Christian von Hirschhausen Clemens Gerbaulet · Claudia Kemfert Casimir Lorenz · Pao-Yu Oei *Editors*

Energiewende "Made in Germany"

Low Carbon Electricity Sector Reform in the European Context

Energiewende "Made in Germany"

Christian von Hirschhausen • Clemens Gerbaulet • Claudia Kemfert • Casimir Lorenz • Pao-Yu Oei Editors

Energiewende "Made in Germany"

Low Carbon Electricity Sector Reform in the European Context

Editors Christian von Hirschhausen Economics and Management University of Technology (TU Berlin) Berlin, Germany

Claudia Kemfert DIW, Energy-Transport-Environment German Institute for Economic Research Berlin, Germany

Pao-Yu Oei Junior Research Group "CoalExit" University of Technology (TU Berlin) Berlin, Germany Clemens Gerbaulet Economics and Management University of Technology (TU Berlin) Berlin, Germany

Casimir Lorenz DIW, Energy-Transport-Environment German Institute for Economic Research Berlin, Germany

ISBN 978-3-319-95125-6 ISBN 978-3-319-95126-3 (eBook) https://doi.org/10.1007/978-3-319-95126-3

Library of Congress Control Number: 2018962959

© Springer Nature Switzerland AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1	<mark>Intr</mark> Chri	oduction stian vo	n Hirschhausen, Clemens Gerbaulet, Claudia Kemfert,	1
	Casi	mir Lor	enz, and Pao-Yu Oei	
	1.1	Introdu	ıction	1
	1.2	The M	ain Ingredients of the Energiewende	3
	1.3	Curren	t State of the Literature	4
	1.4	Structu	re of the Book	6
		1.4.1	Part I: Historic Origins: The Energiewende	
			and the Transformation of the German Coal Sector	6
		1.4.2	Part II: The Energiewende Underway in the Electricity	
			Sector	7
		1.4.3	Part III: The German Energiewende in the Context	
			of the European Low-Carbon Transformation	9
		1.4.4	Part IV: Assessment, Lessons, and Perspectives	11
	Refe	erences.	*	13
Par	tI ′	The His	torical Origins and Emergence of the Energiewende	
2	Ger	man En	ergy and Climate Policies: A Historical Overview	17
	Chri	stian vo	n Hirschhausen	
	2.1	Introdu	action	17
	2.2	Histori	c Periods and Fuel Choices: Fossil, Nuclear,	
		and Re	enewables	19
		2.2.1	1880s–1945: Coal Is King	19
		2.2.2	1950s–1980s: East and West Germany Enter	
			the Nuclear Age	23
		2.2.3	1980s–2010: Wind of Change and the Rise	
			of Renewables	27

2.3	2010-2	2011: A Critical Moment of the Energiewende	34
	2.3.1	September 2010: An Ambivalent "Energy	
		Concept 2050"	34
	2.3.2	The Fukushima Nuclear Accident and the Events	
		of Spring 2011	36
	2.3.3	The Objectives of the Energiewende	39
2.4	Conclu	isions	41
Refe	rences.		43
The	Transf	ormation of the German Coal Sector from 1950	
to 20	017: An	Historical Overview	45
Hanı	na Braue	ers, Philipp Herpich, and Pao-Yu Oei	
3.1	Introdu	lction	46
3.2	History	y of Hard Coal in Germany 1950–2017	46
	3.2.1	Hard Coal as Energy Carrier: Primary Energy	
		Consumption and Electricity Generation	47
	3.2.2	Hard Coal Production and Employment	49
3.3	History	y of Lignite in Germany 1950–2017	52
	3.3.1	Lignite in East Germany's Energy System	53
	3.3.2	Lignite's Contribution to the Energy Systems	
		of West Germany and Germany After	
		the Reunification	55
	3.3.3	Lignite Production and Employment	55
3.4	Politica	al Instruments Since the 1950s Until Today	56
	3.4.1	The Coal Crisis in 1958 and the First Structural	
		Policy Program of North Rhine-Westphalia (NRW)	57
	3.4.2	The Oil Crisis 1973 and the Structural Policy	
		Programs of the Ruhr Area	59
	3.4.3	Regionalization of the Structural Policy Since	
		the Mid-1980s	60
	3.4.4	East Germany's Reduction in Lignite Production	
		Due to the Reunification	61
	3.4.5	Directional Shift in the Structural Policy and Growing	
		Influence of the EU Since the Turn of the Century	64
	3.4.6	End of Subsidies for Domestic Hard Coal Production	66
3.5	Lesson	s Learned from the Past Transformation Process	68
	3.5.1	Regional Level	70
	3.5.2	National and Supranational Level	73
3.6	Conclu	isions	76
Refe	rences		77

Par	t II	The Energiewende at Work in the Electricity Sector	
4	Gre	enhouse Gas Emission Reductions and the Phasing-out	
	of C	Coal in Germany	81
	Pao-	Yu Oei	
	4.1	Introduction	82
	4.2	GHG Emissions Targets and Recent Trends in Germany	83
		4.2.1 German GHG Emissions Targets for 2050	83
		4.2.2 Ambitious Targets at the Federal State Level	
		in Germany	85
	4.3	Significant CO ₂ Emissions from Hard Coal and Lignite	
		in Germany	88
		4.3.1 Electricity Generation from Hard Coal	89
	4.4	Instruments to Accelerate the Coal Phase-out	92
		4.4.1 European Level: Reform of the European Emissions	
		Trading System (EU-ETS)	92
		4.4.2 Towards More Specific Climate Instruments	94
		4.4.3 National Level: A Variety of Instruments	98
	4.5	Effects on Resource Adequacy and Structural Change	106
		4.5.1 Coal Plant Closures and Resource Adequacy	106
		4.5.2 Regional Structural Changes Almost Complete	110
	4.6	Conclusion	113
	Refe	erences	114
5	Nuo	loar Dowor: Efforts of Diant Closures on Electricity Markets	
3	and	Pamaining Challongos	117
	Erio	drich Kunz Falix Daitz Christian von Hirschhausen	11/
	and	Ban Wealer	
	5 1	Introduction	110
	5.1	The Timetable for Closing Nuclear Dower Dients in Cormony	110
	5.2	(2011, 2022)	110
	5.2	(2011–2022)	119
	5.5	Energy Economic Effects of Nuclear Power Plant Closures	121
		5.3.1 Review of Existing Studies	121
		5.3.2 The First Model-Based Network Analysis	122
		5.3.3 Is Confirmed By Real-world Developments	122
	<u> </u>	5.3.4 and No Shortage to Be Expected After 2022	126
	5.4	Additional Challenges: Dismantling NPPs and Storing Nuclear	
		Waste	127
		5.4.1 Dismantling Nuclear Power Plants Delayed	128
		5.4.2 and So Is the Search for Long-term Storage	132
		5.4.3 Financing of the Process Uncertain	134
		5.4.4 Implications for Corporate Strategies	137
	5.5	Conclusions	138
	Refe	erences	139

	as Egere	r, Pao-Yu Oei, and Casimir Lorenz
6.1	Introdu	action
6.2	Renew	vables as the Core of the Electricity System
	6.2.1	1990–2015: From a Niche Player to the Main
		Electricity Supplier
	6.2.2	Significant Employment Effects
	6.2.3	Rising Ambitions Towards 2030 and 2050
6.3	A Nev	v Era for the Electricity System
	6.3.1	The Merit Order Effect
	6.3.2	No More Distinction Between "Peak Load"
		and "Base Load"
	6.3.3	Wholesale Electricity Prices in Germany
	6.3.4	Simulations of a Renewable System in Germany
		in 2030
	6.3.5	Is a New Market Design Required?
6.4	What A	About Costs?
	6.4.1	Short-Term Private Costs of Renewables: The EEG
		Surcharge
	6.4.2	Dynamic Perspective on Private Costs: Renewables
		as a Sound Long-Term Investment
	6.4.3	Public Economics Perspective
6.5	6.4.3 Conclu	Public Economics Perspective
6.5 Refe	6.4.3 Concluerences .	Public Economics Perspective
6.5 Refe Ene	6.4.3 Concluerences .	Public Economics Perspective
6.5 Refe <mark>Ene</mark> Clai	6.4.3 Concluerences . ergy Effi Idia Ker	Public Economics Perspective
6.5 Refe Ene Clau 7.1	6.4.3 Concluerences . ergy Effi udia Ker	Public Economics Perspective
6.5 Refe Ene Clau 7.1 7.2	6.4.3 Conclu- erences . ergy Effi udia Ker Introdu Energy	Public Economics Perspective
6.5 Refe Ene Clau 7.1 7.2	6.4.3 Conclu- erences . ergy Effi udia Ker Introdu Energy 7.2.1	Public Economics Perspective
6.5 Refe Ene Clau 7.1 7.2	6.4.3 Concluerences . ergy Effi Idia Ker Introdu Energy 7.2.1 7.2.2	Public Economics Perspective
6.5 Refe Ene Clau 7.1 7.2	6.4.3 Conclu- erences. ergy Effi udia Ker Introdu Energy 7.2.1 7.2.2 7.2.3	Public Economics Perspective
6.5 Refe Ene Clau 7.1 7.2	6.4.3 Conclu- erences. adia Ker Introdu Energy 7.2.1 7.2.2 7.2.3 7.2.4	Public Economics Perspective
6.5 Refe Clau 7.1 7.2	6.4.3 Conclu- erences. rgy Effi Idia Ker Introdu Energy 7.2.1 7.2.2 7.2.3 7.2.4 Sector	Public Economics Perspective
6.5 Refe Clau 7.1 7.2	6.4.3 Conclu- erences. rgy Effi udia Ker Introdu Energy 7.2.1 7.2.2 7.2.3 7.2.4 Sector 7.3 1	Public Economics Perspective
6.5 Refe Clau 7.1 7.2	6.4.3 Conclu- erences. rgy Effi Idia Ker Introdu Energy 7.2.1 7.2.2 7.2.3 7.2.4 Sector 7.3.1 7.3.2	Public Economics Perspective
6.5 Refe Clau 7.1 7.2	6.4.3 Conclu- erences. ergy Effi idia Ker Introdu Energy 7.2.1 7.2.2 7.2.3 7.2.4 Sector 7.3.1 7.3.2 7.3.3	Public Economics Perspective
6.5 Refe Clau 7.1 7.2	6.4.3 Concluerences. ergy Effi india Ker Introdu Energy 7.2.1 7.2.2 7.2.3 7.2.4 Sector 7.3.1 7.3.2 7.3.3 Energy	Public Economics Perspective
 6.5 Refe Clau 7.1 7.2 7.3 7.4 	6.4.3 Conclue erences. ergy Effi udia Ker Introdu Energy 7.2.1 7.2.2 7.2.3 7.2.4 Sector 7.3.1 7.3.2 7.3.3 Energy 7.4 1	Public Economics Perspective
6.5 Refe Clau 7.1 7.2 7.3	6.4.3 Concluerences. ergy Effi udia Ker Introdu Energy 7.2.1 7.2.2 7.2.3 7.2.4 Sector 7.3.1 7.3.2 7.3.3 Energy 7.4.1	Public Economics Perspective
6.5 Refe Clau 7.1 7.2 7.3	6.4.3 Concluerences. ergy Effi Idia Ker Introdue Energy 7.2.1 7.2.2 7.2.3 7.2.4 Sector 7.3.1 7.3.2 7.3.3 Energy 7.4.1	Public Economics Perspective

8 The	Role of Electricity Transmission Infrastructure	193			
Clei	nens Gerbaulet				
8.1	Introduction	194			
8.2	Transmission Planning and Incentives	195			
	8.2.1 Network Planning Before the Energiewende	195			
	8.2.2 2011: A Renewed Institutional Framework				
	for Network Planning	196			
	8.2.3 Remaining Inefficiencies and Investment Incentives	198			
8.3	Overview of Network Development Plans	200			
	8.3.1 Projected Future Network Development	200			
	8.3.2 Onshore and Offshore Development Plans	202			
8.4	Network Expansion During the Energiewende	204			
	8.4.1 Aggregate Network Investment in Germany	204			
	8.4.2 Implementation of Network Development Plans	205			
	8.4.3 Levels of Congestion, Redispatch, and Ancillary				
	Services	209			
8.5	Effects from Splitting up Germany into Bidding Zones	210			
	8.5.1 A Controversial Debate	210			
	8.5.2 Bidding Zones in Germany Would Have Minor				
	Effects	211			
8.6	Transmission Planning and Climate Targets: An Important				
	New Link	212			
8.7	Conclusions	214			
Refe	erences	215			
	tor Coupling for an Integrated Low-Carbon Energy				
7 Sec	nsformation: A Techno-Economic Introduction				
11a and	Application to Cormany	217			
Ione		217			
0 1	Introduction	217			
0.1	The Basic Idea of "Sector Coupling"	217			
9.2	Sectors	210			
9.5	0.2.1 Transportation	221			
	9.5.1 Transportation	221			
	9.5.2 Realing and Cooling	223			
0.4	9.5.5 The Electricity Sector in the Core of Interdependencies.	220			
9.4	Some Model-based Evidence	231			
	9.4.1 Electrification is Key \dots	232			
	9.4.2 Efficiency First	233			
	9.4.5 Kole of Synthetic Fuels Uncertain	255			
	9.4.4 Digitalization and Smart Infrastructure	234			
	9.4.5 Other Issues: Fossil Gas, Transportation, and Market				
	Design	235			
9.5	Conclusion	236			
Ref	erences	236			

Par	t III	The Gei Low-Ca	rman Energiewende in the Context of the European rbon Transformation	
10	The l	Electricit	ty Mix in the European Low-Carbon Transformation:	
	Coal	, Nuclear	r, and Renewables	241
	Roma	an Mende	elevitch, Claudia Kemfert, Pao-Yu Oei,	
	and C	Christian	von Hirschhausen	
	10.1	Introdu	ction	242
	10.2	Europe	an Energy (and Climate) Policies Since 1951	243
		10.2.1	The Past: 1951 to Today	243
		10.2.2	Objectives Moving Forward: 2030 and 2050	248
	10.3	Coal an	nd the Pervasive Search for Carbon Capture, Transport,	
		and Sto	orage (CCTS)	258
		10.3.1	Coal-Producing Member States Seek Coal-Based	
			"Decarbonization"	258
		10.3.2	No CCTS Demonstration Projects to Date	259
	10.4	Nuclear	r Power in the European Electricity Mix	264
		10.4.1	Development of Nuclear Power in Europe	264
		10.4.2	Costs of Nuclear Energy Prohibitively High	266
		10.4.3	Renaissance of Nuclear Power in EU Scenarios	
			Not Plausible	270
	10.5	Renewa	ables: Potential Underestimated	273
		10.5.1	Increase in Renewables Since the 1990s	273
		10.5.2	The Breakthrough of Renewables is Now Occurring	
			on the Global Level	273
		10.5.3	But Has Been Systematically Ignored in the EU	
			Reference Scenarios	275
	10.6	Compa	ring Alternative Low-Carbon Scenarios	277
	10.7	Conclu	sions	278
	Refer	rences	•••••••••••••••••••••••••••••••••••••••	280
11	Ener	gy Infra	structures for the Low-Carbon Transformation	
	in Eu	irope		283
	Franz	ziska Hol	z, Jonas Egerer, Clemens Gerbaulet, Pao-Yu Oei,	
	Roma	an Mende	elevitch, Anne Neumann, and Christian von	
	Hirsc	hhausen		
	11.1	Introdu	ction	284
	11.2	Infrastr	ucture and Low-Carbon Development	285
		11.2.1	Macroeconomic Perspective: Development	
			by Infrastructure Oversupply or Shortage?	285
		11.2.2	Yet Another Perspective: "Cables for Carbon"?	287
		11.2.3	Recent Empirical Evidence: Is "Big Really	
			Beautiful"?	289

Contents

	11.3	Electric	tity Transmission	292
		11.3.1	Initial Conception: Supergrids	292
		11.3.2	From Supergrid Projects Towards a More Regional	
			and Local Approach	294
	11.4	Natural	Gas Infrastructure	299
		11.4.1	Uncertain Perspectives for Natural Gas	
			and Its Infrastructure Requirements	299
		11.4.2	EU Natural Gas Sector Resilient Against Supply	
			Shocks	303
	11.5	CO ₂ Pi	pelines	309
		11.5.1	Early Expectations for a European-wide CO_2	
			Pipeline Network	309
		11.5.2	Current Status: The Network That Did Not Become	
			a Reality	311
	11.6	Conclu	sions	312
	Refer	ences		313
12	Cross	Dondon	Cooperation in the European Contacts Evidence	
14	from	Dorigno	Cooperation In the European Context: Evidence	210
	Cosin	Negiona vir Loron	a Longe Egoror and Clomone Corbeulat	519
		Introdu	z, jonas Egerer, and Clemens Gerbaulet	210
	12.1	Differen	the Cooperation Schemes	221
	12.2	Differen	al Cooperation Detterns in European Electricity	221
	12.3	12 2 1	"Pagional Groups" and Similar Ongoing Activities	322
		12.3.1	Regional Gloups and Similar Ongoing Activities	322
		12.3.2	North See Countries Offshere Grid	520
		12.3.3	Initiative (NSCOCI)	277
		1224	Deltie Energy Merket Interconnection	321
		12.3.4	Diam (DEMID)	220
		1225	Trilateral Cooperation for the Expansion of Dumped	328
		12.3.3	Storage Plante: Switzerland Austria Cormany	378
	12.4	Casa St	Storage Flants. Switzenand, Austria, Germany	320
	12.4	Case Si Darian	uuy (I). A joint balancing Market in the Alpine	220
		12 4 1	An Important Market Segment	229
		12.4.1	An Important Market Segment	229
	12.5	12.4.2 Casa St	Can be beneficial for Regional Cooperation	224
	12.5	Case Si	Welfere Economic Analysis of Development	334
		12.3.1	Second analysis of Development	225
		1050		333
		12.3.2	Focus on Transmission Cooperation Among	220
	10 (C 1		339
	12.6	Conclu	sions	542
	Keter	ences	• • • • • • • • • • • • • • • • • • • •	343

Kons	tantin Löffler Thorsten Burandt Karlo Hainsch Claudia
Kemf	Fert Pao-Yu Oei and Christian von Hirschhausen
13.1	Introduction
13.2	Model and Data
	13.2.1 General Model Description
	13.2.2 Model Setup and Data
13.3	Scenario Definition
13.4	Results and Discussion
	13.4.1 Emission Pathway: 2 Degrees
	13.4.2 Emission Pathway: Business as Usual
	13.4.3 Emission Pathway: 1.5 Degrees
	13.4.4 Comparison of Emission Pathways
	13.4.5 Discussion
13.5	Conclusion

Part IV Assessment, Perspectives, and Conclusions

14	General Conclusions: 15 Lessons from the First Phase			
	of the	e Energi	ewende	377
	Clauc	lia Kemt	ert, Pao-Yu Oei, and Christian von Hirschhausen	
	14.1	Introdu	ction	377
	14.2	Lesson	s from the Long-term Trends: The Energiewende	
		in the C	Context of Long-term Energy and Climate Policies	
		in Gern	nany	378
		14.2.1	Lesson I: The Energiewende Has Challenged	
			the Traditional Modus Operandi of Energy Policy	
			in Germany	378
		14.2.2	Lesson II: The Energiewende Corresponds to a Certain	
			Extent to the "Soft Path" Not Taken in the 1970s	379
		14.2.3	Lesson III: The Energiewende Is a Long-term Project,	
			and It Is a Political and Societal Revolution as Much	
			as It Is a Technological Revolution	380
		14.2.4	Lesson IV: The Energiewende Has not Changed	
			the Cross-Subsidization of Energy-Intensive Consumers	
			by Small Businesses and Household Consumers	380
		14.2.5	Lesson V: Methodology Matters: Polycentric Approaches	
			Are Superior to Monocentric ("One-Size-Fits-All")	
			Approaches	381
			- PP-commence	201

Contents

14.3	The On	going Energiewende in Germany: Lessons	
	from th	e "Engine Room"	382
	14.3.1	Lesson VI: The Energiewende Is the German Version	
		of Low-Carbon Transformation that Focuses Specifically	
		on Renewables	382
	14.3.2	Lesson VII: Some Targets of the Energiewende	
		Were "Low-Hanging Fruits" and Have Already Been	
		Reached	382
	14.3.3	Lessons VIII: But Carbon Emission Reduction	
		and Energy Efficiency Have Not	382
	14.3.4	Lesson IX: Technologies Needed for the Energiewende	
		in the Electricity Sector to Succeed by 2050 Are Already	
		Available	383
	14.3.5	Lesson X: The Electricity Sector Is Relatively Easy	
		to Decarbonize, Whereas the Transportation, Industry,	
		and Household Sectors Are Not	384
	14.3.6	Lesson XI: The Economic Benefits of the Energiewende	
		Surpass the Costs, So the Energiewende Is Economically	
		Efficient	384
14.4	Lesson	s from a European Perspective: The Energiewende	
	in Gern	nany and Low-Carbon Transformation in Europe	385
	14.4.1	Lesson XII: The European Low-Carbon	
		Transformation Is a Mosaic of National Strategies,	
		Many of Which Include Substantial Shares of Coal	
		and Nuclear Energy	385
	14.4.2	Lesson XIII: Yet the German Energiewende Can	
		Benefit from Regional and Europe-wide Cooperation	385
	14.4.3	Lesson XIV: Infrastructure Is an Important Element	
		of the European Low-Carbon Transformation, But Does	
		Not Constitute a Bottleneck for Decarbonization	386
	14.4.4	Lesson XV: The Low-Carbon Energy Transformation	
		Needs Strong European Energy and Climate Policies	386
14.5	Conclu	sions	387

List of Contributors

Hanna Brauers Junior Research Group "CoalExit", Berlin, Germany TU Berlin, Berlin, Germany DIW Berlin, Berlin, Germany Thorsten Burandt Junior Research Group "CoalExit", Berlin, Germany TU Berlin, Berlin, Germany DIW Berlin, Berlin, Germany Jonas Egerer Friedrich-Alexander-Universität (FAU), Erlangen, Nürnberg, Germany Clemens Gerbaulet TU Berlin, Berlin, Germany DIW Berlin, Berlin, Germany Karlo Hainsch TU Berlin, Berlin, Germany Philipp Herpich TU Berlin, Berlin, Germany DIW Berlin, Berlin, Germany Christian von Hirschhausen TU Berlin, Berlin, Germany DIW Berlin, Berlin, Germany Franziska Holz DIW Berlin, Berlin, Germany

Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Claudia Kemfert DIW Berlin, Berlin, Germany Hertie School of Governance, Berlin, Germany German Advisory Council on the Environment (SRU), Berlin, Germany Friedrich Kunz TenneT, Berlin, Germany Konstantin Löffler Junior Research Group "CoalExit", Berlin, Germany TU Berlin, Berlin, Germany DIW Berlin, Berlin, Germany Casimir Lorenz Aurora Energy Research, Berlin, Germany Roman Mendelevitch HU Berlin, Berlin, Germany DIW Berlin, Berlin, Germany Anne Neumann University Potsdam, Potsdam, Germany DIW Berlin, Berlin, Germany Pao-Yu Oei Junior Research Group "CoalExit", Berlin, Germany TU Berlin, Berlin, Germany DIW Berlin, Berlin, Germany Petra Opitz DIW Econ, Berlin, Germany Felix Reitz Europe beyond Coal, Brussels, Belgium Thure Traber DTU, Kongens Lyngby, Denmark Ben Wealer TU Berlin, Berlin, Germany DIW Berlin, Berlin, Germany Jens Weibezahn TU Berlin, Berlin, Germany

Abbreviations

AC	Alternating Current
ACER	Agency for the Cooperation of Energy Regulators
AEG	Allgemeine Elektricitäts-Gesellschaft
AFRR	Automatic Frequency Restoration Reserve
ATC	Available Transfer Capacity
AtG	Atomgesetz (Law on Nuclear Energy)
BAU	Business as usual
BBPIG	Bundesbedarfsplangesetz (Law on transmission development)
BEMIP	Baltic Energy Market Interconnection Plan
BEWAG	Berliner Elektrizitätswirtschafts-Aktiengesellschaft (Berlin Utility)
BIP	Bruttoinlandsprodukt (gross domestic product)
BMUB	Bundesministerium für Umwelt, Naturschutz, Bau
	und Reaktorsicherheit (Federal Ministry for the Environment, Nature
	Conservation, Building and Nuclear Safety)
BMWI	Bundesministerium für Wirtschaft und Energie (Federal Ministry for
	Economic Affairs and Energy)
bn	Billion
BNetzA	Bundesnetzagentur (German Federal Network Agency)
BWR	Boiling Water Reactor
CA-CM	Capacity Allocation and Congestion Management
CCGT	Combined Cycle Gas Turbine
CCTS	Carbon Capture, Transport and Storage
CDM	Clean Development Mechanism
CDU	Christlich Demokratische Union Deutschlands
	(Christian Democratic Union)
CH_4	Methane
CHP	Combined Heat and Power
CO_2	Carbon Dioxide
CoBAs	Coordinated Balancing Areas

CPF	Carbon Price Floor
CSU	Christlich-Soziale Union in Bayern (Christian Social Union
	of Bavaria)
CWE	Central West Europe
DC	Direct Current
dena	Deutsche Energie-Agentur (German Energy Agency)
DIW Berlin	Deutsches Institut für Wirtschaftsforschung (German Institute
	for Economic Research)
DVG	Deutsche Verbundgesellschaft (German Network Association)
EC	European Commission
ECSC	European Coal and Steel Community
EDF	Électricité de France
EEEP	Economics of Energy & Environmental Policy
EEG	Erneuerbare-Energie-Gesetz (Law on Renewable Energies)
EESS	European Energy Security Strategy
EEX	European Energy Exchange
EIB	European Investment Bank
EMF	Energy Modeling Forum
EN	European Norm
EnBW	Energie Baden-Württemberg
EnEv	Energieeinsparverordnung (Energy Efficiency Ordinance)
EnLAG	Energieleitungsausbaugesetz (Law on Developing
	Electricity Transmission Infrastructure)
ENTSO-E	European Network of Transmission System Operators for Electricity
ENTSO-G	European Network of Transmission System Operators for Gas
EOR	Enhanced Oil Recovery
EPS	Emissions Performance Standard
ErP	Energy-Related Products
ETS	Emission Trading System
EU	European Union
EU-ETS	European Emission Trading System
EUR	Euro
EURATOM	European Atomic Energy Community
EVS	Energie-Versorgung Schwaben (Energy Supply Schwaben)
FAZ	Frankfurter Allgemeine Zeitung
FBMC	Flow-Based Market Coupling
FDP	Freie Demokratische Partei (Free Democratic Party) Germany
FERC	Federal Energy Regulatory Commission
FIT	Feed-in tariff
FOSG	Friends of the Supergrid
FRG	Federal Republic of Germany
G7	Group of Seven
GBP	British Pound
GDP	Gross Domestic Product

GDR	German Democratic Republic
GGM	Global Gas Model
GHG	Greenhouse Gases
GW	Gigawatt
GWh	Gigawatt hour
GWB	Gesetz gegen Wettbewerbsbeschränkungen (Law against Restraints
	of Competition)
H_2	Hydrogen
HEW	Hamburgische Elektrizitäts-Werke (Utility of Hamburg)
Hg	Mercury
HVDC	High-Voltage Direct Current
IA	Impact Assessment
IAEA	International Atomic Energy Agency
IAEE	International Association for Energy Economics
IEA	International Energy Agency
IGCC	International Grid Control Cooperation
IPCC	Intergovernmental Panel on Climate Change
ISO	Independent System Operator
ITC	Inter-TSO Compensation Mechanism
Л	Joint Implementation
JRC	Joint Research Centre
kV	Kilovolt
kW	Kilowatt
kWh	Kilowatt hour
KWU	Kraftwerks Union
LCOE	Levelized Cost of Electricity
LNG	Liquefied Natural Gas
MENA	Middle East and North Africa
mn	million
MSR	Market Stability Reserve
Mt	Megaton
MW	Megawatt
MWh	Megawatt hour
NABEG	Netzausbaubeschleunigungsgesetz (Transmission
	Network Development Acceleration Law)
NAPE	National Action Plan on Energy Efficiency
NC EB	Network Code on Electricity Balancing
NC LFCR	Network Code on Load-Frequency Control and Reserves
NEP	Netzentwicklungsplan (Network Development Plan)
NGO	Non-governmental Organization
NOVA	Netzoptimierung, -verstärkung und -ausbau (Network Optimization.
	Strengthening and Expansion)
NO_X	Nitrogen Oxide
NPP	Nuclear Power Plant

NPS	New Policies Scenario
NRA	National Regulatory Authority
NRW	Nordrhein-Westfalen (North Rhine-Westphalia)
NSCOGI	North Seas Countries Offshore Grid Initiative
NTC	Net Transfer Capacity
OCGT	Open Cycle Gas Turbine
P2G	Power-to-Gas
P2H	Power-to-Heat
PC	Primary Control Reserve
PCR	Price Coupling of Regions
PLEF	Pentalateral Energy Forum
PS	Horsepower
PSP	Pumped Storage Power Plant
PV	Photovoltaic
PWR	Pressurized Water Reactor
R&D	Research and Development
RBMK	Reaktor Bolshoy Moshchnosty Kanalny
	(Graphite-Moderated Boiling Water Reactor)
RES	Renewable Energy Sources
RSK	Reaktor-Sicherheitskommission (Commission on the Security
	of Nuclear Reactors)
RWE	Rheinisch-Westfälisches Elektrizitätswerk
SC	Secondary Control Reserve
SME	Small and Medium-Sized Enterprises
SO_2	Sulphur dioxide
SOAF	Scenario Outlook and Adequacy Forecast
SOC	Social Overhead Capital
SoS	Security of Supply
SPD	Sozialdemokratische Partei Deutschlands (German
	Social Democratic Party)
StandAG	Standortauswahlgesetz (Site Selection Act)
StrEG	Stromeinspeisegesetz (Law on Renewable Feed-in)
t	Metric Tonne (1000 kg)
TC	Tertiary Control Reserve
tce	Tons of Coal Equivalent
TFEU	Treaty on the Functioning of the European Union
TSO	Transmission System Operator
TWh	Terawatt hour
TYNDP	Ten-Year Network Development Plan
UK	United Kingdom
UKR	Ukraine
UNFCCC	United Nations Framework Convention on Climate Change
US	United States
USA	United States of America

USD	US-Dollar
VEB	Socialist combine ("enterprise owned by the people")
VEW	Vereinigte Elektrizitätswerke Westfalen (Utility of Westphalia)
VVER	Wodo-wodjanoi Energetitscheski Reaktor (Water-Water Energetic
	Reactor)
WACC	Weighted Average Cost of Capital
WIP	Workgroup for Infrastructure Policy
WW	World War
WWF	World Wide Fund for Nature

Chapter 1 Introduction

Christian von Hirschhausen, Clemens Gerbaulet, Claudia Kemfert, Casimir Lorenz, and Pao-Yu Oei

> "The second path combines a prompt and serious commitment to efficient use of energy, rapid development of renewable energy sources matched in scale and in energy quality to end-use needs, and special transitional fossil-fuel technologies. This path, a whole greater than the sum of its parts, diverges radically from incremental past practices to pursue long-term goals." Amory B. Lovins (1976). Energy Strategy: The Road Not

Taken? Foreign Affairs, 6(20), p. 9.

1.1 Introduction

When Amory Lovins, Director of the Rocky Mountain Institute, set out the conditions for a "soft path" of decentral, renewables-based energy development, in 1976 (see quote), he could not foresee that four decades later, he would receive the highest recognition for public service, the German Federal Cross of Merit

DIW Berlin, Berlin, Germany e-mail: cvh@wip.tu-berlin.de

C. Kemfert DIW Berlin, Berlin, Germany

Hertie School of Governance, Berlin, Germany

German Advisory Council on the Environment (SRU), Berlin, Germany

P.-Y. Oei TU Berlin, Berlin, Germany

DIW Berlin, Berlin, Germany

Junior Research Group, "CoalExit", Berlin, Germany

C. von Hirschhausen $(\boxtimes) \cdot C.$ Gerbaulet \cdot C. Lorenz

TU Berlin, Berlin, Germany

[©] Springer Nature Switzerland AG 2018 C. von Hirschhausen et al. (eds.), *Energiewende "Made in Germany*", https://doi.org/10.1007/978-3-319-95126-3_1

("Bundesverdienstkreuz"), for having spearheaded what is now called "energiewende". And in fact, between the publication of the book "Energiewende" in 1980 by a scholar of Lovins', Florentin Krause et al. (1980) to the ground-breaking events in 2010/2011, pushing the energiewende further, many things happened in energy and climate policy, in Germany, Europe, and the world, that may have not been forecast by Lovins, and that have altered energy and climate policy altogether.

Yet, under the impression of the Fukushima nuclear power plant disaster in March 2011, the German government, legal system, civil society, and energy industry again changed course in long-term energy and climate policy, confirming earlier attempts to embark on a "soft path". On a timeline extending to 2050, plans were made to set strict emission caps on greenhouse gas (GHG) emissions, to rapidly decommission all nuclear power plants (NPP), to significantly increase the share of renewables in energy production, and to implement ambitious efficiency targets. The long germination period, since the mid 1970s, leading to the re-orientation of energy and climate policy—at a time when the German electricity sector was still largely reliant on coal and nuclear power-is now commonly referred to as the "energiewende" (Wende meaning turn or turnaround, sometimes also called the "energy transformation", "energy transition", etc.) and has attracted substantial attention, both in Germany and internationally. Initially considered a short-lived epiphenomenon by many observers and openly opposed by the incumbent conventional energy industry, the energiewende proved its critics and skeptics wrong, at least partially. Overall, the reforms of the last decade can be considered a success, with some of the targets being accomplished, and it still continues today with widespread public support.

The energiewende (term we will use throughout this book) emerged at a time of increasing debates of global warming and climate change (Houghton et al. 1990; Stern 2007; WBGU 2011). Many countries in Europe and around the globe were considering how to move to lower carbon energy systems, and most of them still are. Thus, the European Union is still pursuing its decarbonization objectives of a 40% reduction of greenhouse gas (GHG) emissions by 2030 (reference: 1990), and a reduction of 80-95% in the longer term. The US, too, launched a program to reduce GHG emissions under the Federal Clean Air Act, even though the current administration has set out to stop this initiative; nonetheless, the US power sector is constantly retiring coal plants, and is moving towards a coal exit as well (Heal 2017). Even in Asia, the region with the highest energy consumption growth rates worldwide, countries such as China and India have identified the need for more environmentally sustainable energy strategies and reduced coal consumption (IEA 2016). The 2015 Paris Agreement of the UN Convention on Climate Change, to limit the rise of the mean global temperature to 2° and possibly even to 1.5°C has increased pressure on governments and industry to accelerate their low-carbon transformation policies. It comes as no surprise, therefore, that the energiewende is being followed with great interest by observers worldwide, both with high hopes for its potential positive impacts and with skepticism about its costs and financial sustainability.

The objective of this book is to present an in-depth look at the energiewende, from its origins to its concrete implementation in Germany, as well as its impacts within the European context and its medium- and long-term perspectives. Our working hypothesis, based on extensive modeling exercises, policy consulting, personal on-site case studies, and the growing literature, is that the energiewende is a unique political-historical period that will transform the structure of the German energy sector, leading to more decentralized energy production and decision-making and transforming the structure of the energy industry within Germany and beyond. So far, the energiewende has been a success overall, in particular because the foundation for a renewables-based electricity system has been laid. Yet other objectives had to be postponed, though, such as the GHG emission reduction target for 2020 (-40%), relative to 1990). While the lessons of the energiewende do not apply directly to all countries and regions worldwide, they offer insights from the natural experiment of transforming a large-scale, conventional electricity system based on coal and nuclear energy into a renewables-based system. Our analysis focuses on the electricity sector, but we also address other challenges in the transport and heating sectors, as well as the upcoming interconnectedness between the three, called "sector coupling".

The next section of this introductory chapter spells out the key characteristics of the energiewende, which later chapters will analyze in more detail. Section 1.3 looks at the German energiewende in the context of the energy and climate policy literature. Section 1.4 presents a detailed outline of the book, and the last - Section concludes with acknowledgements.

1.2 The Main Ingredients of the Energiewende

The German term "energiewende" is now commonly used throughout the world and is now penetrating the English language the same was as have other German words like kindergarten, bratwurst, wanderlust, or zeitgeist. In this book, we use the term "energiewende" to refer to a political and societal process in the realm of energy and climate policy, that was ongoing for quite some time already, but that accelerated in Germany between September 2010, the German energy concept 2050, and June 2011, moment of the nuclear phase-out law. In the framework of the energiewende, a series of decisions were made to pursue an energy and environmental policy that would shift the German energy sector away from reliance on fossil fuels and nuclear energy and make it more efficient, more decentralized, and more renewables-based. The concrete targets include (see individual chapters for details):

- Reducing greenhouse gas emissions, compared to 1990 levels, by 40% by 2020, 55% by 2030, 70% by 2040, and 80–95% by 2050;
- Closing all nuclear power stations: seven units were taken offline in March 2011 and the remaining nine plants are scheduled to close by 2022;

- Increasing the share of renewables for electricity generation to at least 38% in 2020, 50% in 2030, 67% in 2040, and 80% in 2050, and the share of renewables in final energy consumption to at least 30% by 2030 and at least 60% by 2050;
- Setting ambitious targets for energy efficiency.

These quantitative objectives were designed with the general intention to foster civil society participation in decision-making processes, in the production of energy, and in the distribution of profits and rents. Thus, the energiewende has also introduced a new energy policy paradigm in which a large share of decentralized, individually and cooperatively owned companies generate power alongside "big energy" companies; in 2015, over 67% of the new renewable electricity (wind and sun) was generated outside the traditional utilities, by cooperatives, private producers, etc. Although this objective is not set down in law, it forms the basis of the public consensus on the energiewende (Rosenkranz (2014), Morris and Jungjohann (2016), Davidson (2012)).

1.3 Current State of the Literature

There is a small, but rapidly growing literature on the energiewende. Members of our team have done extensive work on the energiewende, including a first survey by Kemfert (2014), a symposium volume published in the *Journal Economics of Energy & Environmental Policy* (EEEP, Vol. 3, No. 2, Fall 2014, some of which has been updated for the present book), a study on deep decarbonization in Germany (Kemfert et al. 2013), and a collection of papers published by the German Institute for Economic Research (DIW Berlin) in the quarterly *Vierteljahreshefte* ("Quarterly Journal of Economic Research," see Kemfert et al. (2013), in German). Similar research by other scientists include a book by Unnerstall (2017) providing an assessment of the current status of the transformation, with a focus on corporate perspectives. Grubb et al. (2014) textbook on "Planetary Economics" contains many of the discussions around the low-carbon energy transformation. Another book by Schippl et al. (2017) covers virtually all facets of the energy transition but is, however, restricted to German-speaking audiences. Other academic work is extensively cited in the following chapters in this book.

A second, more policy-oriented branch of the literature looks at concrete technical, legal, and institutional aspects of the energiewende, mainly at the level of individual sectors and/or projects. This applied literature stems from formal government entities, public bodies, stakeholder circles, think-tanks, etc. The German government issues the yearly Monitoring Report "Energy of the Future" (see BMWi 2015, 2016), which is accompanied by a detailed assessment from an advisory board to the Ministry of Economics and Energy (see BMWi and BMU 2012; BMWi 2015, 2016; Löschel et al. 2015; Löschel et al. 2014, 2018). Agora Energiewende, a think-tank financed by private foundations, has a 20-expert team dedicated to analyzing the results of technical studies for the use in policy and the public debate (see, for example, Agora's twelve theses on the energiewende and the big study on "Energiewende 2030—The Big Picture", respectively (Agora Energiewende 2013, 2018)).¹ The same foundations also have a series of publications for journalists and the interested public, "Clean Energy Wire", including detailed off-the-shelf material.² Another political foundation produces a series of publications on the energiewende in an international context.³ Morris and Pehnt (2016) and Morris and Jungjohann (2016) and Fechner (2018, in German) provide a detailed account of this policy-oriented research.

A third branch of literature consists of comparative analyses situating the German experience in a broader cross-country context. Early, most influential work on "The Big Transformation" was carried out by the German Advisory Council on Global Change (WBGU 2011), with several updates later on. The 2° target, that has become a benchmark for global climate policy, also originated from this work (see for details Schellnhuber (2015)). The German Section of the World Energy Council (2014) conducted a comparison of six country-specific energy transformation processes (in addition to Germany: USA, Brazil, China, Saudi Arabia, and South Africa). The International Energy Agency (IEA) (2014) published the report "The Power of Transformation—Wind, Sun and the Economics of Flexible Power Systems" on the perspectives of wind- and solar-based electricity systems. The Intergovernmental Panel on Climate Change (IPCC) on renewables provides valuable information at a very detailed level (IPCC 2012), and the IPCC 5th Assessment Report (IPCC 2014) discusses a variety of low-carbon pathways. Another book by Hager and Stefes (2016) provides a comparison of Germany's energy transition with international peers such as the US and Japan. There is also ample literature on other countries undergoing a low-carbon energy transformation, such as Denmark (Danish government (2011)), the UK (DECC (2011), Foxon (2013)), France (Criqui and Hourcade 2015), the USA (Burtraw et al. (2014) and Heal (2017)), China (Li et al. 2018), and India (Bhushan 2017; Singh et al. 2018). Last but not least, the energiewende has even prompted business consultancies to develop specific indicators to put the German experience into international context, such as McKinsey's "Energy Transition Indicator".⁴

¹See https://www.agora-energiewende.de/en/

²See: https://www.cleanenergywire.org/

³See: https://energytransition.org/

⁴See: http://reports.weforum.org/fostering-effective-energy-transition-2018/?code=wr123

1.4 Structure of the Book

1.4.1 Part I: Historic Origins: The Energiewende and the Transformation of the German Coal Sector

This book is divided into four parts. Part I (Chaps. 2 and 3) lays out the historical origins of the energiewende with respect to the energy, environmental, and climate policies that led up to it, as well as the specific transformation of the German coal sector. In Chap. 2, we identify some long-term trends of energy policy in Germany, going back to the turn of the last century; we also retrace subsequent developments such as the Energy Industry Act of 1935, discuss similarities and differences between energy policies in East and West Germany and their consolidation after reunification, and look at more recent European attempts to liberalize national energy sectors and create a single market. The chapter also covers important developments that occurred with the "wind of change" in the early 1990s: the emergence of a European climate policy, the first formal pushes towards renewables targets, and the drafting of unbundling directives for the electricity and the natural gas sectors. We identify elements of the energiewende as we go through time, since 1980, but focus on the developments between September 2010 and summer 2011, which is, from a historical perspective, a crucial period. It took nothing less than the March 2011 nuclear disaster in Fukushima, Japan, to establish the broad consensus on the acceleration of the energiewende, i.e. the shutdown of nuclear power plants, in combination with GHG emission reductions, and renewables targets. This includes the historic decision by Chancellor Angela Merkel to declare a moratorium on the lifetime extension on nuclear power only three days after Fukushima and the closure of the seven oldest reactors in Germany.⁵

Chapter 3 provides an historic account of the German coal industry over the last 70 years, a unique transformation process dominated by steady decline of an industry that previously employed more than 700,000 people. One focus of this historic case study therefore lies on the Ruhr area—Germany's largest hard coal mining area that was particularly hit by this economically driven transformation. Likewise, in East Germany significant efforts were undertaken, after the reunification, to smooth the transformation process, and to rescue the lignite industry from the assault from West German competitors. The analysis is divided into the quantitative consideration of the significance of coal for the energy system and the regional economies, as well as an evaluation of implemented political instruments accompanying the reductions in the coal sector. The political instruments on regional, national and supranational level can be differentiated between measures for the conservation of coal production, the economic reorientation in the regions as well as easing negative social impacts. The good news for the upcoming final phase

⁵In fact, a narrow interpretation of the term energiewende would limit the actual "turn" to the 72 h between the Fukushima accident (March 11, 2011), and the "Declaration of the energiewende," including the nuclear moratorium (March 14, 2011).

out of coal in Germany is that the largest part of the transformation process is already achieved. The analysis of past transformation processes of mining areas and energy systems in Germany might provide other countries and regions with valuable lessons of how to structure their upcoming coal phase-out period and therefore provides a useful addition to the existing literature.

1.4.2 Part II: The Energiewende Underway in the Electricity Sector

Part II leads us straight into the "engine room" of the energiewende, a process with very concrete, hands-on technical, institutional, and economic issues. In this part, we shed light on diverse facets of the energiewende based on our own research work, official data and publications, and a survey of the literature. We address the main issues at the heart of the energiewende, with a focus on the electricity sector: decarbonization, the closure of nuclear plants, the focus on renewables, efficiency targets, and infrastructure, and the emergence of coupling between the electricity, transport, and heat sectors.

Decarbonization of the electricity sector and the phase-out of coal is a key element of the energiewende addressed in Chap. 4; the objectives for GHG emission reductions set out in the energy concept were 40% in 2020, 55% in 2030, 70% in 2040, and 80–95% in 2050 (base year: 1990). However, between 1990 and 2017, this reduction was only 30%, and projections for 2020 hovered around a 33% reduction. Due to the collapse of the European Union CO₂-trading price, which had fallen from an average \notin 20/t to around \notin 5/t, there was even a slight increase of CO₂ emissions in 2013 and 2014. Thus, the German government decided to develop more focused national policy instruments to accompany European efforts and to curb national coal consumption. This resulted in the Climate Action Program 2020 and the subsequent longer-term Climate Plan 2050. The chapter discusses different instruments, their economic effects on the electricity market, and concludes that the decarbonization targets imply the phasing-out of coal in Germany in the 2030s.

Chapter 5 is dedicated to nuclear policies in Germany, a particularly controversial field. The chapter focusses on the period between the first phase-out decision, taken in 1998, and the second, final one, in June 2011. Immediately following the March 2011 Fukushima accident, a moratorium was decided on German nuclear power plants, seven of which were shut down immediately; until 2022, all others will follow. Looking back, the effects of the nuclear moratorium on the German and Central-West European electricity markets were small, because ample generation capacity was available to compensate for the loss of capacity. After the March 2011 moratorium, wholesale electricity prices increased slightly by $\pounds 2-3$ /megawatt hours (MWh), whereas the German net export surplus declined slightly. Germany turned into a net exporter again in the subsequent year, 2012, when it showed record net exports of 54 terawatt hours (TWh). The chapter also looks forward to 2022, when

the last remaining reactors will close, and examines German nuclear policy in a European context as well. While the closure of the nuclear power plants is irreversible from a political perspective, policies to structure and facilitate the process are still needed, in particular with respect to the decommissioning of the plants and the final storage of radioactive waste. Chapter 5 thus also provides an analysis of the post-closure challenges, the uncertainties surrounding this process, and the financial stakes and the expected timelines, which extend over centuries of dealing with the legacies of nuclear power.

Chapter 6 looks in more depth at another focus of the energiewende: renewables targets. As we observe, the targets defined in 2010/2011 have now been translated into concrete policy measures. For example, the "scenario framework"—the planning document that the energy network regulator has to produce every year as a framework for network development—covers renewables targets for a 20-year time period, during which other fuels such as hard coal and lignite will be reduced. In 2017, the share of renewables in electricity production was 37%, with no signs of instability of the system. Given the strong institutional framework, there seems to be no obstacle to reaching the 2030 target of beyond 50%. The chapter also describes the evolution of support schemes for renewables in Germany and the effects of investment strategies in conventional and renewable capacity, as well as the costs associated with this policy.

Energy efficiency is a crucial element of any low-carbon transformation process, as the most cost-effective kilowatt hour (kWh) is an hour that is not used at all ("saved"). Traditionally energy efficiency policies have had a difficult time gaining support from both policy makers and the general public, and the "energy efficiency gap"—the difference between observed consumption and a hypothetical reference case—has been a topic of debate for some time. It comes as no surprise, therefore, that energy efficiency policies are among the most challenging elements of the energiewende. Chapter 7 focuses on energy efficiency, and reports that although some successes have been observed in the reduction of primary and gross electricity consumption, energy productivity improvements still lag behind the targets. A significant gap remains with respect to the 2020 primary energy consumption target (-20%), and further energy productivity increases are necessary to stay on track. The chapter also describes specific approaches to energy efficiency in the construction, industry, and transport sectors, and provides concrete recommendations for how to move this difficult reform process forward.

Chapter 8 focusses on the role of electricity transmission infrastructure in the energiewende. The chapter analyzes approaches to and developments in the electricity network infrastructure, and asks if the glass is half full or half empty. In fact, skeptics of the energiewende see transmission bottlenecks everywhere, whereas optimists insist on the steady progress of the modernization and extension of the high voltage grid in Germany. Our analysis tends to see the glass half full: Although some expansion projects are behind schedule, grid reconstruction is advancing steadily, thanks to the considerable progress made in recent years on several essential lines connecting the states of the former East and West Germany. Congestion management measures, in particular redispatch, have been necessary, but have

caused no major problems to the system. We even observe that the current methodology for the long-run grid expansion planning tends to overestimate expansion needs because it assumes a "copper plate" when siting generation. The chapter concludes that while electricity transmission is an important element of any reform process, the debates around network expansion have exaggerated the potential pitfalls, and the focus should be on sustainable electricity generation.

Chapter 9 extends the analysis of electricity sector reform to other important sectors of the energiewende. The first stage of the energy transformation was characterized by the nuclear phase-out and the parallel endeavor to decarbonize the German electricity sector. Yet, in order to reach the climate goal of a 40% reduction in greenhouse gases by 2020, with an additional 80 to 95% reduction in the coming decades until 2050, the second stage needs to focus on all energy usage, especially heat, transportation, and usage as a raw material in the chemical industry. Enhancing energy efficiency, reducing primary energy usage until 2050, and the increased use of renewable power from wind and photovoltaics is the predominant strategy to further decrease greenhouse gas emissions in all energy sectors. However, this strategy requires an increased coupling of energy sectors and is the corner stone for an integrated approach, activating additional degrees of freedom in the energy system facilitating the further integration of renewable energy sources. The chapter sketches out the technical-economic foundations of sector coupling, and then compares different analyses for Germany. While these differ in the level of detail, they all consider ambitious climate targets to be feasible, provided that appropriate institutions and incentives be put in place. Consequently, the distinct energy sectors coalesce and have to be assessed in an integrated way.

1.4.3 Part III: The German Energiewende in the Context of the European Low-Carbon Transformation

The German energiewende is not a national phenomenon: it is taking place within an increasingly integrated European market and in the context of close relationships to Germany's "electrical neighbors". The very nature of the interconnected European electricity system means that the reform process in Germany has effects on the broader European market, including price effects, cross-border flows, and the sharing of backup capacity. In return, the German electricity sector is affected by developments in its neighboring countries, be they EU members or not. Part III of the book therefore addresses important questions concerning the interdependence between the German energiewende and the European low-carbon transformation reform process at large.

Chapter 10 analyzes the electricity mix in the European low-carbon transformation and highlights similarities to and differences from the German energiewende. The European Union, too, has set ambitious decarbonization targets (-40% GHG emissions by 2030, -80 to 95% by 2050), but the EU's current roadmap to attaining them is different from that of the German energiewende, since it still includes high shares of fossil fuels (with carbon capture) and nuclear energy. The chapter first reviews the broad trends in European energy and climate policy since the 1950s, explaining that the European electricity mix was based on coal and nuclear from the beginning, through the 1951 Treaty of the European Coal and Steel Community (ECSC) as well as the 1957 EURATOM Treaty. The chapter then takes a closer look at the 2030 and 2050 targets, at instruments such as the European Emission Trading System (ETS), and at the fuels that will be used to attain these targets: conventional fossil fuels, nuclear, and renewables. In particular, we ask whether the Energy Roadmap 2050, the analytical basis of the strategy, properly reflects recent technological developments in Europe and elsewhere. For instance, the continued use of coal electrification was based on the assumption that a clean and economic technology known as Carbon Capture, Transport, and Storage (CCTS) would be available soon, and despite considerable research and development (R&D) and demonstration attempts, these projects have not brought about significant progress so far. Nuclear power has high and rising private costs and by far the highest social costs of all energy sources, due not only to high capital costs and unknown costs of long-term storage of nuclear waste, but also to the risks of accidents, which no market has been able to insure. Two of the post-World War II nuclear countries, the UK and France, have expressed serious intentions to build new nuclear power plants, which we explain by the synergy effects they expect to reap from the civil and military use of nuclear power. Renewable energy sources offer not only the cleanest but potentially also the most economical alternative for many Member States, a development that has not been given adequate consideration in the European scenario process to date.

Chapter 11 analyzes the importance of infrastructure for the European low-carbon energy transformation. In this area, "easy" solutions surface frequently in the scientific and policy communities, but implementation on the ground has proven to be much more difficult. Thus, during the first years of the energiewende, a large number of pan-European "supergrid" projects were proposed, including electricity highways stretching from Saudi Arabia to Iceland, and from Morocco to the Arctic Circle. However, none of these mega-projects has materialized, and more realistic, more focused, and less complex solutions need to be found and developed. Using our own modelling results, as well as a large model comparison in the framework of the international Energy Modeling Forum No. 28 ("The Effects of Technology Choices on EU Climate Policy") subgroup on infrastructure, we discuss alternatives to the pan-European infrastructure development plans in three critical sectors: electricity transmission, natural gas, and CO₂-pipeline infrastructure. It turns out that the finding for the German electricity network infrastructure (Chap. 8) can, to a certain extent, be transposed to the European level: energy infrastructure can help the low-carbon transformation, but is not really a critical factor thus far.

Chapter 12 discusses how the German electricity sector and energiewende fits into the regional and European context. The chapter also draws some general conclusions on the role of cross-border and other cooperation in the German energiewende and the European low-carbon transformation. Very different forms of cooperation can be observed, ranging from bilateral mechanisms (e.g., Austrian