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Preface

Increasing computing power in the last decades has given mathematical mod-
eling an ever greater impulse and made it a very important tool to solve
problems coming from industry. The European Consortium for Mathematics
in Industry (ECMI) was founded 20 years ago by mathematicians from ten
European universities to foster the use of mathematics to help European in-
dustry and commerce to pose and solve their problems. The aims of ECMI are
to (a) promote the use of mathematical models and mathematics in industry,
(b) form applied mathematicians capable of working effectively in industry
and (c) work for these goals at the European scale. Efficient problem solving
often requires the use of results in different mathematical fields, yet no single
applied mathematician may be able to cover the whole subject. By providing
a European research network, ECMI can bring together experts from a wide
geographical range.

Since 1986, ECMI has incorporated many more institutions and indus-
tries throughout Europe and it has been consolidated as a brand name for
Industrial Mathematics. Twenty years later, the biannual ECMI conference
was celebrated for the first time in Spain, at the Universidad Carlos III de
Madrid. This is a young university created in 1989. Technological studies and
departments are located at the Leganés campus where the conference was
held. Moreover, University Carlos III participates in the Leganés Scientific
and Technological Park, together with the Autonomous Region of Madrid
and the city of Leganés. They contribute to place Madrid at the forefront of
research and development in Spain.

The scientific program covered a wide variety of topics related to techno-
logical sectors (aerospace and automotive industry, materials and electronics,
information and telecommunication technologies, energy and environment,
biology, biotechnology, life sciences, imaging) and to finances and economics.
The different origin of participants helped making the conference multi-
disciplinary. Active participation of industry was intended, with reasonable
success. The present volume includes a part of the contributions to the con-
ference, selected after a refereeing process. It is a pleasure to see that six



Preface VII

plenary speakers have submitted papers for this volume. Vincenzo Capasso
in his “Alan Tayler” lecture, besides presenting his scientific work on sta-
tistical geometric measure applied to medicine and materials science, recalls
some of the challenges for Mathematics in Industry listed in the first ECMI
brochure produced by Alan Tayler and himself in 1994, relates them to the
present situation of an enlarged Europe, and tells us how these challenges re-
main important and pressing for us today. Antonio Barrero (Seville), Alfredo
Bermúdez (Santiago), Russel Caflisch (UCLA), Luis Campos (Lisbon) and
Pierre Degond (Tolouse) illustrate with their contributions the breadth of
applications and variety of techniques that are embraced by ECMI. ECMI’s
commitment to educating students in Industrial Mathematics is reflected in
the fact that many papers were given by students. The Wacker Prize, of-
fered for a Master’s Level thesis on an industrial problem was awarded to
Filippo Terragni, in line with the tradition of excellent work by previous win-
ners. Many of the minisymposia and special sessions included the activities
of ECMI Special Interest Groups. Of the 35 minisymposia organized for the
conference, many are gathered in this book, usually preceded by a short ex-
planation about their contents. A number of contributed papers complete the
volume. I hope that these proceedings will contribute both to show inter-
esting and relevant mathematical problems and methods, and to strengthen
cooperation between academia and industry, the absence of which is a major
weakness of the European Science-Technology system.

As President of ECMI and on behalf of the ECMI Council, I wish to thank
all those who have contributed to the success of the Conference. Among them
the participants, the speakers, the International Scientific Committee and the
National and Local Organizing Committees. Organizing this meeting has been
possible thanks to the efforts of many people both at the Spanish national
and local level to whom we are very grateful. In particular all the members
of the Modeling, Simulation and Industrial Mathematics Group at Universi-
dad Carlos III worked hard to run a smooth and successful conference which
would not have been possible without their help. The dedication of our univer-
sity congress bureau, Congrega, was also essential for the conference success.
Ms. Bárbara Tapiador’s help was very important to process the manuscripts
that are gathered in the present book. I am grateful to my co-editors, Gloria
Platero, Miguel Moscoso and José Manuel Vega for their invaluable help.

Lastly, the support of our sponsors is gratefully acknowledged: Minis-
terio de Educación y Ciencia (grant MTM-2005-24569-E), Comunidad de
Madrid (grant S-0505/ENE/0229), Universidad Carlos III de Madrid, Univer-
sidad Politécnica de Madrid, Consejo Superior de Investigaciones Cient́ıficas
(CSIC), Instituto de Tecnológico de Qúımica y Materiales “Álvaro Alonso
Barba”, Ayuntamiento de Leganés and Springer.

Madrid, May 2007 Luis L. Bonilla, President of ECMI
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L. Ferrer, Ad. Uriarte, and M. González . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Study and Development of Numerical Models
for the Simulation of Geophysical Flows: The DamFlow
Project
M.J. Castro, A.M. Ferreiro, J.A. Garćıa, J.M. González,
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M.P. López-Sancho, M.A.H. Vozmediano, T. Stauber, and F. Guinea . . . 483

Topological Defects and Electronic Properties in Graphene
A. Cortijo and M.A.H. Vozmediano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Transport Through a Graphene Transistor
F. Guinea, A.H. Castro Neto, and N.M.R. Peres . . . . . . . . . . . . . . . . . . . . . 494

Minisymposium “PDAE Modelling and Multiscale
Simulation in Microelectronics and New Technologies”
G. Al̀ı and R. Pulch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Domain Decomposition Techniques for Microelectronic
Modeling
G. Al̀ı, M. Culpo, and S. Micheletti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

A Concept for Classification of Partial Differential Algebraic
Equations in Nanoelectronics
A. Bartel and R. Pulch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Numerical Simulation of a Class of PDAEs with a Separation
of Time Scales
B. Chachuat and P.I. Barton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

Model Order Reduction for Nonlinear Differential Algebraic
Equations in Circuit Simulation
T. Voss, A. Verhoeven, T. Bechtold, and J. ter Maten . . . . . . . . . . . . . . . . 518

Minisymposium “Numerical Methods for Semiconductor
Kinetic Equations (COMSON Minisymposium)”
A. Majorana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

Comparing Kinetic and MEP Model of Charge Transport
in Semiconductors
A. Majorana and V. Romano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

A Deterministic Solver to the Boltzmann-Poisson System
Including Quantization Effects for Silicon-MOSFETs
M. Galler and F. Schürrer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531



Contents XV

Minisymposium of the ECMI SIG “Shape and Size
in Medicine, Biotechnology and Material Sciences”
A. Micheletti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Size Functions Applied to the Statistical Shape Analysis
and Classification of Tumor Cells
A. Micheletti and G. Landini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

A Mathematical Morphology Approach to Cell Shape Analysis
J. Angulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

Reconstruction of Transducer Pressure Fields
from Schlieren Data
R. Kowar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

Plant Growth Modeling
N. Morozova, N. Bessonov, and V. Volpert . . . . . . . . . . . . . . . . . . . . . . . . . 553

Minisymposium “New Trends in the Analysis of Functional
Genomics Data”
J.M. Carazo and A. Pascual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

Bayesian Classifiers with Consensus Gene Selection:
A Case Study in the Systemic Lupus Erythematosus
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J.M. Giménez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882

Time-Varying Grids for Gas Dynamics
F. Coquel, Q.L. Nguyen, M. Postel, and Q.H. Tran . . . . . . . . . . . . . . . . . . 887

Meshless Poisson Problems in the Finite Pointset Method:
Positive Stencils and Multigrid
B. Seibold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892

Basics of a Differential-Geometric Approach to Diffusion:
Uniting Lagrangian and Eulerian Models on a Manifold
M.M. Tung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897

Diagnostic Modelling of Digital Systems with Binary
and High-Level Decision Diagrams
R. Ubar, J. Raik, H. Kruus, H. Lensen, and T. Evartson . . . . . . . . . . . . . 902

Numerical Integration in Bayesian Positioning
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Dedicated to Alan Tayler

Preface [VC]

It has been a great honour for me to deliver the “Alan Tayler Lecture” in
this ECMI Conference, to honour one of the leading founders and Presidents
of ECMI. I have collaborated with Alan for many years, especially during
my term as Chairman of the Educational Committee, and later during the
first ECMI-HCM Project. While he was already very ill, he found the way to
participate (even though only for a couple of days) in a workshop in Milan,
opening ECMI to the Italian academic and industrial community, and highly
supported the birth of MIRIAM (the Milan Research Centre for Industrial
and Applied Mathematics).

I had a rewarding experience around the early 1990s producing, in a strict
collaboration with Alan, the first ECMI Brochure [CT94] (see the ECMI web
site) in order to advertise the specific role of ECMI within academia and
industry in Europe.

It was clear to me that he had a vision of how to establish in Europe a co-
operative action by the most active groups in the applications of mathematics
to real world problems; I wish to remind the key issues stated in the brochure,
since I may claim that these are still update.

“Realising the need of interaction between universities and research groups
in industry, the European Consortium for Mathematics in Industry (ECMI)
was founded in 1986 by mathematicians from ten European universities.

· · ·
Mathematics, as the language of the sciences, has always played an

important role in technology, and now is applied also to a variety of prob-
lems in commerce and the environment.
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European industry is increasingly becoming dependent on high technology
and the need for mathematical expertise in both research and development
can only grow.

· · ·
These new demands on mathematics have stimulated academic interest

in Industrial Mathematics and many mathematical groups world-wide are
committed to interaction with industry as part of their research activities.

In 1986 ten of these groups in Europe founded ECMI with the intention
of offering their collective knowledge and expertise to European Industry.

The experience of ECMI members is that similar technical problems are
encountered by different companies in different countries. It is also true that
the same mathematical expertise may often be used in differing industrial
applications.

If European industry is to compete in world markets it should take ad-
vantage of the competitive edge which may be gained from using European
mathematical expertise.

No single European country is likely to have sufficient expertise
of mathematical knowledge whereas ECMI can provide a compre-
hensive coverage of mathematical skills and their diverse applica-
tions.” [CT94]

We are now facing the challenge of a larger European Union.
Alan had anticipated this by promoting an ECMI “patronage”, financially

supported by the EU, of those countries usually called “Central Europe”, such
as Čekia, Hungary, Poland, Romania, Slovakia.

I am sure that he would have liked to participate in the process of complete
integration of all the new entries in the ECMI system.

Going back to the ECMI Brochure, a major scope of ECMI was identified
as follows.

“C. TO OPERATE ON A EUROPEAN SCALE
Academic resources in Mathematics for Industry are also scarce and dis-

tributed across Europe; industrial needs are widely spread. Exchange and
interactive programmes are necessary in training, research and industrial col-
laboration if there is to be an effective transfer of knowledge and skills. The
EC is encouraging ECMI to involve relevant groups in Eastern Europe as
Associate members.”

As part of this encouragement, the EC provided funds to ECMI for organ-
ising a series of workshops in those countries, in collaboration with recognised
colleagues at the local level. Thus anticipating the enlargement of the political
Europe.

In my opinion, having the EC approved a significant enlargement of Europe
towards East, listing soon 27 member states, ECMI, as an enlarged Consor-
tium, should find new ways to exploit the best of the scientific resources of
the old and the new member states together, to actively participate in the
building up of a common competitive Europe. As far as scientific competence
is concerned, there are excellencies in all regions of Europe, some of them well
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identifiable also in the new member states; a genuine will to sustain compe-
tence of Europe should go through ways to exploit all of them, with the usual
ECMI cooperative attitude.

Another anticipation envisaged by Alan has been the shift of meaning of
the key word “Industry” in the ECMI system.

“This collaboration may also be extended to developing math-
ematical models for the environment, earth sciences, biology and
finance.” [CT94]

We have already achieved the inclusion of what we call Economathemat-
ics, and today we are facing a further shift of attention towards Medicine
and Biotechnology.

All over the world leading experts of Mathematics for/in Industry,
are participating actively in the development of Mathematics for/in Medi-
cine, thus undertaking the further challenge of contributing to the develop-
ment of innovative methods for diagnosis and treatment of relevant diseases,
from cancer to infectious diseases.

My own presentation here is aimed to showing an example of how mathe-
matics, originally developed for mining industry or more in general for ma-
terial science and chemical industry, is now moving to deal with problems of
interest in medicine.

At first this research was motivated by polymer industry in Europe, and
constitutes one of the most important success stories of collaborative research
within ECMI, that was supported within the first HCM Project coordinated
by Alan Tayler. As a documentation of the cooperation between different
research teams in Europe within the ECMI Special Interest Group on “Poly-
mers”, the volume “Mathematical Modelling for Polymer Processing. Poly-
merization, Crystallization, Manufacturing”, edited by myself, was published
as Volume 2 in the ECMI Series on Mathematics in Industry by
Springer-Verlag, Heidelberg 2002, showing an additional success story
of ECMI: the start of the Springer Series on Mathematics in Industry.

1 Introduction

Many processes of biomedical or material science interest may be modelled as
birth-and-growth processes (germ–grain models), which are composed of two
processes, birth (nucleation, branching, etc.) and subsequent growth of spatial
structures (cells, vessel networks, etc.), which, in general, are both stochastic
in time and space. These structures induce a random division of the relevant
spatial region, known as random tessellation (see Fig. 1). A quantitative de-
scription of the spatial structure of a tessellation can be given, in terms of the
mean densities of interfaces (n-facets).

In applications to material science a main industrial interest is controlling
the quality of the relevant final product in terms of its mechanical properties;
as shown, e.g. in [FC98], these are strictly related to the final morphology
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Fig. 1. The spatial tessellation generated by vessels in a dragonfly wing

Fig. 2. Vascularization of an allantoid [Credit: Dejana et al. 2005]

of the solidified material, so that quality control in this case means optimal
control of the final morphology.

In medicine, an important area of application of birth-and-growth processes
and other models of stochastic geometry is tumour-induced angiogenesis. It
can be modelled as a fibre process of Hausdorff dimension 1 in the relevant
2D or 3D space.

Tumour-induced angiogenesis is believed to occur when normal tissue vas-
culature is no longer able to support growth of an avascular tumour. At this
stage the tumour cells, lacking nutrients and oxygen, become hypoxic. This
is assumed to trigger cellular release of tumour angiogenic factors (TAFs)
which start to diffuse into the surrounding tissue and approach endothelial
cells (ECs) of nearby blood vessels. ECs subsequently respond to the TAF
concentration gradients by forming sprouts, dividing, and migrating towards
the tumour. A summary of these mechanisms can be found in the recent paper
by Carmeliet [JK01] (see also Figs. 2–4 where examples of real or simulated
vascular networks are depicted).

Initially, the sprouts arising from a parent vessel grow essentially parallel
to each other. It is observed that once the finger-like capillary sprouts have
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Fig. 3. Left: Angiogenesis on a rat cornea [Credit: Dejana et al. 2005]. The white spot
is a pellet implanted in the cornea containing an angiogenetic substance, emulating
the effect of a tumour. Right: A simulation of an angiogenesis due to a localized
tumour mass (black region on the right) (from [CA99])

Fig. 4. Response of a vascular network to an antiangiogenic treatment (from [JK01])

reached a certain distance from the parent vessel, they tend to incline towards
each other, leading to fusions called anastomoses. Such fusions lead to a net-
work of vessels. On the other hand the sprout branching dramatically increases
while approaching the tumour mass, eventually resulting in vascularization.
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The coupling of the branching and growth process to the underlying chem-
ical gradients is limited by the local density of the existing capillary network,
thus leading to a mathematical strong coupling of this density and the kinetic
parameters of the branching and growth process.

The study of angiogenesis has such potential for providing new therapies
that it has received enthusiastic interest from the pharmaceutical and biotech-
nology industries. Indeed, dozens of companies are now pursuing angiogenesis-
related therapies, and approximately 20 compounds that either induce or
block vessel formation are being tested in humans. Although such drugs can
potentially treat a broad range of disorders, many of the compounds now un-
der investigation inhibit angiogenesis and target cancer. Intriguingly, animal
tests show that inhibitors of vessel growth can boost the effectiveness of tra-
ditional cancer treatments (chemotherapy and radiation). Preliminary studies
also hint that the agents might one day be delivered as a preventive measure to
block malignancies from arising in the first place in people at risk for cancer.

In developing mathematical models of angiogenesis, the hope is to be able
to provide a deeper insight into the underlying mechanisms which cause the
process. It is therefore essential that predictive mathematical models are de-
veloped, capable of producing precise quantitative morphological features of
developing blood vessels. Such models might be used for predicting the evolu-
tion of tumours (prognosis), and identifying optimal control strategies (med-
ical treatment).

Unfortunately, a satisfactory modelling of angiogenesis requires a theory of
stochastic fibre processes, evolving in time, and strongly coupled with underly-
ing fields. In this case the theory of birth-and-growth processes (or branching-
and-growth processes), developed for volume growth, cannot be applied to
analyse realistic models, due to intrinsic mathematical difficulties, coming
from the dependence of the kinetic parameters from the geometric spatial
densities of the existing tumour, or capillary network itself [CM05,McDou06].

All these aspects induce stochastic time and space heterogeneities, thus
motivating a more general analysis of the stochastic geometry of the process.
The formulation of an exhaustive evolution model which relates all the relevant
features of a real phenomenon dealing with different scales, and a stochastic
domain decomposition at different Hausdorff dimensions, is a problem of high
complexity, both analytical and computational.

Anyway statistical methods for the estimation of geometric densities may
offer significant tools for diagnosis and dose/response analysis in medical treat-
ments.

In the modelling of the above-mentioned systems it is of great importance
to handle random closed sets of different (even though integer) Hausdorff
dimensions. Following a standard approach in geometric measure theory, such
sets may be described in terms of suitable measures. For a random closed set of
lower dimension with respect to the environment space, the relevant measures
induced by its realizations are singular with respect to the Lebesgue measure,
and so their usual Radon–Nikodym derivatives are zero almost everywhere.
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In Sect. 2 an original approach is reported, recently proposed by the re-
search group of the authors, who have suggested to cope with these difficulties
by introducing generalized densities (distributions) á la Dirac–Schwartz, for
both the deterministic case and the stochastic case. In this last one, mean
generalized densities are of interest.

These instruments may then help to formulate stochastic models (that is
solving direct problems) for the over-mentioned applications; they also suggest
methods for the solution of the related inverse problems, including methods
of statistical analysis for the estimation of geometric densities of a stochastic
fibre process that characterize the morphology of a real system. We apply
such methods to real data, taken from the literature, and to simulated data,
obtained by existing computational models of tumour-induced angiogenesis.

These methods can be used for validating computational models, and for
monitoring the efficacy of possible medical treatment.

1.1 Nomenclature

We remind that a random closed set (RACS) Ξ in Rd is a measurable map

Ξ : (Ω,F ,P) −→ (F, σF),

where F denotes the class of the closed subsets in Rd, and σF is the σ−algebra
generated by the so-called hit-or-miss topology (see [Mat75]).

The theory of Choquet–Matheron shows that it is possible to assign a
unique probability law associated with a RACS Ξ in Rd on the measurable
space (F, σF) by assigning its hitting functional TΞ.

This is defined as

TΞ : K ∈ K �−→ P (Ξ ∩K �= ∅),

where K denotes the family of compact sets in Rd.

Actually we may consider, equivalently, the restriction of TΞ to the family
of closed balls {Bε(x);x ∈ Rd, ε ∈ R+ − {0}}.

In dependence of its regularity, a random closed set Θn with Hausdorff
dimension n (i.e. dimHΘn(ω) = n for a.e. ω ∈ Ω), may induce a random
Radon measure

µΘn
(·) := Hn(Θn ∩ · )

on Rd (Hn is the n-dimensional Hausdorff measure), and, as a consequence,
an expected measure

E[µΘn
](·) := E[Hn(Θn ∩ · )]

(for a discussion about measurability of Hn(Θn) we refer to [BM97,Z82]).
In several real applications, it is of interest to study the density (said

mean density) of the measure E[µΘn
] [BR04], and, in the dynamical case, its

evolution in time [Mol92,Mol94]. Here we present a synthesis of a theory of
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random distributions as generalized densities of random measures, and mean
geometric densities as expected values of random generalized densities, as
proposed in [CV06c]. In particular we introduce a Delta formalism, á la Dirac–
Schwartz, for the description of random measures associated with random
closed sets of lower dimensions, such that the well known usual Dirac delta at
a point follows as a particular case (see, for instance, [Jones82,KF70,Vlad79]).

In dealing with mean densities, a concept of absolutely continuous random
closed set arises in a natural way in terms of the expected measure; indeed, an
interesting property of a random set in Rd is whether the expected measure
induced by the random set is absolutely continuous or not with respect to
the d-dimensional Lebesgue measure νd. Thus, it is of interest to distinguish
between random closed sets which induce an absolutely continuous expected
measure, and random closed sets which induce a singular one. To this aim we
introduce definitions of discrete, continuous, and absolutely continuous ran-
dom closed set, coherently with the classical 0-dimensional case, in order to
propose an extension of the standard definition of discrete, continuous, and ab-
solutely continuous random variable, respectively (see also [CV06a,CV06b]).

2 Generalized Densities

In the sequel we will refer to a class of sufficiently regular random closed sets
in the Euclidean space Rd, of integer dimension n.

Definition 1 (n-regular set). Given an integer n ∈ [0, d], we say that a
closed subset S of Rd is n-regular, if it satisfies the following conditions:

(i) Hn(S ∩BR(0)) <∞ for any R > 0

(ii) lim
r→0

Hn(S ∩Br(x))
bnrn

= 1 for Hn-a.e. x ∈ S

Here bn denotes the volume of the unit ball in Rn.

Remark 1. Note that condition (ii) is related to a characterization of the Hn-
rectifiability of the set A ([Fal85], p. 256, 267, [AFP00], p. 83).

We may observe that if An is an n-regular closed set in Rd, we have

lim
r→0

Hn(An ∩Br(x))
bnrn

=
{

1 Hn-a.e. x ∈ An,
0 ∀x �∈ An;

as a consequence (by assuming 0 · ∞ = 0), for 0 ≤ n < d we have

lim
r→0

Hn(An ∩Br(x))
bdrd

= lim
r→0

Hn(An ∩Br(x))
bnrn

bnr
n

bdrd

=
{
∞ Hn-a.e. x ∈ An,
0 ∀x �∈ An.
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It is well known that every positive Radon measure µ on Rd can be
decomposed as

µ = µ� + µPerp,

where µ� and µPerp are the absolutely continuous, and the singular parts of
µ, respectively, with respect to νd, the usual Lebesgue measure on Rd.

It then follows that µ� admits a (nontrivial) Radon–Nikodym derivative
with respect to νd, which is known as its density; while the Radon–Nikodym
derivative of µPerp, with respect to νd, would be zero νd− a.e.

Anyhow in analogy with the usual Dirac delta function δx0(x) associated
with a point x0 ∈ Rd (a 0-regular closed set), a density can be introduced also
for µPerp, in a generalized sense, according to Definition 2 [KF70].

Definition 2 (Generalized density). We call δµPerp , the generalized density
(or, briefly, the density P) of µPerp, the quantity

δµPerp(x) := lim
r→0

µPerp(Br(x))
bdrd

,

finite or not.

Clearly, if An is an n-regular closed set in Rd with n < d, then the measure

µAn
(·) := Hn(An ∩ ·)

is a singular measure with respect to νd. Based on Definition 1, the quantity

δAn
(x) := lim

r→0

Hn(An ∩Br(x))
bdrd

,

(finite or not), can now be introduced as the (generalized) density associated
with An.

With an abuse of notations, we may introduce the linear functional δAn

associated with the measure µAn
, as follows:

(δAn
, f) :=

∫
Rd

f(x)µAn
(dx),

for any f ∈ Cc(Rd,R), having denoted by Cc(Rd,R) the space of all contin-
uous functions from Rd to R with compact support. In accordance with the
usual representation of distributions in the theory of generalized functions, we
formally write ∫

Rd

f(x)δAn
(x) dx := (δAn

, f).

Define the function

δ
(r)
An

(x) :=
Hn(An ∩Br(x))

bdrd
,

and correspondingly the associated measure


