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CHAPTER 1

INTRODUCTION

The solutions presented in this manual reflect the authors’ best attempt to provide insights
and answers. While we have done our best to be complete and accurate, errors may occur
and there may be more elegant solutions. Errata will be linked from the syllabus document
for any Society of Actuaries examination that uses this text.

Should you find errors, or if you would like to provide improved solutions, please send
your comments to Stuart Klugman at sklugman@soa.org.
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CHAPTER 2

CHAPTER 2 SOLUTIONS

SECTION 2.2 {
0.01𝑥, 0 ≤ 𝑥 < 50,

50 ≤ 𝑥 < 75.
2.1 𝐹5(𝑥) = 1 − 𝑆5(𝑥) = 0.02𝑥 − 0.5,{

0.01, 0 < 𝑥 < 50,
𝑓5(𝑥) = 𝐹 ′(𝑥) =5 0.02, 50 ≤ 𝑥 < 75.

1
, 0 < 𝑥 < 50,⎧⎪⎨⎪⎩

𝑓5(𝑥) 100 − 𝑥
ℎ5(𝑥) = =

𝑆5(𝑥) 50 ≤ 𝑥 < 75.1
75 − 𝑥

,

Model 4 indicates the 0.7 of discrete probability at zero.

√
2.2 The requested plots follow. The triangular spike at zero in the density function for

2.3 𝑓 ′(𝑥) = 4(1 + 𝑥2)−3 − 24𝑥2(1 + 𝑥2)−4. Setting the derivative equal to zero and
multiplying by (1 + 𝑥2)4 gives the equation 4(1 + 𝑥2) − 24𝑥2 = 0. This is equivalent to

𝑥2 = 1∕5. The only positive solution is the mode of 1∕ 5.
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© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

3



4 CHAPTER 2 SOLUTIONS

Figure 2.1 The distribution function for Model 3.

Figure 2.2 The distribution function for Model 4.

Figure 2.3 The distribution function for Model 5.
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Figure 2.4 The probability function for Model 3.

Figure 2.5 The density function for Model 4.

Figure 2.6 The density function for Model 5.
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Figure 2.7 The hazard rate for Model 4.

Figure 2.8 The hazard rate for Model 5.

2.4 The survival function can be recovered as
0.4

𝐴+𝑒2𝑥𝑑𝑥0.5 = 𝑆(0.4) = 𝑒− ∫0
−𝐴𝑥−0.5𝑒2𝑥|||0.4= 𝑒 0

= 𝑒−0.4𝐴−0.5𝑒
0.8+0.5.

Taking logarithms gives

−0.693147 = −0.4𝐴− 1.112770+ 0.5,

and thus 𝐴 = 0.2009.
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2.5 The ratio is ( )210,000
10,000 + 𝑑

𝑟 = ( )220, 000
20, 000 + 𝑑2( )220,000 + 𝑑2=
20,000 + 2𝑑

20,0002 + 40,000𝑑2 + 𝑑4=
20,0002 + 80,000𝑑 + 4𝑑2

.

From observation or two applications of L’Hôpital’s rule, we see that the limit is infinity.



CHAPTER 3

CHAPTER 3 SOLUTIONS

SECTION 3.1

3.1 𝜇3 = ∫
∞

−∞
(𝑥 − 𝜇)3𝑓 (𝑥)𝑑𝑥 = ∫

∞

−∞
(𝑥3 − 3𝑥2𝜇 + 3𝑥𝜇2 − 𝜇3)𝑓 (𝑥)𝑑𝑥

= 𝜇′
3 − 3𝜇′

2𝜇 + 2𝜇3,

𝜇4 = ∫
∞

−∞
(𝑥 − 𝜇)4𝑓 (𝑥)𝑑𝑥

= ∫
∞

−∞
(𝑥4 − 4𝑥3𝜇 + 6𝑥2𝜇2 − 4𝑥𝜇3 + 𝜇4)𝑓 (𝑥)𝑑𝑥

= 𝜇′
4 − 4𝜇′

3𝜇 + 6𝜇′
2𝜇

2 − 3𝜇4.

3.2 For Model 1, 𝜎2 = 3,333.33 − 502 = 833.33, 𝜎 = 28.8675.
𝜇′
3 = ∫ 100

0 𝑥3(0.01)𝑑𝑥 = 250,000, and 𝜇3 = 0, 𝛾1 = 0.
𝜇′
4 = ∫ 100

0 𝑥4(0.01)𝑑𝑥 = 20,000,000, 𝜇4 = 1,250,000, 𝛾2 = 1.8.
For Model 2, 𝜎2 = 4,000,000 − 1,0002 = 3,000,000, and 𝜎 = 1,732.05. 𝜇′

3 and 𝜇′
4 are

both infinite, so the skewness and kurtosis are not defined.
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10 CHAPTER 3 SOLUTIONS

For Model 3, 𝜎2 = 2.25 − 0.932 = 1.3851 and 𝜎 = 1.1769.
𝜇′
3 = 0(0.5) + 1(0.25) + 8(0.12) + 27(0.08) + 64(0.05) = 6.57, 𝜇3 = 1.9012,

𝛾1 = 1.1663, 𝜇′
4 = 0(0.5) + 1(0.25) + 16(0.12) + 81(0.08) + 256(0.05) = 21.45,

𝜇4 = 6.4416, 𝛾2 = 3.3576.

For Model 4, 𝜎2 = 6,000,000,000− 30,0002 = 5,100,000,000 and 𝜎 = 71,414.
𝜇′
3 = 03(0.7) + ∫ ∞

0 𝑥3(0.000003)𝑒−.00001𝑥𝑑𝑥 = 1.8 × 1015,
𝜇3 = 1.314 × 1015, 𝛾1 = 3.6078.
𝜇′
4 = ∫ ∞

0 𝑥4(0.000003)𝑒−.00001𝑥𝑑𝑥 = 7.2 × 1020, 𝜇4 = 5.3397 × 1020,
𝛾2 = 20.5294.

For Model 5, 𝜎2 = 2,395.83 − 43.752 = 481.77 and 𝜎 = 21.95.
𝜇′
3 = ∫ 50

0 𝑥3(0.01)𝑑𝑥+ ∫ 75
50 𝑥3(0.02)𝑑𝑥 = 142,578.125, 𝜇3 = −4,394.53,

𝛾1 = −0.4156.
𝜇′
4 = ∫ 50

0 𝑥4(0.01)𝑑𝑥+ ∫ 75
50 𝑥4(0.02)𝑑𝑥 = 8,867,187.5, 𝜇4 = 439,758.30,

𝛾2 = 1.8947.

3.3 The standard deviation is the mean times the coefficient of variation, or 4, and so the
variance is 16. From (3.3), the second raw moment is 16 + 22 = 20. The third central
moment is (using Exercise 3.1) 136 − 3(20)(2) + 2(2)3 = 32. The skewness is the third
central moment divided by the cube of the standard deviation, or 32∕43 = 1∕2.

3.4 For a gamma distribution, the mean is 𝛼𝜃. The second raw moment is 𝛼(𝛼 + 1)𝜃2, and
so the variance is 𝛼𝜃2. The coefficient of variation is

√
𝛼𝜃2∕𝛼𝜃 = 𝛼−1∕2 = 1. Therefore

𝛼 = 1. The third raw moment is 𝛼(𝛼 + 1)(𝛼 + 2)𝜃3 = 6𝜃3. From Exercise 3.1, the third
central moment is 6𝜃3 − 3(2𝜃2)𝜃 + 2𝜃3 = 2𝜃3 and the skewness is 2𝜃3∕(𝜃2)3∕2 = 2.

3.5 For Model 1,

𝑒(𝑑) =
∫ 100
𝑑 (1 − 0.01𝑥)𝑑𝑥

1 − 0.01𝑑
= 100 − 𝑑

2
.

For Model 2,

𝑒(𝑑) =
∫

∞

𝑑

(
2𝑡𝑒𝑥𝑡,000
𝑥 + 2,000

)3
𝑑𝑥(

2,000
𝑑 + 2,000

)3 = 2,000 + 𝑑

2
.

For Model 3,

𝑒(𝑑) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.25(1 − 𝑑) + 0.12(2 − 𝑑) + 0.08(3 − 𝑑) + 0.05(4 − 𝑑)
0.5

= 1.86 − 𝑑,
0 ≤ 𝑑 < 1,

0.12(2 − 𝑑) + 0.08(3 − 𝑑) + 0.05(4 − 𝑑)
0.25

= 2.72 − 𝑑, 1 ≤ 𝑑 < 2,

0.08(3 − 𝑑) + 0.05(4 − 𝑑)
0.13

= 3.3846 − 𝑑, 2 ≤ 𝑑 < 3,

0.05(4 − 𝑑)
0.05

= 4 − 𝑑, 3 ≤ 𝑑 < 4.

http:=�4,394.53
http:439,758.30
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For Model 4,

𝑒(𝑑) =
∫ ∞
𝑑 0.3𝑒−0.00001𝑥𝑑𝑥
0.3𝑒−0.00001𝑑

= 100,000.

The functions are straight lines for Models 1, 2, and 4. Model 1 has negative slope, Model
2 has positive slope, and Model 4 is horizontal.

3.6 For a uniform distribution on the interval from 0 to 𝑤, the density function is 𝑓 (𝑥) =
1∕𝑤. The mean residual life is

𝑒(𝑑) =
∫ 𝑤
𝑑 (𝑥 − 𝑑)𝑤−1𝑑𝑥

∫ 𝑤
𝑑 𝑤−1𝑑𝑥

=

(𝑥 − 𝑑)2

2𝑤

|||||
𝑤

𝑑

𝑤 − 𝑑

𝑤

= (𝑤 − 𝑑)2

2(𝑤 − 𝑑)

= 𝑤 − 𝑑

2
.

The equation becomes
𝑤 − 30

2
= 100 − 30

2
+ 4,

with a solution of 𝑤 = 108.

3.7 From the definition,

𝑒(𝜆) =
∫ ∞
𝜆 (𝑥 − 𝜆)𝜆−1𝑒−𝑥∕𝜆𝑑𝑥
∫ ∞
𝜆 𝜆−1𝑒−𝑥∕𝜆𝑑𝑥

= 𝜆.

3.8 E(𝑋) = ∫
∞

0
𝑥𝑓 (𝑥)𝑑𝑥 = ∫

𝑑

0
𝑥𝑓 (𝑥)𝑑𝑥 + ∫

∞

𝑑
𝑑𝑓 (𝑥)𝑑𝑥 + ∫

∞

𝑑
(𝑥 − 𝑑)𝑓 (𝑥)𝑑𝑥

= ∫
𝑑

0
𝑥𝑓 (𝑥)𝑑𝑥 + 𝑑[1 − 𝐹 (𝑑)] + 𝑒(𝑑)𝑆(𝑑) = E[𝑋 ∧ 𝑑] + 𝑒(𝑑)𝑆(𝑑).

3.9 For Model 1, from (3.8),

E[𝑋 ∧ 𝑢] = ∫
𝑢

0
𝑥(0.01)𝑑𝑥 + 𝑢(1 − 0.01𝑢) = 𝑢(1 − 0.005𝑢)

and from (3.10),

E[𝑋 ∧ 𝑢] = 50 − 100 − 𝑢

2
(1 − 0.01𝑢) = 𝑢(1 − 0.005𝑢).

From (3.9),

E[𝑋 ∧ 𝑢] = −∫
0

−∞
0 𝑑𝑥 + ∫

𝑢

0
1 − 0.01𝑥 𝑑𝑥 = 𝑢 − 0.01𝑢2

2
= 𝑢(1 − 0.005𝑢).
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For Model 2, from (3.8),

E[𝑋 ∧ 𝑢] = ∫
𝑢

0
𝑥

3(2,000)3

(𝑥 + 2,000)4
𝑑𝑥 + 𝑢

2,0003

(2,000 + 𝑢)3
= 1000

[
1 − 4,000,000

(2,000 + 𝑢)2

]
,

and from (3.10),

E[𝑋 ∧ 𝑢] = 1,000 − 2,000 + 𝑢

2

(
2,000

2,000 + 𝑢

)3
= 1,000

[
1 − 4,000,000

(2,000 + 𝑢)2

]
.

From (3.9),

E[𝑋 ∧ 𝑢] = ∫
𝑢

0

(
2,000

2,000 + 𝑥

)3
𝑑𝑥 = −2,0003

2(2,000 + 𝑥)2
|||||
𝑢

0

= 1,000
[
1 − 4,000,000

(2,000 + 𝑢)2

]
.

For Model 3, from (3.8),

E[𝑋 ∧ 𝑢] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0(0.5) + 𝑢(0.5) = 0.5𝑢, 0 ≤ 𝑢 < 1,

0(0.5) + 1(0.25) + 𝑢(0.25) = 0.25 + 0.25𝑢, 1 ≤ 𝑢 < 2,

0(0.5) + 1(0.25) + 2(0.12) + 𝑢(0.13)
= 0.49 + 0.13𝑢,

2 ≤ 𝑢 < 3,

0(0.5) + 1(0.25) + 2(0.12) + 3(0.08) + 𝑢(0.05)
= 0.73 + 0.05𝑢,

3 ≤ 𝑢 < 4,

and from (3.10),

E[𝑋 ∧ 𝑢] =

⎧⎪⎪⎨⎪⎪⎩
0.93 − (1.86 − 𝑢)(0.5) = 0.5𝑢, 0 ≤ 𝑢 < 1,
0.93 − (2.72 − 𝑢)(0.25) = 0.25 + 0.25𝑢, 1 ≤ 𝑢 < 2,
0.93 − (3.3846 − 𝑢)(0.13) = 0.49 + 0.13𝑢, 2 ≤ 𝑢 < 3,
0.93 − (4 − 𝑢)0(0.05) = 0.73 + 0.05𝑢, 3 ≤ 𝑢 < 4.

For Model 4, from (3.8),

E[𝑋 ∧ 𝑢] = ∫
𝑢

0
𝑥(0.000003)𝑒−0.00001𝑥𝑑𝑥 + 𝑢(0.3)𝑒−0.00001𝑢

= 30,000[1 − 𝑒−0.00001𝑢],

and from (3.10),

E[𝑋 ∧ 𝑢] = 30,000 − 100,000(0.3𝑒−0.00001𝑢) = 30,000[1 − 𝑒−0.00001𝑢].
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3.10 For a discrete distribution (which all empirical distributions are), the mean residual
life function is

𝑒(𝑑) =

∑
𝑥𝑗>𝑑

(𝑥𝑗 − 𝑑)𝑝(𝑥𝑗)∑
𝑥𝑗>𝑑

𝑝(𝑥𝑗)
.

When 𝑑 is equal to a possible value of𝑋, the function cannot be continuous because there
is a jump in the denominator but not in the numerator. For an exponential distribution,
argue as in Exercise 3.7 to see that it is constant. For the Pareto distribution,

𝑒(𝑑) = E(𝑋) − E(𝑋 ∧ 𝑑)
𝑆(𝑑)

=

𝜃

𝛼−1 − 𝜃

𝛼 −1

[
1 −
(

𝜃

𝜃 + 𝑑

)𝛼−1]
(

𝜃
𝜃+𝑑

)𝛼
= 𝜃

𝛼 − 1
𝜃 + 𝑑

𝜃
= 𝜃 + 𝑑

𝛼 − 1
,

which is increasing in 𝑑. Only the second statement is true.

3.11 Application of the formula from the solution to Exercise 3.10 gives

10,000 + 10,000
0.5 − 1

= −40,000,

which cannot be correct. Recall that the numerator of the mean residual life is E(𝑋)−
E(𝑋 ∧ 𝑑). However, when 𝛼 ≤ 1, the expected value is infinite and so is the mean residual
life.

3.12 The right truncated variable is defined as 𝑌 = 𝑋, given that 𝑋 ≤ 𝑢. When 𝑋 > 𝑢,
this variable is not defined. The 𝑘th moment is

E(𝑌 𝑘) =
∫ 𝑢
0 𝑥𝑘𝑓 (𝑥)𝑑𝑥

𝐹 (𝑢)
=
∑

𝑥𝑖≤𝑢 𝑥𝑘𝑖 𝑝(𝑥𝑖)
𝐹 (𝑢)

.

3.13 This is a single-parameter Pareto distribution with parameters 𝛼 = 2.5 and 𝜃 = 1. The
moments are 𝜇1 = 2.5∕1.5 = 5∕3 and 𝜇2 = 2.5∕.5 − (5∕3)2 = 20∕9. The coefficient of
variation is

√
20∕9∕(5∕3) = 0.89443.

3.14 𝜇 = 0.05(100) + 0.2(200) + 0.5(300) + 0.2(400) + 0.05(500) = 300.
𝜎2 = 0.05(−200)2 + 0.2(−100)2 + 0.5(0)2 + 0.2(100)2 + 0.05(200)2 = 8,000.
𝜇3 = 0.05(−200)3 + 0.2(−100)3 + 0.5(0)3 + 0.2(100)3 + 0.05(200)3 = 0.
𝜇4 = 0.05(−200)4 + 0.2(−100)4 + 0.5(0)4 + 0.2(100)4 + 0.05(200)4 = 200,000,000.
Skewness is 𝛾1 = 𝜇3∕𝜎3 = 0. Kurtosis is 𝛾2 = 𝜇4∕𝜎4 = 200,000,000∕8,0002 = 3.125.

3.15 The Pareto mean residual life function is

𝑒𝑋(𝑑) =
∫ ∞
𝑑 𝜃𝑎(𝑥 + 𝜃)−𝛼𝑑𝑥
𝜃𝛼(𝑥 + 𝑑)−𝛼

= (𝑑 + 𝜃)∕(𝛼 − 1),

and so 𝑒𝑋(2𝜃)∕𝑒𝑋(𝜃) = (2𝜃 + 𝜃)∕(𝜃 + 𝜃) = 1.5.
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3.16Samplemean: 0.2(400) + 0.7(800) + 0.1(1,600) = 800. Sample variance: 0.2(−400)2+
0.7(0)2 + 0.1(800)2 = 96,000. Sample third central moment: 0.2(−400)3 + 0.7(0)3 +
0.1(800)3 = 38,400,000. Skewness coefficient: 38,400,000∕96,0001.5 = 1.29.

SECTION 3.2

3.17 The pdf is 𝑓 (𝑥) = 2𝑥−3, 𝑥 ≥ 1. The mean is ∫ ∞
1 2𝑥−2𝑑𝑥 = 2. The median is the

solution to 0.5 = 𝐹 (𝑥) = 1 − 𝑥−2, which is 1.4142. The mode is the value at which the pdf
is highest. Because the pdf is strictly decreasing, the mode is at its smallest value, 1.

3.18 For Model 2, solve 𝑝 = 1 −
(

2,000
2,000+𝜋𝑝

)3
, and so 𝜋𝑝 = 2,000[(1 − 𝑝)−1∕3 − 1], and

the requested percentiles are 519.84 and 1419.95.
For Model 4, the distribution function jumps from 0 to 0.7 at zero and so 𝜋0.5 = 0. For

percentiles above 70, solve 𝑝 = 1 − 0.3𝑒−0.00001𝜋𝑝 , and so 𝜋𝑝 = −100,000 ln[(1 − 𝑝)∕0.3]
and 𝜋0.8 = 40,546.51.

For Model 5, the distribution function has two specifications. From 𝑥 = 0 to 𝑥 = 50,
it rises from 0.0 to 0.5, and so for percentiles at 50 or below, the equation to solve is
𝑝 = 0.01𝜋𝑝 for 𝜋𝑝 = 100𝑝. For 50 < 𝑥 ≤ 75, the distribution function rises from 0.5 to
1.0, and so for percentiles from 50 to 100 the equation to solve is 𝑝 = 0.02𝜋𝑝 − 0.5 for
𝜋𝑝 = 50𝑝 + 25. The requested percentiles are 50 and 65.

3.19 The two percentiles imply

0.1 = 1 −
(

𝜃

𝜃 + 𝜃 − 𝑘

)𝛼
,

0.9 = 1 −
(

𝜃

𝜃 + 5𝜃 − 3𝑘

)𝛼
.

Rearranging the equations and taking their ratio yields

0.9
0.1

=
(6𝜃 − 3𝑘
2𝜃 − 𝑘

)𝛼
= 3𝛼.

Taking logarithms of both sides gives ln 9 = 𝛼 ln 3 for 𝛼 = ln 9∕ ln 3 = 2.

3.20 The two percentiles imply

0.25 = 1 − 𝑒−(1,000∕𝜃)
𝜏
,

0.75 = 1 − 𝑒−(100,000∕𝜃)
𝜏
.

Subtracting and then taking logarithms of both sides gives

ln 0.75 = −(1,000∕𝜃)𝜏 ,
ln 0.25 = −(100,000∕𝜃)𝜏 .

Dividing the second equation by the first gives

ln 0.25
ln 0.75

= 100𝜏 .

Finally, taking logarithms of both sides gives 𝜏 ln 100 = ln[ln 0.25∕ ln 0.75] for 𝜏 = 0.3415.

http:38,400,000/96,0001.5=1.29
http:1419.95
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SECTION 3.3

3.21 The sum has a gamma distribution with parameters 𝛼 = 16 and 𝜃 = 250. Then
Pr(𝑆16 > 6,000) = 1 − Γ(16; 6,000∕250) = 1 − Γ(16; 24). From the central limit theorem,
the sum has an approximate normal distribution with mean 𝛼𝜃 = 4,000 and variance
𝛼𝜃2 = 1,000,000 for a standard deviation of 1,000. The probability of exceeding 6,000 is
1 − Φ[(6,000 − 4,000)∕1,000] = 1 − Φ(2) = 0.0228.

3.22 A single claim has mean 8,000∕(5∕3) = 4,800 and variance

2(8,000)2∕[(5∕3)(2∕3)] − 4,8002 = 92,160,000.

The sum of 100 claims has mean 480,000 and variance 9,216,000,000, which is a standard
deviation of 96,000. The probability of exceeding 600,000 is approximately

1 − Φ[(600,000 − 480,000)∕96,000] = 1 − Φ(1.25) = 0.106.

3.23 The mean of the gamma distribution is 5(1,000) = 5,000 and the variance is
5(1,000)2 = 5,000,000. For 100 independent claims, the mean is 500,000 and the vari-
ance is 500,000,000 for a standard deviation of 22,360.68. The probability of total claims
exceeding 525,000 is

1 − Φ[(525,000 − 500,000)∕22,360.68] = 1 − Φ(1.118) = 0.13178.

3.24 The sum of 2,500 contracts has an approximate normal distribution with mean
2,500(1,300) = 3,250,000 and standard deviation

√
2,500(400) = 20,000. The answer

is Pr(𝑋 > 3,282,500)
.
= Pr[𝑍 > (3,282,500 − 3,250,000)∕20,000] = Pr(𝑍 > 1.625) =

0.052.

SECTION 3.4

3.25 While the Weibull distribution has all positive moments, for the inverse Weibull
moments exist only for 𝑘 < 𝜏 . Thus, by this criterion, the inverse Weibull distribution has
a heavier tail. With regard to the ratio of density functions, it is (with the inverse Weibull
in the numerator, and with asterisks (*) used to mark its parameters)

𝜏∗𝜃∗𝜏
∗
𝑥−𝜏

∗−1𝑒−(𝜃
∗∕𝑥)𝜏∗

𝜏𝜃−𝜏𝑥𝜏−1𝑒−(𝑥∕𝜃)𝜏
∝ 𝑥−𝜏−𝜏

∗
𝑒−(𝜃

∗∕𝑥)𝜏∗+(𝑥∕𝜃)𝜏 .

The logarithm is
(𝑥∕𝜃)𝜏 − (𝜃∗∕𝑥)𝜏∗ − (𝜏 + 𝜏∗) ln𝑥.

The middle term goes to zero, so the issue is the limit of (𝑥∕𝜃)𝜏 − (𝜏 + 𝜏∗) ln𝑥, which is
clearly infinite. With regard to the hazard rate, for the Weibull distribution we have

ℎ(𝑥) = 𝜏𝑥𝜏−1𝜃−𝜏𝑒−(𝑥∕𝜃)
𝜏

𝑒−(𝑥∕𝜃)𝜏
= 𝜏𝑥𝜏−1𝜃−𝜏 ,

which is clearly increasing when 𝜏 > 1, constant when 𝜏 = 1, and decreasing when 𝜏 < 1.
For the inverse Weibull,

ℎ(𝑥) = 𝜏𝑥−𝜏−1𝜃𝜏𝑒−(𝜃∕𝑥)
𝜏

1 − 𝑒−(𝜃∕𝑥)𝜏
∝ 1

𝑥𝜏+1[𝑒(𝜃∕𝑥)𝜏 − 1]
.
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