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Preface

The two fields of Geometric Modeling and Algebraic Geometry, though closely re-
lated, are traditionally represented by two almost disjoint scientific communities.
Both fields deal with objects defined by algebraic equations, but the objects are
studied in different ways. While algebraic geometry has developed impressive re-
sults for understanding the theoretical nature of these objects, geometric modeling
focuses on practical applications of virtual shapes defined by algebraic equations.
Recently, however, interaction between the two fields has stimulated new research.
For instance, algorithms for solving intersection problems have benefited from con-
tributions from the algebraic side.

The workshop series on Algebraic Geometry and Geometric Modeling (Vilnius
2002, Nice 2004%) and on Computational Methods for Algebraic Spline Surfaces
(Kefermarkt 20033, Oslo 2005) have provided a forum for the interaction between
the two fields. The present volume presents revised papers which have grown out of
the 2005 Oslo workshop, which was aligned with the final review of the European
project GAIA 11, entitled Intersection algorithms for geometry based IT-applications
using approximate algebraic methods (IST 2001-35512)*.

It consists of 12 chapters, which are organized in 3 parts. The first part describes
the aims and the results of the GAIA II project. Part 2 consists of 5 chapters covering
results about special algebraic surfaces, such as Steiner surfaces, surfaces with many
real singularities, monoid hypersurfaces, canal surfaces, and tensor-product surfaces
of bidegree (1,2). The third part describes various algorithms for geometric comput-
ing. This includes chapters on parameterization, computation and analysis of ridges
and umbilical points, surface-surface intersections, topology analysis and approxi-
mate implicitization.

1 R. Goldman and R. Krasauskas, Topics in Algebraic Geometry and Geometric Modeling,
Contemporary Mathematics, American Mathematical Society 2003.

2 M. Elkadi, B. Mourrain and R. Piene, Algebraic Geometry and Geometric Modeling,
Springer 2006.

3 T. Dokken and B. Jiittler, Computational Methods for Algebraic Spline Surfaces, Springer
2005.

4 http://www.sintef.no/IST_GAIA
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The European project GAIA 1I entitled Intersection algorithms for geometry
based IT-applications using approximate algebraic methods (IST 2001-35512) in-
volved six academic and industrial partners from five countries. The project aimed at
combining knowledge from Computer Aided Geometric Design, classical algebraic
geometry and real symbolic computation in order to improve intersection algorithms
for Computer Aided Design systems. The project has has produced more than 50
scientific publications and several software toolkits, which are now partly available
under the GNU GPL license.

We invited the coordinator of the project, Tor Dokken, to present a survey de-
scribing the background, the methods, the results and the achievements of the GAIA
project. His summary is the first part of this volume.
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The GAIA Project on Intersection and Implicitization

Tor Dokken

SINTEF ICT, Department of Mathematics
tor.dokken@sintef.no

Summary. In the GAIA-project we have combined knowledge from Computer Aided Geo-
metric Design (CAGD), classical algebraic geometry and real symbolic computing to improve
intersection algorithms for Computer Aided Design (CAD) systems. The focus has been on:

e Singular and near singular intersections of surfaces, where the surfaces are parallel or near
parallel along segments of the intersection curves.
e Self-intersection of surfaces to facilitate trimming of self-intersecting surfaces.

The project has published more than 50 papers. Software toolkits from the project are available
for downloading under the GNU GPL license.

1.1 Introduction

In the GAIA project we have combined knowledge from Computer Aided Geomet-
ric Design (CAGD), classical algebraic geometry and real symbolic computing to
improve intersection algorithms for CAD-type systems. The calculation of the inter-
section between curves or surfaces can seem mathematically simple. This is true for
the intersection of e.g. two straight lines when they intersect transversally and closed
expressions for finding the intersection are used. However, if floating point arithmetic
is used, care has to be taken to properly handle situations when the lines are parallel
or near parallel. The intersection of two bi-cubic parametric surfaces can be reduced
to finding the real zero set of a polynomial equation f(s,¢) = 0 of bi-degree (54,54),
which by itself is a challenging problem. In industrial systems floating point arith-
metic is used, thus introducing rounding errors. In CAD system there are tolerances
defining when two points are to be regarded as the same point. This has also to be
taken into consideration in CAD-related intersection algorithms. The consequence
of low quality intersection algorithms in CAD-systems is low quality CAD-models.
Low quality CAD-models impose high costs on the product creation processes in
industry.

The objectives of the GAIA project were related both to the scientific and tech-
nological aspects:
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e To establish the theoretical foundation for a new generation of methods for inter-
section and self-intersection calculation of 3D CAD-type sculptured surfaces by
introducing approximate algebraic methods and qualitative geometric descrip-
tions.

To demonstrate through software prototypes the feasibility of the approach.
To investigate other uses of the approximate algebraic methods developed for
extending functionality in modeling and interrogation of 3D geometries.

e To demonstrate that cooperation between mathematical domains such as approxi-
mation theory, classical algebraic geometry and computer aided geometric design
is an important part of improving mathematical based technology on computers.

e To interact with CAD systems developers to improve both friendly use and ro-
bustness of future CAD systems.

To address these objectives the project activities have been structured in four
main work areas, where each partner has had one or two work areas as their main
focus:

e (lassification, where we have used the tools and knowledge of classical alge-
braic geometry to better understand singularities, see Section 1.5.

o Implicitization, where we have looked into resultants and approximate impliciti-
zation to better find exact and approximate implicit representations of parametric
surfaces, see Section 1.6.

e Intersection, where we have looked into algebraic intersection methods, com-
bined numeric and algebraic intersection algorithms, and combined recursive and
approximate implicit intersection methods, see Section 1.7.

e Applications, where we have searched for other problem domains where the ap-
proach of approximate implicitization can be used for better solving challenging
problems related to systems of polynomial equations, see Section 1.8.

In addition to the topics above we will in this paper also address:

Project background and partners in Section 1.2.

Why CAD-type intersection is still a challenge in industry in Section 1.3.
The algorithmic challenges of CAD type intersections in Section 1.4.
The potential impact of the GAIA project in section 1.9.

The list of references at the end of this paper is a bibliography of papers related to the
GAIA-project published by the project partners during and after the GAIA-project.

1.2 Project background and facts

The Ph.D. dissertation Aspects of Intersection Algorithms [16] from 1997 established
close dialogue between the Department of Applied Mathematics at SINTEF ICT in
Oslo, and the algebraic geometry group in the Department of Mathematics, Uni-
versity of Oslo. Gradually the idea of establishing a closer cooperation with other
European groups matured, and the algebraic geometry group at the University of Nice
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Sophia Antipolis in France was contacted. An application for an IST FET Open As-
sessment project was made also including the CAD-company think3. The proposal
was successful, and in October 2000 the project IST 1999-290010 — GAIA — Applica-
tion of approximate algebraic geometry in industrial computer aided geometry was
started.

The final review of the assessment project in October 2001 was successful, and
the project consortium was invited to propose a full FET-Open Project. Also this
proposal was successful, and July 1st 2002 the project IST-2001-35512 — GAIA 1 —
Intersection algorithms for geometry based IT-applications using approximate alge-
braic methods started. The full project ended on September 30th 2005. The budgets
of the phases of project have been:

e GAIA assessment phase: Budget: 175000 EURO, with financial contribution
from the European Union of 100 000 EURO.

e GAIA II project phase: Budget: 2300000 EURO, with financial contribution
from the European Union of 1 500000 EURO.

Among the project partners we find one CAD-company, one industrial research
institute, and four university groups:

e SINTEF ICT, Department of Applied Mathematics, Norway, has been the
project coordinator, and focused on work within approximate implicitization,
recursive intersection algorithms and recursive self-intersection algorithms. For
more information on SINTEF see: http://www.sintef.no/math/.

o think3 SPA, Italy and France, is a CAD-system developer, and had as their
main role to supply industrial level examples of challenging CAD-intersection
and self-intersections, to integrate developed intersection algorithms into a pro-
totype version of their system thinkdesign, and finally to test and assess the pro-
totype algorithms developed in the project. For more information on think3 see:
http://www.think3.com/.

o University of Nice Sophia Antipolis (UNSA), France, developed in close co-
operation with INRIA exact intersection algorithms and a triangulation based
reference method for surface intersection and self-intersection. For more infor-
mation on UNSA and INRIA see: http://www-sop.inria.fr/galaad/.

e University of Cantabria, Spain, worked on combined numeric and exact inter-
section algorithms. For more information see: http://www.unican.es/.

o Johannes Kepler University, Austria, focused on new approaches to approxi-
mate implicitization and testing of approximate implicitization algorithms. For
more information on this partner see: http://www.ag.jku.at/.

e University of Oslo, Norway, has focused on classification of algebraic curves
and surfaces and their singularities. For more information on the University of
Oslo see: http://www.cma.uio.no/.

Based on state-of-the-art reports, research reports and software prototypes we
have tried to establish a common mathematical understanding of different approaches
and tools. As the project partners come from an axis spanning from fairly theoretical
classical algebraic geometry to computer aided geometric design and CAD-system
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developers, a major focus has been on bridging the language and knowledge gaps
between the different mathematical groups involved. All groups have had to invest
time into better understanding the traditional approaches of the other groups.

1.3 Why are CAD-type intersections still a problem for industry?

1.3.1 CAD technology evolution hampered by standardization

In the Workshop on Mathematical Foundations of CAD (Mathematical Sciences Re-
search Institute, Berkeley, CA. June 4-5, 1999) the consensus was that: The single
greatest cause of poor reliability of CAD systems is lack of topologically consistent
surface intersection algorithms. Tom Peters, Computer Science and Engineering,
The University of Connecticut, estimated the cost to be $1 Billion/year. For more in-
formation consult SIAM News, Volume 32, Number 5, June 1999, Closing the Gap
Between CAD Model and Downstream Application, http://www.siam.org/siamnews/
06-99/cadmodel.htm. Too low quality of CAD-intersection forces the industry to re-
sort to expensive workarounds and redesigns to develop new products.

CAD-systems play a central role in most producing industries. The investment in
CAD-model representation of current industrial products is enormous. CAD-models
are important in all stages of the product life-cycle, some products have a short life-
time, while other products are expected to last at least for one decade. Consequently
backward compatibility of CAD-systems with respect to functionality and the abil-
ity to handle “old” CAD-models is extremely important to the industry. Transfer of
CAD-models between systems from different CAD-system vendors is essential to
support a flexible product creation value chain. In the late 1980s the development of
the STEP standard (ISO 10303) Product Data Representation and Exchange started
with the aim to support backward compatibility of CAD-models and CAD-model ex-
change. STEP is now an important component in all CAD-systems and has been an
important component in the globalization of design and production. However, STEP
standardized the geometry processing technology of the 1980s, and the problems
associated with that generation of technology. Due to the CAD-model legacy (the
huge bulk of existing CAD-models) upgraded CAD-technology has to handle exist-
ing models to protect the resources already invested in CAD-models. Consequently
the CAD-customers and CAD-vendors are conservative, and new technology has to
be backward compliant. Improved intersection algorithms have thus to be compliant
with STEP representation of geometry and the traditional approach to CAD coming
from the late 1980s. For research within CAD-type intersection algorithms to be of
interest to producing industries and CAD-vendors backward compatibility and the
legacy of existing CAD-models have not to be forgotten.

1.4 Challenges of CAD-type intersections

If the faces of a CAD-represented volume are all planar, then it is fairly straight-
forward to represent the curves describing the edges with minimal rounding error.
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However, if the faces are sculptured surfaces, e.g., bicubic NURBS - NonUniform
Rational B-splines, the edges will in general be free form space curves with no sim-
ple closed mathematical description. As the tradition (and standard) within CAD is
to represent such curves as NURBS curves, approximation of edge geometry with
NURBS curves is necessary. For more information on the challenges of CAD-type
intersections consult [54].

When designing within a CAD-system, point equality tolerances are defined that
determine when two points should be regarded as the same. A typical value for such
tolerances is 10~3mm, however, some systems use tolerances as small as 10~ %mm.
The smaller this tolerance is, the higher the quality of the CAD-model will be. Ap-
proximating the edge geometry with e.g., cubic spline interpolation that has fourth
order convergence using a tolerance of 10~ instead 10~ will typically increase the
amount of data necessary for representing the edge approximation by a factor be-
tween 5 and 6. Often the spatial extent of the CAD-models is around 1 meter. Using
an approximation tolerance of 10~2mm is thus an error of 10~ relative to the spatial
extent of the model.

The intersection functionality of a CAD-system must be able to recognise the
topology of a model in the system. This implies that intersections between two faces
that are limited by the same edge must be found. The complexity of finding an inter-
section depends on relative behaviour of the surfaces intersected along the intersec-
tion curve:

o Transversal intersections are intersection curves where the normals of the two
surfaces intersected are well separated along the intersection curve. It is fairly
simple to identify and localise the branches of the intersection when we only
have transversal intersection.

e Singular and near singular intersections take place when the normals of the
two surfaces intersected are parallel or near parallel in single points or along in-
tervals of an intersection curve. In these cases the identification of the intersection
branches is a major challenge.

Figures 1.1 and 1.2 respectively show transversal and near-singular intersection
situations. In Figure 1.1 there is one unique intersection curve. The two surfaces in
Figure 1.2 do not really intersect, there is a distance of 10~7 between the surfaces,
but they are expected to be regarded as intersecting. To be able to find this curve,
the point equality tolerance of the CAD-system must be considered. The intersection
problem then becomes: Given two sculptured surface f(u,v) and g(s,t), find all
points where | f(u,v) — g(s,t)| < e where ¢ is the point equality tolerance.

1.4.1 The algebraic complexity of intersections

The simplest example of an intersection of two curves in IR? is the intersection of
two straight lines. Let two straight lines be given:

e A straight line represented as a parametric curve
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Fig. 1.1. Transversal intersection between two sculptured surfaces

Fig. 1.2. Tangential intersection between two surfaces

p(t) = PO —+ tTo,t € ]R,,

with Py a point on the line and T the tangent direction of the line.
e A straight line represented as an implicit equation

q(:c,y) = ((x7y) - Pl) "Ny =0, (xay) € 1R27

with P; a point on the line, and IN; the normal of the line.
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Combining the parametric and implicit representation the intersection is de-
scribed by ¢(p(t)) = 0, a linear equation in the variable ¢. Using exact arithmetic it
is easy to classify the solution as:

An empty set, if the lines are parallel.
The whole line, if the lines coincide.
One point, if lines are non-parallel.

Next we look at the intersection of two rational parametric curves of degree n
and d, respectively. From algebraic geometry it is known that a rational parametric
curve of degree d is contained in an implicit parametric curve of total degree d, see
[27].

e The first curve is described as a rational parametric curve

B pntn + pd—ltn_l + .+ Po
ht™ + hpy_ 1t 14+ . 4+ ho

p(t)

e The second curve is described as an implicit curve of total degree d

d d—i

gz,y) =D Y cja'y’ =0.

i=05=0

By combining the parametric and implicit representations, the intersection is de-
scribed by ¢(p(t)) = 0. This is a degree n x d equation in the variable ¢. As even
the general quintic equation cannot be solved algebraically, a closed expression for
the zeros of ¢(p(t)) can in general only be given for n x d < 4. Thus, in general, the
intersection of two rational cubic curves cannot be found as a closed expression. In
CAD-systems we are not interested in the whole infinite curve, but only a bounded
portion of the curve. So approaches and representations that can help us to limit the
extent of the curves and the number of possible intersections will be advantageous.

We now turn to intersections of two surfaces. Let p(s,t) be a rational tensor
product surface of bi-degree (ni,n2),

ny n2

DD pis't

i=04=0
p(s,t) = 5 —

ZZI’L% 7 Sitj

i=05=0
From algebraic geometry it is known that the implicit representation of p(s,t) has
total algebraic degree d = 2n;ny. The number of monomials in a polynomial of total
degree d in 3 variables is (d‘?t?’) = w. So a bicubic rational surface has
an implicit equation of total degree 18. This has 1330 monomials with corresponding
coefficients.

Using this fact we can look at the complexity of the intersection of two rational

bicubic surfaces p (u,v) and pa(s,t). Assume that we know the implicit equation
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g2(x,y,z) = 0 of pa(s,t). Combining the parametric description of p;(u,v) and
the implicit representation gz (x, y, z) = 0 of pa(s, t), we get ga(p1(u, v)) = 0. This
is a tensor product polynomial of bi-degree (54, 54). The intersection of two bicubic
patches is converted to finding the zero of

54 54

g2(p1(u,v)) = chi,juivj = 0.

i=04=0

This polynomial has 55 x 55 = 3025 monomials with corresponding coefficients,
describing an algebraic curve of total degree 108. This illustrates that the intersection
of seemingly simple surfaces can results in a very complex intersection topology. As
in the case of curves, the surfaces we consider in CAGD are bounded, and we are
interested in the solution only in a limited interval (u, v) € [a, b] X [c, d].

1.5 Extend the use of algebraic geometry within CAD

The work within the GAIA project related to algebraic geometry and CAD has ad-
dressed three main topics:

o Resultants are one of the traditional methods for exact implicitization of rational
parametric curves and surfaces. GAIA has produced some new results within this
classical research area.

e Singularities in algebraic curves and surfaces are for understanding their geom-
etry and topology.

e C(lassification is an old tradition in the field of Algebraic Geometry. It is a natural
starting point when trying to understand the geometry of algebraic objects.

Papers on CAGD and algebraic methods from the project are [8, 9, 32, 33, 34, 35,
41,42, 44, 48, 49, 57].

1.5.1 Resultants

The objective has been to develop tools for constructing, manipulating and exploit-
ing implicit representations for parametric curves and surfaces based on resultant
computations. The work in GAIA has been divided into three parts:

e A survey in four parts addressing:

1. A resultant approach to detecting intersecting curves in P3.

2. Implicitizing rational hypersurfaces using approximation complexes.

3. Using projection operators in Computer Aided Design.

4. The method of moving surfaces for the implicitization of rational parametric

surface in P3.

e Areport addressing sparse/toric resultant, results when the number of monomials

is small compared to the number of possible monomials for polynomial of the

degree in question.
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e Development of prototypes of tools for constructing, manipulating and exploiting
implicit representations for parametric curves and surfaces based on resultant
computations.

One paper from the project addressing resultants is [7].

1.5.2 Singularities

Understanding the singularities of algebraic curves and surfaces is important for un-
derstanding the geometry of these curves and surfaces. A difficult problem in CAGD
is the handling of self-intersections, and the theory of singularities of algebraic va-
rieties is potentially a tool for handling this problem. In the GAIA project special
emphasis has been put on detecting and locating singularities appearing on parame-
terized and implicitly given curves and surfaces of low degree.

e The presence of singularities affects the geometry of complex and real projective
hypersurfaces and of their complements. We have illustrated the general princi-
ples and the main results by many explicit examples involving curves and sur-
faces.

e We have classified and analyzed the singularities of a surface patch given by a
parameterization in order to proceed to an early detection. We distinguish alge-
braically defined surface patches and procedural surfaces given by evaluation of
a program. Also we distinguish between singularities which can be detected by a
local analysis of the parameterization and those which require a global analysis,
and are more difficult to achieve.

e The detection of singularities is a critical ingredient of many geometrical prob-
lems, in particular in intersection operations. Once these critical points are
located, one can for instance safely use numerical methods to follow curve
branches. Detecting a singularity in a domain may also help in combining several
types of methods.

A paper addressing singularities from the project is [48].

1.5.3 Classification

To use algebraic curves and surfaces in CAGD one needs to know about their
shape: topology, singularities, self-intersections, etc. Most of this kind of classifica-
tion theory is performed for algebraic curves and surfaces defined over the complex
numbers, i.e., one considers complex (instead of only real) solutions to polynomial
equations in two or three variables (or in three or four homogeneous variables, if
the curves and surfaces are considered in projective space). Complete classification
results exist only for low degree varieties (implicit curves and surfaces) and mostly
only in the complex case. A simple example, the classification of conic sections, il-
lustrates well that the classification over the real numbers is much more complicated
than over the complex numbers.
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We have collected known results about such classifications, especially concern-
ing results for real curves and surfaces of low degree. Of particular interest in CAGD
are parameterizable (i.e. so-called rational) curves and surfaces, and we have made
explicit studies of various such objects. These objects, or patches of these objects, are
potential candidates for approximate implicitization problems. For example, when
the rough shape of a patch to be approximated is known, one can choose from a
“catalogue” what kind of parameterized patch that is suitable - this eliminates many
unknowns in the process of finding an equation for the approximating object and
will therefore speed up the application. In addition to the survey of known results,
particular objects that have been studied are:

e monoid curves and surfaces, especially quartic monoid surfaces
e tangent developables
e triangle and tensor surfaces of low degree of low (bi)degrees

Papers from the project addressing classification are [41, 42].

1.6 Exact and approximate implicitization

In CAD-type algorithms, combining parametric and algebraic representation of sur-
faces is in many algorithms advantageous. However, for surfaces of algebraic degree
higher than two this is in general a very challenging task. E.g., a rational bi-cubic
surface has algebraic degree 18. All rational surfaces have an algebraic representa-
tion. However, for surfaces of total degree higher than 3, not all algebraic surfaces
will have a rational parametric representation. In the project we have the following
two main approaches for change of representation.

1.6.1 Exact implicitization of rational parametric surfaces

General resultant techniques, but also specialized methods have been reviewed or
developed in the GAIA II project to address the implicitization process:

e Projective, as well as anisotropic, resultants when the polynomials fy, ..., f3
have no base points.

e Residual resultants when the polynomials have base points which are known and
have special properties.

e Determinants of the so-called approximation complexes which give an implicit
equation of the image of the polynomials as soon as the base points are locally
defined by at most two equations.

Papers from the project addressing topics of exact implicitization are [6, 23, 24, 27,
47].
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Approach Comment Addressed in GAIA 11

Triangulation |[Will both miss branches and pro-|{See section 1.7.1 on the Reference
duce false branches Method

Lattice Will miss branches Used in many CAD-systems.

evaluation Not addressed in GAIA II

Recursive Guarantees topology within speci-|See section 1.7.2 addressing the com-
fied tolerances bination of recursion and approximate

implicitization

Exact Guarantees topology however will|The AXEL library see Section 1.7.3
not always work

Combined Guarantees topology however will|{Uses Sturm Harbicht sequences for

exact & not always work, faster than the ex-|topology of algebraic curves, see Sec-

numeric act methods tion 1.7.4

Table 1.1. Different CAD-intersection methods and their properties.

1.6.2 Approximate implicitization of rational parametric surfaces

Two main approaches have been pursued in the project.

Approximate implicitization by factorization is a numerically stable method
that reformulates implicitization to finding the smaller singular values of a ma-
trix of real numbers. See one of [17, 21] for an introduction. The approach can
be used as an exact implicitization method if the proper degree is chosen for the
unknown implicit and exact arithmetic is used. The approach has high conver-
gence rates and is numerical stable. Strategies for selecting solutions with a de-
sired gradient behavior are supplied, either for encouraging vanishing gradients
or avoiding vanishing gradients. The approach works both for rational paramet-
ric curves and surfaces, and for procedural surfaces. Experiments with piecewise
algebraic curves and surfaces have produced implicit curves and surfaces that
have more vanishing gradients than is desirable. We have experienced that esti-
mating gradients will improve this situation. We have established a connection
between the original approach to approximate implicitization, and a numerical
integration based method that can also be used for procedural surfaces, and a
sampling/interpolation based approach [22].

Approximate implicitization by point sampling and normal estimates is con-
structive in nature as it estimates gradients of the implicit representation to ensure
that gradients do not vanish when not desired [1, 2, 3, 11, 13, 36, 37, 38, 40, 50,
51, 52]. The approach produce good implicit curves and surfaces and the problem
of vanish gradients in not desired regions is minimal. The method works well for
approximation by piecewise implicit curves and surfaces.

The work within GAIA has illustrated the feasibility of approximate implicitiza-

tion, established both new methods on approximate implicitization with respect to
theory and practical use of approximate implicitization. It has also been important to
compare the different approaches to approximate implicitization [59].
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1.7 Intersection algorithms

In the GAIA 1I project phase the work on the reference method, see 1.7.1, continued
from the assessment phase was completed. Further a completely new recursive in-
tersection code has been developed addressing industrial CAD-type problems. Two
more research oriented intersection codes have been developed: A pure symbolic
code and a combined symbolic numeric code. See Table 1.1 for a short overview.

1.7.1 The reference method

The reference method is based on intersecting triangulations that approximate sur-
faces. This can be used for getting a fast impression of the possible existence of
intersection or self-intersections. However, as the approach is sampling based, there
is no guarantee that all intersections are found, the triangulations intersected can
easily produce an incorrect topology of the intersection in near singular and singular
cases, and even false intersection branches might be found. The development of the
reference method has been important to allow think3 to develop the new user inter-
faces, and experiment with these before the software from the combined recursive
and approximate implicit intersection code was available in its first versions.

1.7.2 Combined recursive and approximate implicitization intersection
method

The combined recursive and approximate implicitization intersection was an ex-
tremely ambitious implementation task, the challenges of the implementation and
approach is discussed in [20]. The ambition has been to address the very complex
singular and near singular intersections. The aim was also Open Source distribution.
Consequently a completely new intersection kernel had to be developed to ensure
that we do not have any copyright problems. A major challenge with respect to self-
intersections is the complexity of cusp curves intersecting self-intersection curves.
The traditional approaches for recursive subdivision based intersection algorithms
do not work properly in these cases. Thus when starting to test the code we entered
unknown territory. By the end of GAIA II we could demonstrate that the approach
works, but the stability of the toolkit was not at an industrial level. However, stabi-
lization work on the code has continued after the GAIA II project.

Recursive intersection codes traditionally use Sinha’s theorem that states that for
a closed intersection loop to exist in the intersection of two surfaces then the nor-
mal fields of the surfaces have to overlap inside the loop. Consequently if there is
no overlap of the normal fields of two surfaces they can not intersect in a closed
loop. However, in singular intersections normal fields will overlap. In near singular
intersections even deep levels of subdivision often do not separate the normal fields.
In the GAIA II program code we have used approximate implicitization for sepa-
rating the spatial extent of the surfaces, and for analyzing the possibilities of closed
intersection loops by combining an approximate implicitization of one surface with
the parametric representation of the other surface. This is a very efficient tool when
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NURBS surfaces approximating low degree algebraic surfaces are intersected. Such
approximating NURBS surfaces are frequently bi-cubic and are thus much more
challenging to intersect that the algebraic surfaces they approximate. Approximate
implicitization is used to find the approximate algebraic degree of the surfaces, and
consequently simplifies the intersection problem significantly.

The high-level reference documentation of the software has already been pro-
duced in doxygen and is available on the web. Other papers on numeric intersection
algorithms from the project are [5, 14, 54, 55, 56].

1.7.3 Algebraic methods

The problems encountered in CAGD are sometimes reminiscent of 19th century
problems. At that time, realizing the difficulties one had working in affine instead of
projective space, and over the real numbers instead of the complex numbers one soon
shifted the theoretical work towards projective geometry over the complex numbers.
In fact, it is still in this situation that the modern intersection theory from algebraic
geometry works best:

e Bisection through a Multidimensional Sturm Theorem. A variant of the clas-
sical Sturm sequence is presented for computing the number of real solutions of
a polynomial system of equations inside a prescribed box. The advantage of this
technique is based on the possibility of being used to derive bisection algorithms
towards the isolation of the searched real solutions.

e Algorithms for exact intersection. Algorithms using Sturm-Habicht based
methods have been implemented and are available at Axel - Algebraic Software
Components for gEometric modeLing.

Papers on exact intersection methods from the project are [15, 30].

1.7.4 Combined algebraic numeric methods

The approach for the combined methods is to combine the rational parametric de-
scription of one surface pi (s, t), with the algebraic representation of the other sur-
face g2(x,y,2) = 0. Thus the problem is converted to a problem of finding the
topology of an algebraic curve g2(p1(s,t)) = 0 in the parameterization of the first
surface:

e A limited number of critical points. The approach is based on finding critical
point, points where either V f(s,t) = 0 or 9f(s,t)/ds = 0. For any value in the
first parameter direction of f(s,t) there will be a limited number of such critical
points. There is also a finite number of rotations of f(s,t) that will have more
than one critical point. f(s, t) is rotated to ensure that for a given value there will
be only one critical point.

e Projection to first parameter direction. The problem is project to a polynomial
in the first parameter variable of f(s,t) by computing the discriminant R(s)
of f(s,t) with respect to ¢, and finding the real root of R(s), a1, ..., a,.. The
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Sturm-Habicht sequences here supply an exact number of real roots in the inter-
val of interest.
e Finding values in the second parameter direction.Then for each «; ¢ =

1,...,r we compute the real roots of f(a;,t), 55, j = 1,...,s;,. For every
a; and 3; ; compute the number of half branches to the right and left of the point
(v, Big)-

e Reconstruction of topology of the algebraic curve. From the above information
the topology of the algebraic curve in the domain of interest can be constructed.

Papers on this approach in the project are [4, 10, 28, 29, 31].

To ensure the approach to work the root computation has to use extended preci-
sion to ensure that we reproduce the number of roots predicted by the Sturm-Habicht
sequences. The algorithms have been developed using symbolic packages.

1.8 New applications of the approach of approximate
implicitization

A number of different applications of approximated implicitization are addressed in
the subsections following.

1.8.1 Closest point foot point calculations

Inspired by approximate implicitization this problem has been addressed by mod-
eling moving surfaces normal to the surface and intersecting in constant parameter
lines [57]. The set up of the problems follows the ideas of approximate impliciti-
zation; singular value decomposition is used to find the coefficients of the moving
surfaces. By inserting the coordinates of a point into such a moving surface a poly-
nomial equation in one variable results. The zeros of this identify constant parameter
lines with a foot point. Further a theory addressing the algebraic and parametric de-
gree of the moving surface is established.

1.8.2 Constraint solving

Multiple constraints described by parametric curves, surfaces or hypersurfaces over
a domain used for optimization can be modeled using approximate implicitization as
a piecewise algebraic curve, or surface, or hypersurface. Thus a very compact way
of modeling constraints has been identified.

1.8.3 Robotics

Within robotics we have identified a number of uses. We have experimented with
checking for self-intersection of robot tracks. CAD-surfaces used in robot planning
can check for self-intersections by the GAIA tools. The control of advanced robots
can be expressed as systems of polynomial equations. To solve such equations the



