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Preface 

The engineering applications of the Air Force Research Laboratory 
exercise a diverse spectrum of extreme and dynamic loading conditions that 
challenges the state-of-the art capability of engineering tools. Munitions 
applications include the extreme conditions of operational employment as 
well as the safety protocols designed for protection from accidents and 
adversarial threats. The operational scenario begins with delivery platforms 
that can make the systems subject to long-duration ~0 (hrs), high-temperature 
vibrations and the combination thereof. The engagement phase can induce 
high-pressure (10s of kbar) mid-duration ~0 (ms) with a combined shear 
component. The terminal phase of detonation and fragmentation accentuates 
all of these loadings with ~0 (ns) detonation shock loading reaching  
Mbar peak pressures all under triaxial stress conditions at strain rates of 
nearly 0 (106 cm/s/s). The detonation process occurs on the timescale of 
nanoseconds, with giga watts of power being released in sub-millimeter 
length scales for shock- and blast-driven work. This seemingly rudimentary, 
stochastic event has had more than 100 years of research by the broader 
community, yet significant gaps remain in our understanding.  

Furthermore, these systems are built to survive a suite of six hazards 
mandated via the insensitive munitions (IM) requirements. The IM hazards 
represent accidents and intentional threats a munition might encounter 
throughout its life cycle. Each of these also drives the need for constitutive 
models, including advanced mathematical frameworks for damage, fracture  
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and fragmentation as well as complementary numerical frameworks, and 
furthermore, necessary experiments and diagnostics of such. 

This book presents recent advances that have been made in the 
understanding, experimental characterization, theoretical models and 
numerical simulations of the aforementioned thermo-mechanical processes. It 
is based on selected invited lectures and lively exchanges of ideas at the  
10th US-French symposium “Dynamic damage and fragmentation”, Fort 
Walton Beach, Fl, 17–19 May 2017 organized under the auspices of the 
International Center for Applied Computational Mechanics (ICACM) at the 
University of Florida/REEF.  

The first part of this book presents an overview of the numerical 
approaches developed for modeling instabilities leading to plastic flow 
localization and failure in isotropic metallic materials. For moderate loadings, 
models for description of strain localization induced by local softening either 
due to local heating and plastic dissipation (see Chapter 1 on adiabatic shear 
bands) or due to local damage (see Chapter 3 on gradient plasticity) are 
presented. With regard to fragmentation of metallic structures, which is a 
manifestation of local instabilities under extreme environments, the latest 
developments are presented in Chapter 2. It is demonstrated that linear 
stability analysis can be successfully used to determine the multiple sites of 
necking and, furthermore, the fragmentation of a steel ring. While 
constitutive models and numerical methods are mostly developed assuming 
isotropic behavior, it should be pointed out that for most materials, the 
anisotropy in the mechanical response could not be neglected. In Chapter 4, 
which is devoted to the characterization and modeling of the plastic behavior 
of refractory metals, it is shown that only by considering the combined 
influence of anisotropy and strength differential effects on the mechanical 
response, the particularities of the mechanical response of these materials 
under extreme environments can be captured with accuracy.  

Advancement in understanding and modeling the mechanical behavior 
can be achieved only through integration with experiments. Recent progress 
made in the development of methodologies to measure the local strain fields 
and their direct exploitation to calibrate model parameters using inverse 
methods are presented in Chapter 5. For extreme loadings, new experimental 
capabilities that allow us to collect precise and reproducible data are 
presented in Chapter 6. Specifically, it is shown that laser-driven shocks can  
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be used to investigate the mechanical response over a range of very high 
strain rates (~107 s−1), high loading pressures, small spatial scales and very 
short durations of pressure application (~ns). Moreover, their relatively low 
destructiveness facilitates easier sample recovery and easier instrumentation 
than the more conventional shock loading techniques based on explosives or 
plate impacts. 

The second part of this book presents an overview of the experimental 
methods and numerical approaches developed for modeling the overall 
mechanical behavior and instabilities in brittle materials, including 
cementitious and ceramic materials and granular media. Such materials are 
very heterogeneous, and contain a large number of defects such as  
micro-voids or micro-cracks that strongly influence their quasi-static and 
dynamic behavior. Chapter 7 presents a one-dimensional model that captures 
the influence of the local heterogeneity and strain rate on the fragment size 
probability density functions, while Chapter 8 is devoted to modeling of the 
influence of the crack density and orientation on three-dimensional wave 
propagation.  

The need to numerically model the limit stage when matter no longer 
sustain the imparted strains and more or less progressively transits from 
continuum to a discrete state has led to the development of discrete element 
methods (DEM). Chapter 9 presents the mathematical foundation of DEM 
and its application to simulation of a penetration event into a cementitious 
target, whereas Chapter 10 is devoted to modeling instabilities in this 
framework. 

New experimental capabilities developed in the past decade for studying 
the high-rate behavior of concrete and ceramics are presented in Chapters 11 
and 12.  

Finally, another facet of this book is that a variety of materials are 
presented. As an example, Chapter 13 presents modeling shock-wave 
phenomena in energetic materials using an Eulerian approach, while Chapter 
14 presents an alternative approach to modeling the high-rate regime of 
behavior using a hypo-elastic modeling approach.  
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Some Issues Related to the  
Modeling of Dynamic Shear 

Localization-assisted Failure 

Engineering design of structures to withstand accidental events involving 
high strain rates and/or impact loading requires predictive modeling 
capabilities for reproducing numerically potential premature failure following 
adiabatic shear banding (ASB). The purpose of the present chapter is to 
review ASB-oriented modeling approaches available in the literature (while 
not pretending to be exhaustive) that provide a better understanding of ASB 
and its consequences in structural metals and alloys. 

1.1. Introduction 

ASB is a mechanism of plastic flow localization known to be triggered by 
a thermo-mechanical instability in the context of dynamic plasticity (see, for 
example, Woodward [WOO 90] and Bai and Dodd [BAI 92]). It may be 
particularly encountered in high-strength metals and alloys including, but not 
restricted to: 

– steels: martensitic steel (Zener and Hollomon [ZEN 44]); HY100 
(Marchand and Duffy [MAR 88]); Maraging C300 (Zhou et al. [ZHO 96a]); 
4340VAR (Minnaar and Zhou [MIN 98]); ARMOX500T (Roux et al.  
[ROU 15]), etc.; 
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– titanium alloys: various titanium alloys (Mazeau et al. [MAZ 97]);  
Ti-6Al-4V (Liao and Duffy [LIA 98]); β-CEZ (Sukumar et al. [SUK 13]); 
UFG pure Ti (Wang et al. [WAN 14]), etc.; 

– aluminum alloys: AA25XX (Liang et al. [LIA 12]); AA50XX (Yan  
et al. [YAN 14]); AA60XX (Adesola et al. [ADE 13]); AA70XX (Mondal  
et al. [MON 11]), etc. 

Shown as causing either a loss of the ballistic performance of a protection 
(armor) plate made of high-strength steel and alloys (see, for example, 
Backman and Goldsmith [BAC 78]) or an increase of the ballistic 
performance of a kinetic energy penetrator made of depleted uranium, due to 
the self-sharpening effect (see, for example, Magness and Farrand [MAG 90] 
and Gsponer [GSP 03]), ASB has been widely studied for defense 
applications, mostly from a metallurgical viewpoint with the aim to possibly 
reduce/increase material ASB sensitivity. In parallel, for a long time, a 
condition for ASB initiation has been considered as a failure criterion in the 
design of protection structures undergoing impact and other high-strain rate 
loadings. However, this approach generally leads to over-conservative design 
since the structure is still able to consume energy in the post-localization 
stage. ASB is also seen to control chip serration in high-speed machining of, 
for example, high-strength steel and titanium alloys (see, for example, 
Molinari et al. [MOL 13]), having mitigated effect in the sense that it reduces 
the cutting force magnitude while generating fluctuations of the cutting force 
and degrading the surface roughness. Numerically optimizing the cutting 
conditions implies accounting for ASB. 

It has thus become indispensable to explicitly deal with this progressive, 
irreversible softening mechanism of localized deformation to the same extent 
as it has become necessary to account for damage-induced softening for 
related applications. 

In this chapter, we present selected ASB-oriented modeling approaches 
available in the literature (while not pretending to be exhaustive) for guiding 
researchers and engineers who need to consider and address ASB and its 
consequences in structural metals and alloys. The inability of standard 
engineering thermo-viscoplasticity models (see, for example, the Johnson-
Cook model) to reproduce ASB-assisted failure (see Batra and Stevens  
[BAT 98] or Longère et al. [LON 09]) has led to the development of enriched 
models, i.e. models embedding discontinuity either at the constitutive 
equations level (see Longère et al. [LON 03]) or at the FE kinematics  
level (see, for example, Areias and Belytschko [ARE 07]). There are two 
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classes of approaches depending on the modeling scale: a first class in which 
the RVE/FE characteristic length is smaller than the bandwidth, and a second 
class in which the RVE/FE characteristic length is greater than the 
bandwidth. RVE stands for the representative volume element for a given 
material. In the sequel, the former approach is referred to as “small-scale 
postulate”, whereas the latter is referred to as “large-scale postulate” (see 
Longère et al. [LON 18a]). It must be noted that a similar distinction, but 
with a different nomenclature, can be found in Belytshko et al. [BEL 88]. 

Section 1.2 deals with preliminary considerations and the introduction of 
basic concepts. Sections 1.3 and 1.4 present some models based on the 
“small-scale postulate” and “large-scale postulate”, respectively. The 
summary and conclusions are given in section 1.5. 

1.2. Preliminary/fundamental considerations 

The present work focuses on metals and alloys, even though most of the 
considerations and concepts presented in the following apply to a wider class 
of solid materials, including, for example, polymers (below glass transition). 
In addition, the numerical approach considered for the resolution of the initial 
boundary value problems involving structural materials susceptible to ASB is 
here restricted to the finite-element method, which is the most widely used 
method for engineering applications. Thus, there is a connection between the 
volume element and the integration point. 

1.2.1. Localization and discontinuity 

First, definitions of basic concepts are introduced: 

Discontinuity 

It should be recalled that according to the discontinuity theory (see  
Figure 1.1): 

– a “strong” discontinuity involves a discontinuity of the displacement/ 
velocity field; 

– a “weak” discontinuity involves a discontinuity of the gradient of the 
displacement/velocity field, i.e. of the strain/strain rate field. 
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For example, a crack generates a strong discontinuity, whereas strain 
localization produces a weak discontinuity. An ASB exhibiting a width with 
distinct boundaries is thus associated with strain localization involving a weak 
discontinuity, i.e. a discontinuity of the gradient of displacement/velocity 
field. 

Strain localization 

– the “physical” strain localization, as observed experimentally, results 
from a thermo-mechanical instability due to, for example, thermal softening, 
damage, microstructural changes or their combination; 

– the “numerical” strain localization, as observed in numerical 
simulations, is characterized by the formation of a band whose width covers 
only a single (standard) finite element and results from the loss of uniqueness 
of the solution of the initial boundary value problem (IBVP) in the softening 
regime, having, as a result, mesh size and orientation dependence of the 
numerical results. 

Ideally, the numerical strain localization would/should numerically 
reproduce the physical strain localization. However, it is rarely, actually 
scarcely ever, the case.  

 

Figure 1.1. Displacement and strain fields in the absence of discontinuity  
and in the presence of weak and strong discontinuities. Body Ω with a 
discontinuity; w represents the discontinuity width and u and u∇  are the 
displacement/velocity and displacement/velocity gradient, respectively. 
Source: Longère [LON 18a] 
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Based on the well-known experimental results obtained by Marchand and 
Duffy [MAR 88] on dynamic torsion loading of a thin-walled cylinder made 
of high-strength steel (see also Roux et al. [ROU 15] for impact loading), the 
following scenario is well established nowadays. During the shear loading of 
a viscoplastic material, we can distinguish three stages: a first stage of 
homogeneous deformation, a second stage of weakly heterogeneous 
deformation and a third stage of strongly heterogeneous deformation. It is 
during the third stage that ASB occurs and further develops, sometimes 
leading (see, for example, Longère and Dragon [LON 15] for titanium alloys) 
to void growth-induced damage and ultimately to fracture in the band wake. 
Thus, two characteristic lengths are involved: a large one W for weakly 
heterogeneous deformation and a small one w for strongly heterogeneous 
deformation (see Figure 1.2). 

 

Figure 1.2. Zones of weakly and strongly heterogeneous  
deformations according to Marchand and Duffy’s terminology  

[MAR 88]. Source: Longère [LON 18a] 

The non-local modeling framework has been specifically developed to 
respond to the need for incorporation of material length-scale measures in the 
constitutive description involving deformation process strongly affected by 
the presence of material or geometrical imperfections, distribution of defects 
and strain localization phenomena. A systematic design of the non-local 
gradient-enhanced continuum model for solving high-velocity impact-related 
problems has been attempted by Voyiadjis and co-workers. A thermo-
viscoplastic and thermo-viscodamage model in this context was introduced 
by Abu Al-Rub and Voyiadjis [ABU 06a, ABU 06b] and further applied by 
Voyiadjis et al. [VOY 13]. Second-order gradients in the hardening variables 
and in the damage variable are introduced, and the coupling between these 
variables and their gradients are accounted for. The proposed theory leads to 
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numerous material parameters/constants to be determined. They are difficult 
to be established as based on the limited set of micromechanical gradient-
dominated experiments (micro-torsion, micro-indentation, etc.). One of the 
dominant aspects of non-local gradient-dependent models is performing 
regularization with respect to discontinuities. Thus, the corresponding length-
scale-related variables act as localization limiters. There is a notable affinity 
between non-local gradient-enhanced modeling and phase field approaches 
(see, for example, Miehe et al. [MIE 16]). An in-depth discussion of non-
local models is beyond the scope of this chapter. 

The susceptibility of a material to shear banding is characterized by its 
susceptibility to develop a strongly heterogeneous deformation (involving a 
small characteristic length, w) from a weakly heterogeneous deformation 
(involving a large characteristic length, W). Indeed, regardless of the ductile 
material under consideration, the compression of a cylinder systematically 
leads to a weakly heterogeneous deformation along the maximum shearing 
planes (forming cones opposed by their peaks), even under low strain rate, 
but the weakly heterogeneous deformation will only lead to strongly 
heterogeneous deformation for materials susceptible to ASB, mostly under 
high strain rate. 

1.2.2. Isothermal versus adiabatic conditions 

The local form of the heat equation reads 

2cT T Qρ λ− ∇ =  ; k cλ ρ=  [1.1] 

where ρ represents the mass density, c is the specific heat, λ is the thermal 
conductivity, k is the thermal diffusivity (see Figure 1.3 for values of k for 
several solid materials), ∇ is the gradient operator, T is the absolute 
temperature and Q is the rate of heat generation. From equation [1.1], we can 
derive the thermal diffusion time, associated with the time required for the 
material to propagate a temperature gradient along a distance L separating the 
heat source from the heat sink: 

2

2dif

L
t

k
=  [1.2] 
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Figure 1.3. Values of thermal diffusivity k for different solid materials 

Considering a specimen of initial length 0h  and current length h  

submitted to a compression loading between platens (considered as heat 
sink), the test time or time needed to reach the strain εΔ  is given by 

( ) ( )0

0

; ln ln 1 ; exptest

h
t e h h

h

ε ε ε
ε

 Δ= Δ = = + = Δ 
 

 [1.3] 

According to Arruda et al. [ARR 95], assuming that the heat source is 

located in the middle of the specimen (i.e. 0 0 / 2L h=  and / 2L h= ), it is 

possible to compare the test time with the thermal diffusion time using 
equations [1.2] and [1.3] via the ratio 

( ) ( )2 2

0

2 8

exp/ 2

test

dif

t k k

t hh

ε εη
ε εε

Δ Δ= = =
 Δ 

 
 [1.4] 

which makes it possible to distinguish isothermal conditions for 1η >> , 

adiabatic conditions for 1η <<  and coupled conditions for 1η ≈ . 
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Now, we can roughly estimate a critical value for the strain rate ε  at the 
transition between isothermal and adiabatic conditions 

( ) 2

0

1 2
exp

c c k
L

εη ε
ε

Δ= → =
Δ  

  [1.5] 

Critical strain rate cε  coarse estimates are reported in Figure 1.4 for 

different materials and for a given specimen characteristic length 0L . 

According to equation [1.5], the critical strain rate cε  is directly proportional 

to the thermal diffusivity k: the lower the thermal diffusivity k, the lower the 
critical strain rate cε . In particular, if aluminum is taken as reference, its 

critical strain rate is of the same magnitude as tungsten and copper, 10 times 
higher than that of alumina and titanium and 1,000 times higher than that of 
PMMA. It should also be noted that the critical strain rate is dependent on the 
specimen length, in addition to being dependent on the boundary conditions. 

Oussouaddi and Klepaczko [OUS 91] and Rusinek et al. [RUS 02] 
conducted numerical simulations in torsion and shear, respectively, considering 
specific boundary conditions and thermo-viscoplastic constitutive models, in 
order to estimate the transition from isothermal to adiabatic conditions as a 
function of strain rate. It is shown that adiabatic conditions can be assumed for 
copper, aluminum and steel when the strain rate exceeds 102 s−1 and that 
increasing the specimen length results in a decrease of the critical strain rate, 
which is consistent with equation [1.5]. 

 

Figure 1.4. Values of the critical strain rate cε for  
different solid materials; h0 = 20 mm and e = −50% 
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When the strain rate is sufficiently high, implying a very small value for  
η in equation [1.4], adiabatic conditions can be assumed and the local form of 
the heat equation [1.1] reduces to 

cT Qρ =   [1.6] 

1.2.3. Sources of softening 

As instability leading to the development of ASB results from the 
competition between hardening and softening mechanisms, here we consider 
three main sources of softening, namely thermal softening, microstructural 
changes and micro-damage. 

For this aim, here we consider solid materials for which the state potential 

per unit volume is of the form ( ),ε ,eTϖ κ . Moreover, it is assumed that this 

potential can be written as the sum of reversible, stored and purely thermal 

contributions, namely ( ),εe eTϖ , ( ),p Tϖ κ  and ( )T Tϖ  

( ) ( ) ( ) ( ),ε , ,ε ,e e e p TT T T Tϖ κ ϖ ϖ κ ϖ= + +  [1.7] 

where εe  is the elastic strain tensor and κ  is an isotropic hardening variable, 
generally taken to be the accumulated plastic strain. 

The Clausius–Duhem inequality implies that the Cauchy stress tensor σ  
and the strain hardening force R  are expressed as 

( ) ( ) ( )

( ) ( ) ( )

,ε , ,ε
σ ε ,

ε ε

,ε , ,
,

e e e

e
e e

e p

T T
T

T T
R T

ϖ κ ϖ

ϖ κ ϖ κ
κ

κ κ

 ∂ ∂
 = =
 ∂ ∂


∂ ∂
= = ∂ ∂

 [1.8] 

Viscoplastic behavior modeled using the overstress concept and yielding 
according to von Mises is generally assumed, i.e. the yield function is of the 
form 

( ) ( ) ( )( ) ( )σ, σ , , , , , 0y eq y VF R T T Tσ σ σ κ κ σ κ κ= − = ≥  [1.9] 
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where eqσ  represents the Mises equivalent stress, ( )( ), , ,y R T Tσ κ κ  is the 

rate-independent contribution to the yield stress and ( ), ,V Tσ κ κ  is the 

viscous stress or strain rate-induced overstress, or equivalently 

( ) ( )
( ) ( )( ) ( )
σ , ,

, , , , , , ,

eq y

y y V

T

T R T T T

σ σ κ κ

σ κ κ σ κ κ σ κ κ

=


= +



 
 [1.10] 

where ( ), ,y Tσ κ κ  can be viewed as a rate-dependent yield stress. Some 

examples of widely used, engineering-oriented and temperature- and rate-
dependent hardening laws are given as follows: 

– Johnson–Cook temperature- and rate-dependent model 

( ) ( ) ( )
0

, , 1 ln 1n m
y T A B C T

κσ κ κ κ
κ

 
= + + − 

 




; 0

0m

T T
T

T T

−
=

−
 [1.11] 

– Cowper–Symonds rate-dependent model 

( ) ( )( )
1/

0

, , , , , 1

m

y yT R T T
κσ κ κ σ κ κ
κ

  
 = +  
   




 [1.12] 

– Norton rate-dependent model 

( ) ( ) ( )1/, m T
V T Z Tσ κ κ=   [1.13] 

where A, B, C and m are material parameters. 

According to the normality rule, the instantaneous plastic strain rate 
tensor pd  and the isotropic hardening variable rate κ  read 

3

2
p

eq

κ
σ

= s
d  ; 

2
: 0

3
p pκ = ≥d d ; 0

t

dtκ κ= ≥   [1.14] 

where s is the deviatoric part of the stress tensor σ . 

– Thermal softening 

The rate of heat generation Q  in equation [1.1] may be decomposed as 

h
TE TPQ D W W Q= + + +    [1.15] 
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where , , and h
TE TPD W W Q   represent the intrinsic dissipation, the rate of heat 

exchange due to thermo-elasticity coupling, the rate of heat exchange due to 
thermo-plasticity coupling and the latent heat involved during, for example, 
phase transformation, respectively. 

The intrinsic dissipation D  in [1.12] is by definition the difference 
between the plastic work rate PW  and the stored energy rate SW : 

0P SD W W= − ≥   [1.16] 

The rates of heat exchange due to thermo-elasticity and thermo-plasticity 
coupling read 

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

, , , ,
: : :

, , , ,

ε ε σ ε
d d d

ε ε

ε

e e e e

e e e
TE e e

e p

TP

T T T
W T T T

TT T

T T R T
W T T T

T T T

ϖ κ ϖ

ϖ κ ϖ κ κ
κ κ κ

κ κ

 ∂ ∂ ∂
 = = =
 ∂∂ ∂ ∂ ∂


∂ ∂ ∂
= = = ∂ ∂ ∂ ∂ ∂



   

 [1.17] 

where ed  represents the elastic strain rate tensor and : c=a b  is the double 
scalar product (double contraction). For example, if the reversible and stored 
contributions of the state potential in [1.7] read 

( ) ( ) ( ) ( ) ( )1
, : : ; ,

2
e e e e pT T T h g Tϖ ϖ κ κ= =ε ε C ε  [1.18] 

then the Cauchy stress tensor and the strain hardening force and their 
temperature derivatives take the forms 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

,

,

, :

,
, ' :

, '

,
, ' '

e e

e

e e
T

T

T T

T
T T

T

R T h g T

R T
R T h g T

T

κ κ
κ

κ κ

 =

 ∂
 =

∂
 =

 ∂

= = ∂

σ ε C ε

σ ε
σ ε = C ε

 [1.19] 
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It must be noted that TEW  in equation [1.17] is positive in tension and 

negative in compression; TPW  in equation [1.17] is generally negative and 
hQ  in equation [1.15] is positive for exothermal transformation and negative 

for endothermal transformation. 

We can rewrite [1.7] as 

e p hQ Q Q Q= + +     [1.20] 

where 

( )
( ) ( )

,

,

, :

, ,

e e e
TE T

p
TP P S TP eq T

Q W T T

Q D W W W W R T T R Tσ κ κ κ

 = =


 = + = − + = − +  

σ ε d 

     
 [1.21] 

We are now introducing the inelastic heat fraction, or the Taylor–Quinney 
coefficient (see Taylor and Quinney [TAY 34]), β defined as 

PQ Wβ=   [1.22] 

Substituting equation [1.20] into equation [1.22] leads to 

e p h

P P

Q Q Q Q

W W
β + += =

   
   [1.23] 

Using equation [1.21], equation [1.23] becomes 

( )
1

h
S TE TP

P

W W W Q

W
β

− + +
= −

  
  [1.24] 

where PW  is positive in the hardening regime and negative in the softening 

regime. In the absence of latent heat hQ , the inelastic heat fraction reduces to 

( )
1

S TE TP

P

W W W

W
β

− +
= −

  
  [1.25] 

 


