
Springer Series in the Data Sciences

Cohesive Subgraph
Computation
over Large Sparse
Graphs

Lijun Chang · Lu Qin

Algorithms, Data Structures,
and Programming Techniques

Springer Series in the Data Sciences

Series Editors:
David Banks, Duke University, Durham
Jianqing Fan, Princeton University, Princeton
Michael Jordan, University of California, Berkeley
Ravi Kannan, Microsoft Research Labs, Bangalore
Yurii Nesterov, Universite Catholique de Louvain, Louvain-la-Neuve
Christopher Ré, Stanford University, Stanford
Ryan Tibshirani, Carnegie Melon University, Pittsburgh
Larry Wasserman, Carnegie Mellon University, Pittsburgh

Springer Series in the Data Sciences focuses primarily on monographs and graduate
level textbooks. The target audience includes students and researchers working in
and across the fields of mathematics, theoretical computer science, and statistics.

Data Analysis and Interpretation is a broad field encompassing some of the
fastest-growing subjects in interdisciplinary statistics, mathematics and computer
science. It encompasses a process of inspecting, cleaning, transforming, and mod-
eling data with the goal of discovering useful information, suggesting conclusions,
and supporting decision making. Data analysis has multiple facets and approaches,
including diverse techniques under a variety of names, in different business, science,
and social science domains. Springer Series in the Data Sciences addresses the needs
of a broad spectrum of scientists and students who are utilizing quantitative methods
in their daily research.

The series is broad but structured, including topics within all core areas of the
data sciences. The breadth of the series reflects the variation of scholarly projects
currently underway in the field of machine learning.

More information about this series at http://www.springer.com/series/13852

http://www.springer.com/series/13852

Lijun Chang • Lu Qin

Cohesive Subgraph
Computation over
Large Sparse Graphs
Algorithms, Data Structures,
and Programming Techniques

123

Lijun Chang
School of Computer Science
The University of Sydney
Sydney, NSW, Australia

Lu Qin
Centre for Artificial Intelligence
University of Technology Sydney
Sydney, NSW, Australia

ISSN 2365-5674 ISSN 2365-5682 (electronic)
Springer Series in the Data Sciences
ISBN 978-3-030-03598-3 ISBN 978-3-030-03599-0 (eBook)
https://doi.org/10.1007/978-3-030-03599-0

Library of Congress Control Number: 2018962869

Mathematics Subject Classification: 05C85, 05C82, 91D30

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-03599-0

To my wife, Xi
my parents, Qiyuan and Yumei

Lijun Chang

To my wife, Michelle
my parents, Hanmin and Yaping

Lu Qin

Preface

Graph model has been widely used to represent the relationships among entities in
a wide spectrum of applications such as social networks, communication networks,
collaboration networks, information networks, and biological networks. As a result,
we are nowadays facing a tremendous amount of large real-world graphs. For exam-
ple, SNAP [49] and Network Repository [71] are two representative graph reposi-
tories hosting thousands of real graphs. An availability of rich graph data not only
brings great opportunities for realizing big values of data to serve key applications
but also brings great challenges in computation.

The main purpose of this book is to survey the recent technical developments
on efficiently processing large sparse graphs, in view of the fact that real graphs
are usually sparse graphs. Algorithms designed for large sparse graphs should be
analyzed with respect to the number of edges in a graph, and ideally should run
in linear or near-linear time to the number of edges. In this book, we illustrate
the general techniques and principles, toward efficiently processing large sparse
graphs with millions of vertices and billions of edges, through the problems of co-
hesive subgraph computation. Although real graphs are sparsely connected from a
global point of view, they usually contain subgraphs that are locally densely con-
nected [11]. Computing cohesive/dense subgraphs can either be the main goal of a
graph analysis task or act as a preprocessing step aiming to reduce/trim the graph
by removing sparse/unimportant parts such that more complex and time-consuming
analysis can be conducted. In the literature, the cohesiveness of a subgraph is usu-
ally measured by the minimum degree, the average degree, or their higher-order
variants, or edge connectivity. Cohesive subgraph computation based on different
cohesiveness measures extracts cohesive subgraphs with different properties and
also requires different levels of computational efforts.

The book can be used either as an extended survey for people who are inter-
ested in cohesive subgraph computation or as a reference book for a postgraduate
course on the related topics, or as a guideline book for writing effective C/C++
programs to efficiently process real graphs with billions of edges. In this book, we

vii

viii Preface

will introduce algorithms, in the form of pseudocode, analyze their time and space
complexities, and also discuss their implementations. C/C++ codes for all the data
structures and some of the presented algorithms are available at the author’s GitHub
website.1

Organization. The book is organized as follows.
In Chapter 1, we present the preliminaries of large sparse graph processing, in-

cluding characteristics of real-world graphs and the representation of large sparse
graphs in main memory. In this chapter, we also briefly introduce the problems of
cohesive subgraph computation over large sparse graphs and their applications.

In Chapter 2, we illustrate three data structures (specifically, linked list-based
linear heap, array-based linear heap, and lazy-update linear heap) that are useful for
algorithm design in the remaining chapters of the book.

In Chapter 3, we focus on minimum degree-based graph decomposition (aka core
decomposition); that is, compute the maximal subgraphs with minimum degree at
least k (called k-core), for all different k values. We present an algorithm to conduct
core decomposition in O(m) time, where m is the number of edges in a graph, and
also discuss h-index-based local algorithms that have higher time complexities but
can be naturally parallelized.

In Chapter 4, we study the problem of computing the subgraph with the max-
imum average degree (aka, densest subgraph). We present a 2-approximation al-
gorithm that has O(m) time complexity, a 2(1+ ε)-approximation streaming algo-
rithm, and also an exact algorithm based on minimum cut.

In Chapter 5, we investigate higher-order variants of the problems studied in
Chapters 3 and 4. As the building blocks of higher-order analysis of graphs are k-
cliques, we first present triangle enumeration algorithms that run in O(α(G)×m)
time and k-clique enumeration algorithms that run in O(k× (α(G))k−2 ×m) time,
where α(G) is the arboricity of a graph G and satisfies α(G)≤√

m [20]. Then, we
discuss how to extend the algorithms presented in Chapters 3 and 4 for higher-order
core decomposition (specifically, truss decomposition and nucleus decomposition)
and higher-order densest subgraph computation (specifically, k-clique densest sub-
graph computation), respectively.

In Chapter 6, we discuss edge connectivity-based graph decomposition. Firstly,
given an integer k, we study the problem of computing all maximal k-edge con-
nected subgraphs in a given input graph. We present a graph partition-based ap-
proach to conduct this in O(h× l ×m) time, where h and l are usually bounded
by small constants for real-world graphs. Then, we present a divide-and-conquer
approach, which invokes the graph partition-based approach as a building block,
for computing the maximal k-edge connected subgraphs for all different k values in
O((logα(G))×h× l×m) time.

1 https://github.com/LijunChang/Cohesive subgraph book.

https://github.com/LijunChang/Cohesive_subgraph_book

Preface ix

Acknowledgments. This book is partially supported by Australian Research
Council Discovery Early Career Researcher Award (DE150100563).

Sydney, NSW, Australia Lijun Chang
Sydney, NSW, Australia Lu Qin
September 2018

Contents

1 Introduction . 1
1.1 Background . 1

1.1.1 Graph Terminologies . 1
1.1.2 Real Graph Datasets . 3
1.1.3 Representation of Large Sparse Graphs 4
1.1.4 Complexity Analysis . 6

1.2 Cohesive Subgraphs . 6
1.2.1 Cohesive Subgraph Computation . 7
1.2.2 Applications . 8

2 Linear Heap Data Structures . 9
2.1 Linked List-Based Linear Heap . 9

2.1.1 Interface of a Linked List-Based Linear Heap 10
2.1.2 Time Complexity of ListLinearHeap 13

2.2 Array-Based Linear Heap . 14
2.2.1 Interface of an Array-Based Linear Heap 15
2.2.2 Time Complexity of ArrayLinearHeap 18

2.3 Lazy-Update Linear Heap . 18

3 Minimum Degree-Based Core Decomposition . 21
3.1 Preliminaries . 21

3.1.1 Degeneracy and Arboricity of a Graph 22
3.2 Linear-Time Core Decomposition . 23

3.2.1 The Peeling Algorithm. 23
3.2.2 Compute k-Core . 26
3.2.3 Construct Core Hierarchy . 27

3.3 Core Decomposition in Other Environments . 32
3.3.1 h-index-Based Core Decomposition . 32
3.3.2 Parallel/Distributed Core Decomposition 36
3.3.3 I/O-Efficient Core Decomposition . 37

3.4 Further Readings . 39

xi

xii Contents

4 Average Degree-Based Densest Subgraph Computation 41
4.1 Preliminaries . 41

4.1.1 Properties of Densest Subgraph . 42
4.2 Approximation Algorithms . 43

4.2.1 A 2-Approximation Algorithm . 43
4.2.2 A Streaming 2(1+ ε)-Approximation Algorithm 45

4.3 An Exact Algorithm . 47
4.3.1 Density Testing . 47
4.3.2 The Densest-Exact Algorithm . 50
4.3.3 Pruning for Densest Subgraph Computation 52

4.4 Further Readings . 52

5 Higher-Order Structure-Based Graph Decomposition 55
5.1 k-Clique Enumeration . 55

5.1.1 Triangle Enumeration Algorithms . 55
5.1.2 k-Clique Enumeration Algorithms . 62

5.2 Higher-Order Core Decomposition . 64
5.2.1 Truss Decomposition . 64
5.2.2 Nucleus Decomposition . 68

5.3 Higher-Order Densest Subgraph Computation 71
5.3.1 Approximation Algorithms . 71
5.3.2 Exact Algorithms . 73

5.4 Further Readings . 75

6 Edge Connectivity-Based Graph Decomposition 77
6.1 Preliminaries . 77
6.2 Deterministic k-Edge Connected Components Computation 79

6.2.1 A Graph Partition-Based Framework . 79
6.2.2 Connectivity-Aware Two-Way Partition 80
6.2.3 Connectivity-Aware Multiway Partition 85
6.2.4 The KECC Algorithm . 88

6.3 Randomized k-Edge Connected Components Computation 90
6.4 Edge Connectivity-Based Decomposition . 92

6.4.1 A Bottom-Up Approach . 93
6.4.2 A Top-Down Approach . 95
6.4.3 A Divide-and-Conquer Approach . 95

6.5 Further Readings . 98

References . 99

Index . 105

Chapter 1
Introduction

With the rapid development of information technology such as social media, on-
line communities, and mobile communications, huge volumes of digital data are
accumulated with data entities involving complex relationships. These data are usu-
ally modelled as graphs in view of the simple yet strong expressive power of graph
model; that is, entities are represented by vertices and relationships are represented
by edges. Managing and extracting knowledge and insights from large graphs are
highly demanded by many key applications [93], including public health, science,
engineering, business, environment, and more. An availability of rich graph data not
only brings great opportunities for realizing big values of data to serve key appli-
cations but also brings great challenges in computation. This book surveys recent
technical developments on efficiently processing large sparse graphs, where real
graphs are usually sparse graphs.

In this chapter, we firstly present in Section 1.1 the background information in-
cluding graph terminologies, some example real graphs that serve the purpose of
illustrating properties of real graphs as well as the purpose of empirically evaluating
algorithms, and space-effective representation of large sparse graphs in main mem-
ory. Then, in Section 1.2 we briefly introduce the problem of cohesive subgraph
computation and also discuss its applications.

1.1 Background

1.1.1 Graph Terminologies

In this book, we focus on unweighted and undirected graphs and consider only
the interconnection structure (i.e., edges) among vertices of a graph, while ignoring
possible attributes of vertices and edges. That is, we consider the simplest form of a
graph that consists of a set of vertices and a set of edges.

© Springer Nature Switzerland AG 2018
L. Chang, L. Qin, Cohesive Subgraph Computation over Large Sparse Graphs,
Springer Series in the Data Sciences, https://doi.org/10.1007/978-3-030-03599-0 1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03599-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-03599-0_1

2 1 Introduction

We denote a graph by g or G. For a graph g, we let V (g) and E(g) denote the
set of vertices and the set of edges of g, respectively, and we also represent g by
(V (g),E(g)). We denote the edge between u and v by (u,v), the set of neighbors of
a vertex u in g by:

Ng(u) = {v ∈V (g) | (u,v) ∈ E(g)},
and the degree of u in g by:

dg(u) = |Ng(u)|.
We denote the minimum vertex degree, the average vertex degree, and the maximum
vertex degree of g by dmin(g), davg(g), and dmax(g), respectively. Given a subset Vs

of vertices of g (i.e., Vs ⊆ V (g)), we use g[Vs] to denote the subgraph of g induced
by Vs; that is:

g[Vs] = (Vs, {(u,v) ∈ E(g) | u ∈Vs,v ∈Vs}).
Given a subset of edges of g, Es ⊆ E(g), we use g[Es] to denote the subgraph of g
induced by Es; that is:

g[Es] = (
⋃

(u,v)∈Es

{u,v}, Es).

g[Vs] is referred to as a vertex-induced subgraph of g, while g[Es] is referred to as an
edge-induced subgraph of g.

Across the book, we use the notation G either in definitions or to specifically
denote the input graph that we are going to process, while using g to denote a gen-
eral (sub)graph. For the input graph G, we abbreviate V (G) and E(G) as V and E,
respectively; that is, G = (V,E). We also omit the subscript G in other notations,
e.g., d(u) and N(u). We denote the number of vertices and the number of undirected
edges in G by n and m, respectively, which will be used for analyzing the time and
space complexity of algorithms when taking G as the input graph. Without loss of
generality, we assume that G is connected; that is, there is a path between every pair
of vertices. We also assume that m ≥ n for presentation simplicity; note that, for a
connected graph G, it satisfies that m ≥ n−1.

v10

v6

v7

v3 v4

v2v1v5 v8

v9

v11

Fig. 1.1: An example unweighted undirected graph

Example 1.1. Figure 1.1 shows an example graph G consisting of 11 vertices and
13 undirected edges; that is, n = 11 and m = 13. The set of neighbors of v1 is
N(v1) = {v2,v3,v4,v5}, and the degree of v1 is d(v1) = |N(v1)| = 4. The vertex-
induced subgraph G[{v1,v2,v3,v4}] is a clique consisting of 4 vertices and 6 undi-
rected edges.

