O

O n

O

O n

Oxidized catalyst

Reduced catalyst

Reduced catalyst

Oxidized catalyst

Figure 1.2 Ferrocene containing redox-switchable catalysts (a) and inverted reactivity for the
resulting oxidized and reduced complexes (b). Source: Wang et al. 2014 [22]. Reproduced with
permission of ACS.
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ammonium-tagged NHC ligands, a copper-catalyzed click reaction in water was
developed by Li and coworkers [26]. The products could simply be extracted in
order to recycle the catalyst several times with a small loss of overall yield, but the
catalyst was not switchable. In 2012, the same group reported a similar copper
complex for the carbonylation of boronic acids, benzoxazoles, and terminal
alkynes [27]. In this case, the catalyst precipitates upon protonation and could be
separated by centrifugation (Figure 1.3). The catalyst can be recycled up to four
times with only moderate loss in activity. Related copper-catalyzed reactions
based on NHC complexes with pendant bases have also been reported [28], but
the effects of deprotonation on the catalysis or recyclability of the complex were
not discussed in detail for these systems.

The second type of proton-switchable ligands is composed of bipyridine and
phenanthroline ligands equipped with moieties that can be (de)protonated. Many
late transition metal catalysts based on iridium [29–31], rhodium [32], and rhe-
nium [33] have been reported to use this class of ligands. Recent base metal
examples include a switchable copper catalyst for the Ullmann reaction of aryl
bromides. The catalyst can be deprotonated in basic water to obtain a highly
active catalyst, which could be recycled by acidification (Figure 1.4) [34].
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Figure 1.4 Reversible deprotonation of a 4,7-dihydroxy-1,10-phenanthroline (including
dotted lines) or 4,4′-dihidroxy-2,2′-bipyridine (excluding dotted lines)-based complex.
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Another example of a proton-switchable catalyst involves a cobalt complex
based on bipyridine for the hydrogenation of carbon dioxide to formate [35].
The alcohol substituents were introduced either at the 4,4′- or the 6,6′-positions.
The obtained complexes show a large dependence on the concentration of base
as the deprotonated complex is active and more stable under the reaction con-
ditions. Recyclability data were not reported for these systems, but the com-
plexes do, however, show a significantly higher activity after deprotonation of the
ligand.

1.2.3 Light-Responsive Ligands

Light, being rather non-invasive, is perhaps the most interesting external trigger
to switch a bistable catalyst. Upon irradiation with light, many molecules
such as diarylethenes, azobenzenes, or spiropyrans can undergo structural
rearrangement (Figure 1.5). Incorporation of these switchable moieties in
a catalyst could result in easy control of its catalytic activity [36, 37], and
use of different wavelengths typically allows two-way switching of these
scaffolds.

An elegant example of this type of responsive catalyst was reported by
the group of Branda for a copper-catalyzed cyclopropanation reaction
(Figure 1.6) [38].

Upon reversible isomerization of the open ligand (Figure 1.6, right complex) to
the cyclized complex (Figure 1.6, left complex), almost all stereoselectivity was
lost. Although switching the ligand was more difficult after copper coordination,
it was still feasible after addition of a small amount of a coordinating solvent to
the reaction mixture.
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1.3 Redox-Active Ligands as Electron Reservoirs

The most straightforward application of redox-active ligands is as electron
reservoir, to facilitate redox processes for base metals that would otherwise
be difficult or impossible. As such, redox-active ligands can participate in key
redox processes of a catalytic cycle, such as oxidative addition or reductive
elimination steps (Scheme 1.2). The ligand can temporarily store or release
additional electrons allowing the metal complex to perform multielectron steps,
avoiding formation of high-energy oxidation states of the metal if the energy
levels of redox-active ligands are more accessible [39]. In this way, even purely
ligand-centered redox processes become possible leaving the metal in the same
oxidation state throughout an entire catalytic cycle. As such, by making use of
redox-active ligands, the reactivity of first-row transition metals can be tuned
toward catalytic properties more typically observed for noble metals [40].
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Scheme 1.2 (a) Classic oxidative addition and (b) oxidative addition in metal complexes with
redox-active ligands.

1.3.1 Bis(imino)pyridine (BIP)

The bis(imino)pyridine (BIP) ligand (Scheme 1.3) has perhaps been most fre-
quently used as an electron reservoir. This class of ligands consists of pyridine
derivatives with imine functionalities at the 2,6-positions and stabilizes metals in
low (formal)-oxidation states. The three nitrogen centers of the ligand bind to a
metal in a tridentate manner, forming pincer complexes (Scheme 1.3, left). The
obtained non-innocent ligand can have more than one oxidation state, as the lig-
and π*-orbitals can accept several electrons. The ligand can easily be synthesized


