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Preface

Graph model has been widely used to represent the relationships among entities in
a wide spectrum of applications such as social networks, communication networks,
collaboration networks, information networks, and biological networks. As a result,
we are nowadays facing a tremendous amount of large real-world graphs. For exam-
ple, SNAP [49] and Network Repository [71] are two representative graph reposi-
tories hosting thousands of real graphs. An availability of rich graph data not only
brings great opportunities for realizing big values of data to serve key applications
but also brings great challenges in computation.

The main purpose of this book is to survey the recent technical developments
on efficiently processing large sparse graphs, in view of the fact that real graphs
are usually sparse graphs. Algorithms designed for large sparse graphs should be
analyzed with respect to the number of edges in a graph, and ideally should run
in linear or near-linear time to the number of edges. In this book, we illustrate
the general techniques and principles, toward efficiently processing large sparse
graphs with millions of vertices and billions of edges, through the problems of co-
hesive subgraph computation. Although real graphs are sparsely connected from a
global point of view, they usually contain subgraphs that are locally densely con-
nected [11]. Computing cohesive/dense subgraphs can either be the main goal of a
graph analysis task or act as a preprocessing step aiming to reduce/trim the graph
by removing sparse/unimportant parts such that more complex and time-consuming
analysis can be conducted. In the literature, the cohesiveness of a subgraph is usu-
ally measured by the minimum degree, the average degree, or their higher-order
variants, or edge connectivity. Cohesive subgraph computation based on different
cohesiveness measures extracts cohesive subgraphs with different properties and
also requires different levels of computational efforts.

The book can be used either as an extended survey for people who are inter-
ested in cohesive subgraph computation or as a reference book for a postgraduate
course on the related topics, or as a guideline book for writing effective C/C++
programs to efficiently process real graphs with billions of edges. In this book, we
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will introduce algorithms, in the form of pseudocode, analyze their time and space
complexities, and also discuss their implementations. C/C++ codes for all the data
structures and some of the presented algorithms are available at the author’s GitHub
website.1

Organization. The book is organized as follows.
In Chapter 1, we present the preliminaries of large sparse graph processing, in-

cluding characteristics of real-world graphs and the representation of large sparse
graphs in main memory. In this chapter, we also briefly introduce the problems of
cohesive subgraph computation over large sparse graphs and their applications.

In Chapter 2, we illustrate three data structures (specifically, linked list-based
linear heap, array-based linear heap, and lazy-update linear heap) that are useful for
algorithm design in the remaining chapters of the book.

In Chapter 3, we focus on minimum degree-based graph decomposition (aka core
decomposition); that is, compute the maximal subgraphs with minimum degree at
least k (called k-core), for all different k values. We present an algorithm to conduct
core decomposition in O(m) time, where m is the number of edges in a graph, and
also discuss h-index-based local algorithms that have higher time complexities but
can be naturally parallelized.

In Chapter 4, we study the problem of computing the subgraph with the max-
imum average degree (aka, densest subgraph). We present a 2-approximation al-
gorithm that has O(m) time complexity, a 2(1+ ε)-approximation streaming algo-
rithm, and also an exact algorithm based on minimum cut.

In Chapter 5, we investigate higher-order variants of the problems studied in
Chapters 3 and 4. As the building blocks of higher-order analysis of graphs are k-
cliques, we first present triangle enumeration algorithms that run in O(α(G)×m)
time and k-clique enumeration algorithms that run in O(k× (α(G))k−2 ×m) time,
where α(G) is the arboricity of a graph G and satisfies α(G)≤√

m [20]. Then, we
discuss how to extend the algorithms presented in Chapters 3 and 4 for higher-order
core decomposition (specifically, truss decomposition and nucleus decomposition)
and higher-order densest subgraph computation (specifically, k-clique densest sub-
graph computation), respectively.

In Chapter 6, we discuss edge connectivity-based graph decomposition. Firstly,
given an integer k, we study the problem of computing all maximal k-edge con-
nected subgraphs in a given input graph. We present a graph partition-based ap-
proach to conduct this in O(h× l ×m) time, where h and l are usually bounded
by small constants for real-world graphs. Then, we present a divide-and-conquer
approach, which invokes the graph partition-based approach as a building block,
for computing the maximal k-edge connected subgraphs for all different k values in
O((logα(G))×h× l×m) time.

1 https://github.com/LijunChang/Cohesive subgraph book.

https://github.com/LijunChang/Cohesive_subgraph_book
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Chapter 1
Introduction

With the rapid development of information technology such as social media, on-
line communities, and mobile communications, huge volumes of digital data are
accumulated with data entities involving complex relationships. These data are usu-
ally modelled as graphs in view of the simple yet strong expressive power of graph
model; that is, entities are represented by vertices and relationships are represented
by edges. Managing and extracting knowledge and insights from large graphs are
highly demanded by many key applications [93], including public health, science,
engineering, business, environment, and more. An availability of rich graph data not
only brings great opportunities for realizing big values of data to serve key appli-
cations but also brings great challenges in computation. This book surveys recent
technical developments on efficiently processing large sparse graphs, where real
graphs are usually sparse graphs.

In this chapter, we firstly present in Section 1.1 the background information in-
cluding graph terminologies, some example real graphs that serve the purpose of
illustrating properties of real graphs as well as the purpose of empirically evaluating
algorithms, and space-effective representation of large sparse graphs in main mem-
ory. Then, in Section 1.2 we briefly introduce the problem of cohesive subgraph
computation and also discuss its applications.

1.1 Background

1.1.1 Graph Terminologies

In this book, we focus on unweighted and undirected graphs and consider only
the interconnection structure (i.e., edges) among vertices of a graph, while ignoring
possible attributes of vertices and edges. That is, we consider the simplest form of a
graph that consists of a set of vertices and a set of edges.

© Springer Nature Switzerland AG 2018
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2 1 Introduction

We denote a graph by g or G. For a graph g, we let V (g) and E(g) denote the
set of vertices and the set of edges of g, respectively, and we also represent g by
(V (g),E(g)). We denote the edge between u and v by (u,v), the set of neighbors of
a vertex u in g by:

Ng(u) = {v ∈V (g) | (u,v) ∈ E(g)},
and the degree of u in g by:

dg(u) = |Ng(u)|.
We denote the minimum vertex degree, the average vertex degree, and the maximum
vertex degree of g by dmin(g), davg(g), and dmax(g), respectively. Given a subset Vs

of vertices of g (i.e., Vs ⊆ V (g)), we use g[Vs] to denote the subgraph of g induced
by Vs; that is:

g[Vs] = (Vs, {(u,v) ∈ E(g) | u ∈Vs,v ∈Vs}).
Given a subset of edges of g, Es ⊆ E(g), we use g[Es] to denote the subgraph of g
induced by Es; that is:

g[Es] = (
⋃

(u,v)∈Es

{u,v}, Es).

g[Vs] is referred to as a vertex-induced subgraph of g, while g[Es] is referred to as an
edge-induced subgraph of g.

Across the book, we use the notation G either in definitions or to specifically
denote the input graph that we are going to process, while using g to denote a gen-
eral (sub)graph. For the input graph G, we abbreviate V (G) and E(G) as V and E,
respectively; that is, G = (V,E). We also omit the subscript G in other notations,
e.g., d(u) and N(u). We denote the number of vertices and the number of undirected
edges in G by n and m, respectively, which will be used for analyzing the time and
space complexity of algorithms when taking G as the input graph. Without loss of
generality, we assume that G is connected; that is, there is a path between every pair
of vertices. We also assume that m ≥ n for presentation simplicity; note that, for a
connected graph G, it satisfies that m ≥ n−1.
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Fig. 1.1: An example unweighted undirected graph

Example 1.1. Figure 1.1 shows an example graph G consisting of 11 vertices and
13 undirected edges; that is, n = 11 and m = 13. The set of neighbors of v1 is
N(v1) = {v2,v3,v4,v5}, and the degree of v1 is d(v1) = |N(v1)| = 4. The vertex-
induced subgraph G[{v1,v2,v3,v4}] is a clique consisting of 4 vertices and 6 undi-
rected edges.


