Topics in Geobiology 42

Thomas Defler

History of Terrestrial Mammals in South America

How South American Mammalian Fauna Changed from the Mesozoic to Recent Times

Topics in Geobiology

Volume 42

Series Editors

Neil H. Landman American Museum of Natural History, New York, NY, USA

Peter J. Harries North Carolina State University, Raleigh, NC, USA The **Topics in Geobiology** series covers the broad discipline of geobiology that is devoted to documenting life history of the Earth. A critical theme inherent in addressing this issue and one that is at the heart of the series is the interplay between the history of life and the changing environment. The series aims for high quality, scholarly volumes of original research as well as broad reviews.

Geobiology remains a vibrant as well as a rapidly advancing and dynamic field. Given this field's multidiscipline nature, it treats a broad spectrum of geologic, biologic, and geochemical themes all focused on documenting and understanding the fossil record and what it reveals about the evolutionary history of life. The Topics in Geobiology series was initiated to delve into how these numerous facets have influenced and controlled life on Earth.

Recent volumes have showcased specific taxonomic groups, major themes in the discipline, as well as approaches to improving our understanding of how life has evolved.

Taxonomic volumes focus on the biology and paleobiology of organisms – their ecology and mode of life – and, in addition, the fossil record – their phylogeny and evolutionary patterns – as well as their distribution in time and space.

Theme-based volumes, such as predator-prey relationships, biomineralization, paleobiogeography, and approaches to high-resolution stratigraphy, cover specific topics and how important elements are manifested in a wide range of organisms and how those dynamics have changed through the evolutionary history of life.

Comments or suggestions for future volumes are welcomed.

Neil H. Landman Department of Paleontology American Museum of Natural History New York, USA E-mail: landman@amnh.org Peter J. Harries Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, USA E-mail: pjharrie@ncsu.edu

More information about this series at http://www.springer.com/series/6623

Thomas Defler

History of Terrestrial Mammals in South America

How South American Mammalian Fauna Changed from the Mesozoic to Recent Times

Thomas Defler Department of Biology National University of Colombia, Bogota Bogota, Colombia

ISSN 0275-0120 Topics in Geobiology ISBN 978-3-319-98448-3 https://doi.org/10.1007/978-3-319-98449-0 (eBook)

Library of Congress Control Number: 2018953014

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

I dedicate this book to all students of neotropical mammals.

Preface

I wrote this book during a 10–15-year period of teaching a course in the evolution of South American tetrapod mammals at the Universidad Nacional de Colombia in Bogotá. While the book is primarily intended for the lay reader and the student of South American mammals, I hope that it might also be of service to many professional zoologists and paleontologists, who have been unable to keep abreast of the flood of new discoveries and yet wish to learn something of the more significant published results. How far I have succeeded in a most difficult task must be left to the judgment of such readers. I am not a paleontologist but rather a vertebrate zoologist who has specialized in modern neotropical primates. Since I have rather broad interests in vertebrate zoology and primatology. I elected to teach a course on the evolution of mammals after transferring from another campus to the Bogotá Campus, and frankly, I wanted to learn something more about this field of South American mammals. The course was well-attended throughout the years, and I dedicated myself continuously to study the literature. There is now a lot of literature! For a generalist like myself, I have acquired a broad education on the evolution of terrestrial mammals in South America, but I cannot claim to have dominated the hundreds of technical articles now available. Nevertheless, I have learned to appreciate the vast story that has resulted in the mammalian fauna of today, and I am surely an aficionado on the outline of the story of diversity that has gone before.

Who cannot be fascinated by the evolution of the multitude of species that filled South America during earlier epochs of the Cenozoic, such as the specialized carnivorous Sparassodonta metatherians and the hundreds of species of ungulates that we can now associate with the evolution of perissodactyl and artiodactyl ungulates from the northern continents? What primatologist does not thrill to the evolutionary history of the platyrrhine primates and their last African origins, lost in the veil of time and their improbable rafting from Africa to South America? As well, the rafting of tiny rodents from Africa and their evolution into giant 1000 kg semiaquatic mammals provide us with so much evolutionary color that we pine for more detail and we dream of being able to see these fascinating beasts. I thrilled when I discovered the South American platypus in the literature and the narrow peninsula that connected South America to a warmer Antarctic, all of which provided a highway for South American marsupials to Australia.

Since we can no longer see these animals, we have to rely on reconstructions. When I read GG Simpson's 1980 book on the evolution of South American mammals, I was somewhat disappointed by the poverty of illustrations in that book. At the time there were fewer artists who try to recreate prehistoric fauna, and I guess that the great paleontologist himself illustrated the book, although not too successfully, even though people like the paleoartist Charles Knight were well-known. Reading about lost, extinct fauna is one thing, but an effort to visualize the fauna is an effort that anybody wanting to learn about these animals tends to make, and my wish was to be able to illustrate these animals as richly as possible, just as the dinosaurs have been brought to life by illustrators. I was lucky to discover the Ukrainian artist Roman Uchytel on the Internet, who has specialized in using computer art to depict how these animals might have looked. Computer art fools the eye into thinking that we are viewing a photograph of the animal, and if it is well-done, we are drawn into a prehistoric world that lets us imagine how this world might have been, satisfying the basic urge of all of us to be a witness to such lost worlds. This book, then, publishes many images of Roman that illustrate the animals discussed here, although images of a few other artists also supplement the story that I tell.

Roman Uchytel was born in Ukraine of the Soviet Union and grew up near a zoo, and he spent most of his time there dreaming of becoming a zoologist and sketching animals. Eventually he graduated from art school and university with a love for nature and training as an artist. His knowledge of anatomy helps him to depict all manner of birds and beasts; although he rarely draws a dinosaur, he specializes in rarely depicted ancient mammals and birds, and with computer art he is able to place them in a natural setting that suggests a photograph of an ancient world. Roman, like myself, continues to be fascinated by animals and is dedicated to depicting the ancient ones in now lost worlds. He has considerably enriched this book. You can see more of Roman's work at his Internet site (https://prehistoricfauna.com).

Bogota, Colombia

Thomas Defler

Acknowledgments

I am particularly grateful for the time and space provided to me by the Universidad Nacional de Colombia to continuously teach a course by this name and to continue preparing to manage this great and voluminous theme. I could not have managed the library research necessary without the help of Dr. Scott Raymond and the University of Calgary library services in Canada. Thank you, Scott, for being there when I needed your help and with no thought of recompense. I am very grateful to the many neotropical paleontologists and aficionados of ancient mammals who positively answered my questions and to some who made very helpful suggestions. There were many (aficionados and professionals) who, like myself, are anxious to illustrate to the best of their abilities, the prehistoric mammalian life that lived on this continent, and I thank those who allowed me to reproduce their images in this book. I hope you are satisfied with the result. I am also grateful to the many Colombian students who listened to me over the years and, as a result, learned something about our mammalian history. I am especially grateful to the careful reading of the text and the many spelling corrections made to this book by Claudia Moreno and Enrique Forrero. They have improved the text in a manner that is very important to me and to all who read it.

About the Book

During the last 10 years, as I taught a course at the Universidad Nacional de Colombia with the same title as this book, it came home to me that the information for this fascinating subject was spread out in many journals and that the only attempt to address a history of South American mammals had been G. G. Simpson's 1980 book Splendid Isolation, now thoroughly out of date and almost bereft of images. My Internet research had taught me that there now were many images attempting to illustrate the prehistoric fauna of South America, but nobody had attempted to use them to tell the complete story as it is known up till the present. There were hundreds of published articles available, but they were not organized into the great story that is emerging about how South American mammals became what they are today and what history had gone before, though many understand that there was a strange and beautiful mammalian fauna before the two Americas became connected and the invasion of northern fauna occurred that changed everything. What was the fauna like before the American interchange? What were the origins of the several fantastic groups that became extinct when northerners arrived and out-competed the southerners? How did the modern mammalian fauna come into being with such disparate elements as two great rodent groups with two different origins, primates (where none had lived before), strange armadillos, sloths and anteaters with little understanding of their origin, and other mammals such as felines, canines, and deer that clearly had evolutionary connections to the north?

So I set out to write the history of these South American mammals that I was dedicated to studying, hoping that others would be interested in this story as well. I have attempted to write the story on a level that might be interesting to university students and professionals working with mammals and their paleontology. Perhaps those more broadly interested in South American fauna will also want to read this book. This is not a technical book, though some basic biology and paleontology are assumed. Very important are the many illustrations used that will hopefully indicate how these animals might have looked. The major artist used is the Ukrainian Roman Uchytel, who is an expert at illustrating prehistoric mammals (www.prehistoricfauna.com) and has made many species come alive. I attempt to tell this history in 15 chapters.

More Detailed Description

Based on my university course "Historia de los Mamíferos Terrestres de Sudamérica" and the series of lectures that I developed for this course, I have written a book outlining the evolutionary changes in the fauna of South America, beginning in the Mesozoic and ending at the present time. I have summarized a very large and disparate literature for this evolutionary history. Knowing that 35 years (after the publication of Simpson's book) of paleontological studies in South America are found in many technical journals and books, I have organized much of this literature into a history that tells the story of the changes that South American mammals have gone through since their beginning around 165 million years of so ago.

Besides an introductory chapter and a chapter discussing the ancient pre-Cenozoic fauna, the most detailed story, of course, took place during the Cenozoic or "Age of Mammals" of the last 65 million years, since the amount of information in terms of fossils begins to accumulate. So the majority of the chapters deal with this period from Chap. 3, starting with the first mammals of the Paleocene. Then I change focus, highlighting in each chapter the major mammalian groups that have made up the South American mammals: the marsupials, the ungulates, the xenarthrans, the caviomorph rodents, and the platyrrhine primates (Chaps. 3, 4, 5, 6, 7, and 8).

Once again, I change focus to highlight some specific assemblages that illustrate certain points. The La Meseta fossils (Chap. 9) illustrate an Eocene Antarctic group of mammals, and they underline the strong connection that Antarctica had with South America, at least until the two continents became disconnected around 30 million years ago. The La Venta fauna (Chap. 10) illustrates an ecological community of a geologically short period of time ago from about 13 to 12 million years and is the richest description that we have of an ancient ecology. I include a complete chapter on the neotropical mammals that invaded the Caribbean Islands (Chap. 11). The story of the formation of the Amazon River (Chap. 12) is important, inasmuch as it was obviously the center of evolution for so many mammals, although we do not as yet have the richness of information that exists from Patagonia (Chaps. 9, 10, and 11).

Concluding the history, I describe the inter-American interchange of mammalian fauna and how South America changed due to the mammalian invasions from the north. Now we appreciate that these invasions did not occur only during three to four million years after a final land connection of the Americas became complete but in fact the invasions began as early as 9 or 10 million years ago when the first gomphotheres, tapirs, camels, peccaries, and raccoons managed to arrive, probably swimming, to South America. The story gets very interesting, since the real dispersal abilities of mammals come to the fore as well as a new understanding about the formation of the Central American gap.

A penultimate chapter describes the Pleistocene fauna and the megafauna that populated South America briefly before it became extinct. Within this context of course is included a consideration of what role newly arrived human beings might have played in this great "dying off." The book ends with a brief consideration of the modern mammalian neotropical fauna.

Chapter Outline

The book, as written, comprises 15 chapters of which titles follow below with short chapter descriptions.

Chapter 1: Introduction

Chapter 1 includes brief descriptions of the roles played by various early collectors and describers of ancient bones. It also briefly describes the tools that are necessary to interpret the evolutionary history of South American mammals including the problem of calculating geological time, stratification, radiometric dating, paleomagnetism, the establishment of SALMAs (South American Land Mammal Ages), the geological time scale (and table), plate tectonics and the distribution of fauna, the role of Alfred Wegener, continental drift, and molecular phylogenetic research.

Chapter 2: Ancient Mammals of Gondwanan South America

Chapter 2 includes a description of what is known of South American mammals from the Mesozoic Era, which begins (according to present information) in late Jurassic around 168–161 million years ago and comprises australosphenid mammals (relatives of the platypus) and also the now extinct triconodont mammals. The description then moves through the ear Cretaceous with increasing numbers of fossils available. This fauna was dominated in South America by dryolestid mammals, which were closely related to modern placental mammals. During these times, there are a couple spectacular fossils known, like *Vincelestes neuquenianus* and *Cronopio dentiacutus*, both of which are illustrated.

Chapter 3: Early Cenozoic Mammals in South America

Chapter 3 includes a description of the earliest (Paleocene) mammalian assemblages known for the South American Cenozoic. These include complete discussions of the Tiupampan, Peligran, Itaboraian, and Riochican South American Land Mammal Age (SALMA), and the Riochican overlapping into the Eocene. These assemblages are very instructive, as they contain the most ancient groups, the marsupials, and native ungulates. These apparently arrived in South America from North America, perhaps in the latter part of the Cretaceous before the beginning of the Cenozoic. These faunas also contain other elements from North America and from the ancient Mesozoic mammalian fauna, which then become

extinct in South America. Several subgroups of marsupials and ungulates make their first appearance, as well as the first xenarthrans. A South American platypus demonstrates the ancient connection of South America to Australia, via Antarctica.

Chapter 4: Marsupials and Other Metatheres of South America

Marsupials and other metatherians apparently arrived in South America before the beginning of the Paleogene, at the end of the Cretaceous. The earliest relatives of Australian marsupials, the Microbiotheria, appear in the earliest assemblage. The carnivorous Sparassodonta evolve and produce the largest marsupial predator known, the 600 kg *Proborhyaena gigantea*, as well as the jaguar-sized saber-toothed marsupial *Thylacosmilus*. Many of these poorly known marsupial predators are well-illustrated by Roman Uchytel.

Chapter 5: The Native Ungulates of South America

The ancient, native ungulates were another fascinating group, which sadly has become totally extinct, but which we now understand were related to the northern Perissodactyla or odd-toed ungulates. These animals apparently evolved from northern condylarths (primitive ungulates) that somehow made it to South America. Evolution produced five orders of quite bizarre ungulates, some more like rodents than like ungulates, but others, toward the end of the Neogene in the Pleistocene, had become large, rhinoceros-like *Toxodon* and camel-like *Macrauchenia*. Although there is much to learn about the many species of South American meridiungulates (native ungulates), many forms are known. Some of the latest forms are known to have been hunted by early humans, who finally arrived in South America. This chapter is well-illustrated especially by images of Roman Uchytel.

Chapter 6: The Xenarthrans: Armadillos, Glyptodonts, Anteaters, and Sloths

From the time that the first xenarthrans appeared as early armadillos in the late Paleocene Itaborai, the group diversified into strange and wonderful forms. Besides the Dasypodidae, a group called the Glyptodontidae arose and diversified; some were the size (and shape) of a Volkswagen bug and were harmless grazers and were very common on the grassy savannas of South America. Also, the sloth lineage appeared with the last species reaching the greatest size of any southern mammal. *Megatherium americanum* one of the largest mammals known, equivalent to an

elephant. Finally a short history of the little-known anteaters is given. A discussion of the possible origins of the Xenarthra is suggested, and the group is presented as one of the most ancient lineages of modern mammals.

Chapter 7: The Caviomorphs: First South American Rodents

The first rodents did not arrive in South America until the mid-Eocene, at about 41 million years ago. This recent discovery makes the history of the caviomorphs extremely interesting, since the earliest known rodents are now known to be from tropical forest and not from dry, savanna-like habitats as previously believed. The group is ancient and is clearly related to the African phiomorph rodents. In this chapter and in Chap. 8, I enjoy describing the probable mode of dispersion of caviomorphs and primates from Africa to South America, since so many have difficulties accepting rafting over the Atlantic Ocean. The history of caviomorphs in South America also includes giant species that appeared during the latter part of the Neogene, culminating in the 1000 kg *Josephoartigasia* of the Río de la Plata (River Plate). This chapter also has some original illustrations by Roman Uchytel and by others.

Chapter 8: The Platyrrhine Monkeys

This chapter presents the partial evolutionary history known of the platyrrhine primates through their known fossils. Recently new evidence for the earliest known primates comes to us from Peru, so that we now have tropical evidence of *Perupithecus* and others, superceding the many higher latitude primates known from the southern cone. The previous earliest known primates (*Branisella*, *Szalatavus*) are known also from a totally different habitat and 20 million years later. Here again new evidence proves the important role of tropical forest in the evolution of South American primates. Additionally the newly discovered Eocene primates have similarities to early African fossils. Again, in this chapter, I describe how primates might have (and probably did) arrived in South America and just what the conditions would have had to be for the success of such a precarious voyage.

Chapter 9: An Antarctic Eocene Mammalian Community

This short chapter describes an Antarctic mammalian community and illustrates the faunal connection that existed between Antarctic and South America, since all of these ancient Eocene Antarctic mammals had living relatives in South America. The

community existed during the early-middle to late Eocene when the earth was very warm, the warmest of the entire Cenozoic. But since marsupials dispersed from South America to Australia in the early Paleocene, it is obvious that Antarctica was covered by forest until the arrival of global plunging temperatures at the end of the Eocene and early Oligocene. Many plants that have been identified from the Antarctic Peninsula are commonly seen on the southern tip of South America even today.

Chapter 10: La Venta: A Miocene Colombian Mammalian Community

The chapter describes the well-known Colombian La Venta fauna. This is the most detailed tropical faunal assemblage known for South America. Although it is located on the upper Magdalena River, at the time that it existed, it was peripheral to the great Amazonian wetlands to the east: unlike today, there was no Eastern Cordillera barrier. This fauna is represented by about 72 species of mammals from the richest deposits (the Monkey Beds) dated from about 11.8 to 13.5 million years ago, so it really represents a tropical community from a very narrow time window. The La Venta habitat was an open riparian-savanna with gallery forests, so mammals from several different conditions illustrate forest and savanna mammals. Compared to previous chapters, this is a fairly modern fauna, yet no elements of the north are yet to be found, and the mix is rather different than that found in the high latitudes further south. It is notable that many species and genera of mammals from La Venta have also been found in tropical central Peru, suggesting that a band of similar habitat west of the Amazonian wetlands was continuous from northern Colombia to southern Peru for that period.

Chapter 11: Mammalian Invasion of the Caribbean Islands

Chapter 11 describes the South American fauna that populated the Caribbean Islands and how this fauna might have arrived. Fossils tell us a story that, because of recent extinctions, probably was at least in part caused by human arrival. Particularly interesting to me are the data about primates that lived on the Caribbean Islands, several species of which lasted until the last few hundred years. All of these primates seem to have descended from one group of South America which arrived as far north as Cuba.

Chapter 12: The Genesis of the Modern Amazon River Basin and Its Role in Mammalian Evolution

This chapter discusses the origin of the Amazon basin and its role in mammalian evolution. Information is still sparse, due to taphonomic difficulties in a moist tropical, acid environment, but lately especially new finds of earliest rodent and primate fossils have added to our knowledge of how the tropical regions have played a large role in South American mammalian evolution. The process by which the great river was originally established is also a theme discussed, and what the conditions must have been to allow invading mammals from the north to arrive to the southernmost parts of the continent is considered.

Chapter 13: The Great American Biotic Interchange

This is the story of the revolutionary changes to South American mammals that occurred when it became possible for mammals from North America to pass to South America. This probably began as early as 8–10 million years ago when a proboscid, camelid, tayasuid, tapirid, and procyonid arrived in South America. Later at about three million years ago, the invasion became a flood when (apparently) the terrestrial connection between the two continents became complete. Of course some South American fauna went north, as well, including the terrestrial sloths and the glyptodonts, but they became extinct after modest success. Other southern elements persist yet in Central America, including primates and caviomorph rodents.

Chapter 14: Pleistocene Mammal Communities and Their Extinction

During the Pleistocene, the diversity of mammals in South America became extremely elevated. It seems that hyperdiversity reached the highest-known in the world, and there has been nowhere else where the 37 megamammals (weighing up to 1000 kg) were to be found until they all became extinct, the last just 8000–9000 years ago. Of course ecological factors played a huge role in leveling this out-of-balance fauna, but the intriguing question has always been about the role that human beings had to help these mammals to extinction.

Chapter 15: The Modern Mammals of South America

This short chapter discusses the modern mammalian fauna in South America and shows the comparative balance of mammal orders. The rodents make up well over half of the entire terrestrial mammalian biota (without counting the bats). The total terrestrial mammalian fauna numbers about 1500 species, and South America is the most diverse continent in the world. Despite the extensive Pleistocene extinctions, the fauna is amazing in its diversity. Many illustrations are provided for each group.

Contents

Intr	oduction
1.1	Early Studies of South American Mammals
	1.1.1 Juan Bautista Bru Y Ramón
	1.1.2 George Cuvier
	1.1.3 Alexander von Humboldt
	1.1.4 Charles Darwin and Richard Owen
	1.1.5 Alcide Dessalines dÓrbigny
	1.1.6 Florentino Ameghino and Carlos Ameghino
	1.1.7 Santiago Roth
	1.1.8 John Bell Hatcher.
	1.1.9 William Berryman Scott
	1.1.10 André Tournouër
	1.1.11 Jean Albert Gaudry
	1.1.12 G. G. Simpson
1.2	The Problem of Assigning Time
	1.2.1 Religious Traditions
	1.2.2 Stratification
	1.2.3 Radiometric Dating
	1.2.4 Paleomagnetism
	1.2.5 Magnetostratigraphy
	1.2.6 South American Land Mammal Ages (SALMAS)
1.3	The Geologic Time Scale.
1.4	Plate Tectonics and the Distribution of Fauna
	1.4.1 Alfred Wegener and Continental Drift
	1.4.2 Plate Tectonics
1.5	Molecular Phylogenetic Research
Refe	erences

2	Anc	ient Mammals of Gondwanan South America
	2.1	Introduction
	2.2	Three Histories?
	2.3	The Australosphenida: Southern Tribosphenic Mammals
		and Triconodonta – The Earliest Known Mammals
		in South America
		2.3.1 The Australosphenids (Fig. 2.4)
		2.3.2 The Triconodonts
	2.4	Cretaceous Mammals in South America
		2.4.1 Vincelestes neuquenianus
		2.4.2 Cretaceous Mammal Diversity
		2.4.3 The Gondwanatheres
		2.4.4 Connections with Australia
	Refe	erences
	_	
3	Ear	ly Cenozoic Mammals in South America
	3.1	Introduction
	3.2	Tiupampa, Bolivia 47
		3.2.1 Marsupials and Other Metatheres of the Tiupampan
		Fauna
		3.2.2 Sparassodonta (Borhyaenoidea)
		3.2.3 Cimolesta (Proteutheria) 52
		3.2.4 The "Ungulates" 52
		3.2.5 Pantodont 53
	3.3	Punta Peligro Local Fauna (63.2 to 63.8–59 Ma), Argentina 54
		3.3.1 South American Ornithorhynchidae
		and Gondwanatheres 54
	3.4	The Itaboraí Local Fauna, Brazil56
	3.5	Cañadon Hondo, Argentina 59
	Refe	erences
4	Mai	rsunials and Other Metatheres of South America 65
	4 1	Introduction 65
	4.1 4.2	Marsunial Deltatheroida Asiadelphia 66
	7.2	4.2.1 Order Didelphimorphia
		4.2.1 Order Duciphiniorphia
		4.2.2 Order Fauendoereurata (Forydorophilorphila)
		4.2.5 Caroloanicgininidae
		4.2.4 Superiality Argylolagoldea
	13	4.2.5 Order Microbioliena
	4.3	4.3.1 Maxulestidae 74
		4.2.2 Hothlingunidee
		4.3.2 Parhyaanidaa 72
		4.5.5 Doffiyaeinidae
		4.5.4 Protrytacimidae
		4.5.5 Prodornyaemidae
		4.5.0 Inviacosmilidae
	DC	4.3./ Ivietatherian Carnivory
	Refe	erences

5	The	Native Ungulates of South America	
	(Co	ndylarthra and Meridiungulata)	89
	5.1	Introduction	89
	5.2	Condylarthra	89
	5.3	The Meridiungulata	92
		5.3.1 Litopterna	92
		5.3.2 Notoungulata	97
		5.3.3 Astrapotheria, (Eoastrapostylopidae,	
		Trigonostylopidae, Astrapotheriidae)	106
		5.3.4 Pyrotheria, (Colombitheriidae, Pyrotheriidae)	108
		5.3.5 Xenungulata	111
	Refe	prences	112
6	The	Xenarthrans: Armadillos, Glyptodonts, Anteaters,	
	and	Sloths	117
	6.1	Introduction	117
	6.2	Order: Cingulata.	120
		6.2.1 Dasypodidae.	121
		6.2.2 Pampatheriidae	124
		6.2.3 Peltephilidae	125
	60	6.2.4 Glyptodontidae.	126
	6.3	Order: Pilosa	128
		6.3.1 Suborder: Vermilingua	129
	D.C	6.3.2 Suborder: Folivora	130
	Refe	rences	134
7	The	Caviomorphs: First South American Rodents	139
	7.1	Introduction	139
		7.1.1 Arrival of Rodents in South America.	140
		7.1.2 Cachiyacu River Rodents (41 Ma)	141
	7.2	Other Ancient Caviomorph Communities	143
		7.2.1 Santa Rita Rodents (43–34 Ma)	143
		7.2.2 Tinguiririca Rodents (36–29 Ma)	144
		7.2.3 Platypittamys brachyodon	144
	7.3	Molecular Phylogenies.	145
		7.3.1 Caviodea: Cavies and Maras	145
		7.3.2 Erethizontoidea: Porcupines	140
		7.2.4 Octodente idea Denne Deels Dete Trans Transformer	14/
		1.5.4 Octodontoidea: Degus, Kock Kats, Tuco-Tucos,	140
	74	and Nullias.	149
	7.4	Ulganushi in the Dynomyldae and Other Kodenis	131
	/.J Dof	nyurochoeridae (Cavioidea) or hydrochoerinae (Caviidae)?	154
	Refe		100

8	Platy	yrrhine Monkeys: The Fossil Evidence	161
	8.1	Introduction	161
	8.2	The First New World Primates.	164
		8.2.1 Santa Rosa Local Fauna	164
		8.2.2 Branisella and Szalatavus	165
		8.2.3 Primates of the Southern Cone	166
		8.2.4 La Venta: The Colombian Primates	171
		8.2.5 Late Miocene Amazon and the Pleistocene Coast	173
		8.2.6 Caribbean Primates	173
	8.3	First North American Platyrrhine.	177
	Refe	rences	177
9	An A	Antarctic Mammalian Community	185
	9.1	Introduction	185
	9.2	Peninsular Connection of South America to Antarctic	185
		9.2.1 Vegetation of the Antarctic Peninsular Forest	188
	9.3	Seymour Island (La Meseta) Fauna	190
		9.3.1 The Metatherians	191
		9.3.2 Gondwanatheria	192
		9.3.3 Xenarthra?	192
		9.3.4 Astrapotheria	193
		9.3.5 Youngest and Oldest Record of Ungulate from Eocene	193
	9.4	Comparison to Early Eocene Southern Patagonian Fauna.	195
	9.5	Connection to South America, Disconnection	195
	Refe	rences	195
10	La V	Venta: A Miocene Mammalian Community from Colombia	199
	10.1	Introduction	199
	10.2	Mammalian Fauna of La Venta	202
		10.2.1 Marsupialia and Metatheria	202
		10.2.2 Xenarthra	203
		10.2.3 Meridiungulata: Ungulates.	208
		10.2.4 Rodents (Walton 1997)	212
		10.2.5 Primates	213
	Refe	rences	215
11	Man	nmalian Invasion of the Caribbean Islands	221
	11.1	Introduction	221
	11.2	West Indian Mammals (Greater and Lesser Antilles)	223
		11.2.1 Sloths	223
		11.2.2 Primates	224
		11.2.3 West Indian Rodents	227
		11.2.4 Ungulates	229
		11.2.5 Solenodons	230
	11.3	How Did the Mammals Get There?	230
	Refe	rences	232

12	The (Genesis o	f the Modern Amazon River Basin and Andean	
	Uplif	t and Th	eir Roles in Mammalian Diversification	235
	12.1	Introduc	ction	235
	12.2	Evolutio	on of the Tropical Forested Basin and the	
		Proto-A	mazonian Forest	236
	12.3	Evolutio	on of the Amazon River	238
	12.4	Develor	oment of Mammalian Diversity	
		in the N	leotropical Hylea	239
		12.4.1	Changes in the Distribution of Land and Sea or in the	
			Landscape Due to Tectonic Movements or Sea-Level	
			Fluctuations (Paleogeography Hypothesis)	241
		12.4.2	The Barrier Effect of Amazonian Rivers	
			(River Barrier Hypothesis)	242
		12.4.3	A Combination of the Barrier Effect of Broad	
		121110	Rivers and Vegetation Changes in Northern and	
			Southern Amazonas (River-Refuge Hypothesis	
			or River-Forest Contraction Hypothesis)	244
		1244	The Isolation of Forest Blocks Near Areas	211
		12.1.1	of Surface Relief in the Periphery of Amazonia	
			During Dry Climatic Periods of the Tertiary	
			and Quaternary (Refuge Theory or Hypothesis)	244
		1245	The Canopy-Density Hypothesis	245
		12.4.5	The Museum Hypothesis	245
		12.4.0 12.4.7	Disturbance-Vicariance Hypothesis	245
		12.4.7	Parapatric Speciation	246
	12.5	Diversit	ty of Ancient Neotronical Mammalian Fauna	240
	12.5	12.5.1	The Contamana Local Fauna	247
		12.5.1 12.5.2	The Containana Local Fauna	247
		12.5.2	The Laventan Fauna	240
		12.5.5 12.5.4	The Acre Fauna	249
		12.5.4	Invasion of the Northern Cricetid Rodents	250
	Pafar	12.J.J		251
	Kerer	chees		232
13	The (Great An	nerican Biotic (Faunal) Interchange	259
	13.1	Introduc	etion	259
		13.1.1	The Establishment of the Isthmus of Panama	259
	13.2	The "In	vasions" from the North	260
	13.3	The Fire	st Pulse of Mammals to South America	261
		13.3.1	Gomphotheridae (Proboscidea) South	
			American Elephants	263
		13.3.2	Tayassuidae (the Peccaries)	265
	13.4	Camelio	lae	266
	13.5	Procyor	nidae	268
	13.6	The Lea	aders of the Flood of New Mammals	
		in the S	econd Pulse	269

		13.6.1 Equidae (Horses)	269
		13.6.2 Canidae (Canines, Dogs)	270
		13.6.3 Felidae (Felines, Cats)	273
		13.6.4 Ursidae (Bears)	277
		13.6.5 Mustelidae (Weasels, Otters)	278
		13.6.6 Mephitidae (the Skunks)	279
		13.6.7 Tapiridae (the Tapirs)	279
		13.6.8 Cervidae (the Deer)	280
		13.6.9 Sigmodontine Rodents (Cricetidae)	280
	13.7	Southern Mammals that Went North	281
	Refere	ences	282
14	Pleist	ocene Mammal Communities and Their Extinction	289
	14 1	Introduction	289
	14.2	Mammalian Families Invading from the North to the South	290
	14.3	Mammalian Families Invading from the South to the North	290
	14.4	Patterns of Extinctions	291
		14.4.1 When Did Humans Arrive in South America	
		and How Did They Impact the Fauna?	293
		14.4.2 Ecological Factors Impacting Mammalian	
		Extinctions	294
	Refere	ences	298
15	The N	Iodern Terrestrial Mammals of South America	303
	15.1	Introduction	
			303
	15.2	Order: Didelphimorphia (Gardner 2005a, 2007) 86 Species	303 304
	15.2 15.3	Order: Didelphimorphia (Gardner 2005a, 2007) 86 Species Order: Paucituberculata (Gardner 2005b, 2007) 6 Species	303 304 307
	15.2 15.3 15.4	Order: Didelphimorphia (Gardner 2005a, 2007) 86 Species Order: Paucituberculata (Gardner 2005b, 2007) 6 Species Order: Microbiotheria (Gardner 2005c, 2007) 1 Species	303 304 307 307
	15.2 15.3 15.4 15.5	Order: Didelphimorphia (Gardner 2005a, 2007) 86 Species Order: Paucituberculata (Gardner 2005b, 2007) 6 Species Order: Microbiotheria (Gardner 2005c, 2007) 1 Species Order: Cingulata (Gardner 2005e, 2007) 19 Species	303 304 307 307 308
	15.2 15.3 15.4 15.5 15.6	Order: Didelphimorphia (Gardner 2005a, 2007) 86 Species Order: Paucituberculata (Gardner 2005b, 2007) 6 Species Order: Microbiotheria (Gardner 2005c, 2007) 1 Species Order: Cingulata (Gardner 2005e, 2007) 19 Species Order: Pilosa (Gardner 2005, 2008) 10 Species	303 304 307 307 308 309
	15.2 15.3 15.4 15.5 15.6 15.7	Order: Didelphimorphia (Gardner 2005a, 2007) 86 Species Order: Paucituberculata (Gardner 2005b, 2007) 6 Species Order: Microbiotheria (Gardner 2005c, 2007) 1 Species Order: Cingulata (Gardner 2005e, 2007) 19 Species Order: Pilosa (Gardner 2005, 2008) 10 Species Order: Primates	303 304 307 307 308 309 311
	15.2 15.3 15.4 15.5 15.6 15.7 15.8	Order: Didelphimorphia (Gardner 2005a, 2007) 86 Species Order: Paucituberculata (Gardner 2005b, 2007) 6 Species Order: Microbiotheria (Gardner 2005c, 2007) 1 Species Order: Cingulata (Gardner 2005e, 2007) 19 Species Order: Pilosa (Gardner 2005, 2008) 10 Species Order: Primates Order: Lagomorpha (Hoffmann and Smith 2005) 2 Species	303 304 307 307 308 309 311 318
	15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9	Order: Didelphimorphia (Gardner 2005a, 2007) 86 SpeciesOrder: Paucituberculata (Gardner 2005b, 2007) 6 SpeciesOrder: Microbiotheria (Gardner 2005c, 2007) 1 SpeciesOrder: Cingulata (Gardner 2005e, 2007) 19 SpeciesOrder: Pilosa (Gardner 2005, 2008) 10 SpeciesOrder: PrimatesOrder: Lagomorpha (Hoffmann and Smith 2005) 2 SpeciesOrder: Soricomorpha (Hutterer 2005) 11 Species	303 304 307 307 308 309 311 318 318
	15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10	Order: Didelphimorphia (Gardner 2005a, 2007) 86 SpeciesOrder: Paucituberculata (Gardner 2005b, 2007) 6 SpeciesOrder: Microbiotheria (Gardner 2005c, 2007) 1 SpeciesOrder: Cingulata (Gardner 2005e, 2007) 19 SpeciesOrder: Pilosa (Gardner 2005, 2008) 10 SpeciesOrder: PrimatesOrder: Lagomorpha (Hoffmann and Smith 2005) 2 SpeciesOrder: Soricomorpha (Hutterer 2005) 11 SpeciesOrder: Carnivora (Wozencraft 2005) 47 Species	303 304 307 307 308 309 311 318 318 319
	15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11	Order: Didelphimorphia (Gardner 2005a, 2007) 86 SpeciesOrder: Paucituberculata (Gardner 2005b, 2007) 6 SpeciesOrder: Microbiotheria (Gardner 2005c, 2007) 1 SpeciesOrder: Cingulata (Gardner 2005e, 2007) 19 SpeciesOrder: Pilosa (Gardner 2005, 2008) 10 SpeciesOrder: PrimatesOrder: Lagomorpha (Hoffmann and Smith 2005) 2 SpeciesOrder: Soricomorpha (Hutterer 2005) 11 SpeciesOrder: Carnivora (Wozencraft 2005) 47 SpeciesOrder: Perissodactyla (Grubb 2005) 3 Species	303 304 307 307 308 309 311 318 318 319 323
	15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12	Order: Didelphimorphia (Gardner 2005a, 2007) 86 SpeciesOrder: Paucituberculata (Gardner 2005b, 2007) 6 SpeciesOrder: Microbiotheria (Gardner 2005c, 2007) 1 SpeciesOrder: Cingulata (Gardner 2005e, 2007) 19 SpeciesOrder: Pilosa (Gardner 2005, 2008) 10 SpeciesOrder: PrimatesOrder: Lagomorpha (Hoffmann and Smith 2005) 2 SpeciesOrder: Carnivora (Wozencraft 2005) 47 SpeciesOrder: Perissodactyla (Grubb 2005) 3 SpeciesOrder: Artiodactyla (Grubb 2005) 23 Species	303 304 307 307 308 309 311 318 318 318 319 323 323
	15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13	Order: Didelphimorphia (Gardner 2005a, 2007) 86 SpeciesOrder: Paucituberculata (Gardner 2005b, 2007) 6 SpeciesOrder: Microbiotheria (Gardner 2005c, 2007) 1 SpeciesOrder: Cingulata (Gardner 2005e, 2007) 19 SpeciesOrder: Pilosa (Gardner 2005, 2008) 10 SpeciesOrder: PrimatesOrder: Lagomorpha (Hoffmann and Smith 2005) 2 SpeciesOrder: Soricomorpha (Hutterer 2005) 11 SpeciesOrder: Carnivora (Wozencraft 2005) 47 SpeciesOrder: Perissodactyla (Grubb 2005) 3 SpeciesOrder: Artiodactyla (Grubb 2005) 23 SpeciesOrder: Rodentia 621 Species (Patton et al. 2015)	303 304 307 307 308 309 311 318 319 323 323 325
	15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13 Reference	Order: Didelphimorphia (Gardner 2005a, 2007) 86 Species Order: Paucituberculata (Gardner 2005b, 2007) 6 Species Order: Microbiotheria (Gardner 2005c, 2007) 1 Species Order: Cingulata (Gardner 2005e, 2007) 19 Species Order: Pilosa (Gardner 2005, 2008) 10 Species Order: Primates	303 304 307 308 309 311 318 319 323 323 325 334
Per	15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13 Refere	Order: Didelphimorphia (Gardner 2005a, 2007) 86 Species Order: Paucituberculata (Gardner 2005b, 2007) 6 Species Order: Microbiotheria (Gardner 2005c, 2007) 1 Species Order: Cingulata (Gardner 2005e, 2007) 19 Species Order: Pilosa (Gardner 2005, 2008) 10 Species Order: Primates	303 304 307 307 308 309 311 318 319 323 323 325 334 347
Per	15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13 Refere	Order: Didelphimorphia (Gardner 2005a, 2007) 86 Species Order: Paucituberculata (Gardner 2005b, 2007) 6 Species Order: Microbiotheria (Gardner 2005c, 2007) 1 Species Order: Cingulata (Gardner 2005e, 2007) 19 Species Order: Pilosa (Gardner 2005, 2008) 10 Species Order: Primates	303 304 307 307 308 309 311 318 319 323 325 334 347

List of Figures

Fig. 1.1	Juan Bautista Bru de Ramón's mount of Megatherium,	
	the first attempt to mount the skeleton of a fossil vertebrate.	
	Unfortunately, besides the strange posture, he confused	
	the front and hind feet in his mounting	3
Fig. 1.2	Young George Cuvier, "Father of Paleontology," 1769-1832	4
Fig. 1.3	Alexander von Humboldt, 1769–1859	5
Fig. 1.4	Charles Darwin (1809–1882)	6
Fig. 1.5	Alcide Dessalines dÓrbigny (1802–1857)	7
Fig. 1.6	Florentino Ameghino (left) 1853-1911 and Carlos Ameghino	
	(right) 1865–1935	8
Fig. 1.7	The Borhyaenidae show many features of canines,	
	leading Florentino to consider erroneously this group	
	as ancestral to the dog family	9
Fig. 1.8	Santiago Roth (1850–1924)	10
Fig. 1.9	John Bell Hatcher (1861–1904)	11
Fig. 1.10	John Berryman Scott (1858–1947)	12
Fig. 1.11	Pyrotherium sp. lived in what is now Argentina, during	
	the Early Oligocene. Its body was 3 m long and 1.50 m	
	tall at the shoulders. Its had robust legs and a short proboscis,	
	and flat, forward facing tusks (two in the upper jaw,	
	one in the lower one). It has sometimes been seen	
	as a descendent of the Xenungulata	13
Fig. 1.12	Jean Albert Gaudry (1827–1908)	14
Fig. 1.13	G. G. Simpson. (Permission of the American Museum	
	of Natural History) 1902–1984	15
Fig. 1.14	Geomagnetic polarity 0–169 Ma since the Middle Jurassic.	
	Dark areas denote periods where the polarity matches today's	
	polarity, while light areas denote periods where that polarity	
	is reversed	18

Fig. 1.15	Fossil evidence for continental drift	22
Fig. 1.16	Pangaea and the position of the continents in the Early Triassic	23
Fig. 2.1	Adelobasileus the most primitive mammal known from the Triassic of 225 million years of Texas	30
Fig. 2.2	Relation of continents about 200 million years ago, during the time of the first mammals	30
Fig. 2.3	Origin of the first southern tribosphenic australosphenidan mammal was discovered in Argentina in 2001 and other tribosphenic mammals discovered in parts of Gondwana from the Middle Jurassic	31
Fig. 2.4	Continental arrangement at the end of the Jurassic (152 Ma)	32
Fig. 2.5	(a) A recreation of <i>Asfaltomylos patagonico</i> and(b) jaw bone and tribosphenic teeth of a Mesozoictribosphenic mammal (related to monotremes, line equals	
-	a scale of 1 mm) discovered in Patagonia	34
Fig. 2.6	Photograph of ichnites of <i>Ameghinichnus patagonicus</i> , fossil footprints in sand, used here to study the gait of the animal (A. $lm = left manus; lp = left pes;$	
	rm = right manus; rp = right pes)	35
Fig. 2.7	Position of continental plates during the Early Cretaceous (135 Ma)	36
Fig. 2.8	Vincelestes neuquenianus	37
Fig. 2.9	Continental positions in the Late Cretaceous (100.5–66 Ma) at about 90 Ma	38
Fig. 2.10	<i>Cronopio dentiacutus</i> was a highly specialized dryolestoid with a very narrow snout. (By Guillermo Rougier). What type of specialization these animals had is conjectural. They do, however, remind us of a certain acorn-pushing mammal from the film "Ice Age"	39
Fig. 2.11	Obdurodon sp. with three species existing in Australia during the Miocene 15 and 25 Ma. They probably kept their teeth until adulthood, unlike the modern (Ornithorhynchus anatinus) which has horny plates in place of teeth. Since the South American Monotrematum sudamericanum existed around 61 Ma, it may be an ancestor to the later platypus. The two molars that are known show close affinities to Obdurodon dicksoni	40
Fig. 2.12	Two ancient biogeographic provinces, North Gondwanan Province and South Gondwanan Province. Two paleobiogeographical provinces dated between 85 and 63 Ma reflect the climax of the Gondwanan Episode with a strong African influence in the Northern Gondwanan Province and a strong Australian (and Antarctic?) influence in the Southern Gondwanan Province, reflected by lungfish and turtles	41

Fig. 3.1 Fig. 3.2	Continental geography just before Chicxulub impact	46
1 15. 5.2	to an indeterminate order but apparently very common	
	social and fossorial	50
Fig 33	Mavulestes ferox	
Fig. 3.4	Alcidedorhignya is the only pantodont that has been	
1 15. 5. 1	found in South America, and it is considered	
	to be the most primitive known pantodont	54
Fig 35	Carodnia vieirai	
1 19. 5.5		
Fig. 4.1	Sinodelphys szalayi, a metathere belonging to the group	
	that includes both the marsupials and their closest	
	living relatives and includes Deltatheroidea	
	and Asiadelphia (based on skeleton)	66
Fig. 4.2	Asiatherium from Mongolia represents the oldest	
	fossil marsupial without controversy	67
Fig. 4.3	Alphadon of North America	68
Fig. 4.4	Peradectes sp. has been found in South America,	
	North America, and Europe	69
Fig. 4.5	Pucadelphys andinus based on complete fossil	70
Fig. 4.6	Argyrolagus possessed a long, tubelike nose, large orbits,	
	and a long tail	72
Fig. 4.7	Dromiciops australis	73
Fig. 4.8	Mayulestes ferox from Tiupampa	75
Fig. 4.9	Cladosictis lustratus (4-6 kg body mass) hunting	
	small mammalian prey	76
Fig. 4.10	Borhyaena weighed about 25-36 kg or the size of a wolf	
	(which are variable in size and was probably a strong hunter)	77
Fig. 4.11	Life restoration of Prothylacinus patagonicus, an arboreal	
	prothylacine (from Argot 2003)	78
Fig. 4.12	This Colombian La Venta Lycopsis longirostris	
	(weight calculated at 30 kg by Ercoli and Prevosti 2011)	
	is currently classified as a Lycopsis, which were very	
	common in Early-Middle Miocene Patagonia. However,	
	the genus might eventually be broken up into several genera	78
Fig. 4.13	Dukecynus magnus was the largest predator known	
	from La Venta, though ecological densities of all predators	
	are low, making them more difficult to detect	79
Fig. 4.14	Callistoe vincei skeleton and skull	80
Fig. 4.15	Arminiheringia auceta weighed about 40-80 kg	81
Fig. 4.16	Proborhyaena gigantea was the largest marsupial	
-	yet known. It was the size of a large bear reaching 600 kg	
	and lived during the Oligocene in Patagonia	82
Fig. 4.17	Here a Thylacosmilus attacks a Tapirus	83

	•	•	•
XXV	1	1	1
	•	1	-

Fig. 5.1	An Early Eocene condylarth Meniscotherium from North	
•	America	90
Fig. 5.2	The Middle Miocene Nesodon imbricatus, a large toxodontid,	
C	and the proterotherid liptotern Diadiaphorus majusculus	92
Fig. 5.3	The "false horse" <i>Thoatherium</i> (Proterotheridae) had digits	
0	reduction in all four feet so that they used, like horses.	
	only one digit	93
Fig 54	The proterotherid <i>Diadiaphorus maiusculus</i> a horselike	
1 15. 5. 1	litoptern browser	94
Fig. 5.5	(a, b) Phorusrhacid terror birds, probable predators	
C	on macrauchenid and other ungulates before the arrival	
	of new mammalian predators from North America.	
	The 2 m tall <i>Paraphysornis</i> (above) Early Miocene (23 Ma)	
	of Brazil and <i>Kelenken</i> (below) the largest avian species	
	(of any group) so far found dated from the Middle Miocene	
	of Patagonia (15.7 Ma) and probably reached 3 m in height	95
Fig 56	Macrauchenid survived until Pleistocene times and were	
1 15. 5.0	hunted by early humans	96
Fig 57	Theosodon garretorum (left) and Borhyaena tuberata (right)	
1 18. 0.1	A macruachenid from the early Miocene	97
Fig 58	Notoungulate relationships	98
Fig. 5.0	Notostylons a rodent-like ungulate that was very common	
1 15. 5.7	in the Pliocene-Pleistocene of southern South America	
	and that may have communicated in part like modern	
	elephants by means of infrasound	00
Fig. 5 10	Thomashurlaya a primitiya sheep sized toyodont	
Fig. 5.10	from the Early Ecoope known from Deteconie	100
$E_{12} = 5 \cdot 11$	Hom alo doth original summing have in 200 has toy a don't	100
Fig. 5.11	Homalodoinerium cunningnami a 500 kg toxodoilt	101
FIg. 3.12	International Security in from the Middle Mission Le Vente	
	later than <i>Scarima</i> , from the Middle Middle La venta,	101
D' C 10	weigning around 800 kg	101
Fig. 5.13	<i>Toxodon</i> (Toxodontidae)	102
F1g. 5.14	Adinotherium was another smaller toxodont from	102
D: 515	the Miocene (1/.5–11.6 Ma)	103
F1g. 5.15	Nesodon imbricatus might have been principally a leaf-eater	101
	and perhaps even browsed on bark	104
Fig. 5.16	(a) <i>Campanorco inauguralis</i> (Notoungulata, Typotheria)	
	and (b) Coquenia bondi (Notoungulata, Toxodontia,	
	Leontiniidae) (Late Eocene)	105
Fig. 5.17	Hemihegetotherium trilobus, a Middle Miocene hegetothere	
	(Typotheria) from southern Bolivia (12.5–13 Ma)	105
Fig. 5.18	Astrapotherium magnum. a well-kown astrapotherium	
	from Early to Middle Miocene times and known for southern	
	parts of South America	107

Fig. 5.19 Fig. 5.20	Head of <i>Astrapotherium magnum</i> <i>Granastrapotherium snorki</i> a very large astrapothere	107
e	first found in La Venta in Colombia, later in southern Peru.	
	It is the most massive mammal known from La Venta	108
Fig. 5.21	Study of head of Pyrotherium romeroi from Scott (1913)	109
Fig. 5.22	Pyrotherium romeroi	109
Fig. 5.23	A hypothetical reconstruction of the little-known pyrothere, Colombitherium tolimense	110
Fig 5 24	Carodnia vieiri is the best-known xenungulate based	110
115.0.21	on skeletal material	111
Fig. 6.1	The Pholidota bauplan is very similar to modern <i>Tamandua</i> ,	
0	but broad scales over the body and an absence of xenarthrous	
	vertebrates, plus molecular results, indicate that they	
	are very distantly related to Xenarthra and are more related	
	to Carnivora	118
Fig. 6.2	The aardvark, the only species of Tubulidentata that exists	
0.	and thought to have been related to the xenarthrans.	
	now known to be more closely related to the proboscideans	
	(elephants)	118
Fig. 6.3	An Eocene fossil <i>Eurotamandua</i> convinced many	
0	that the xenarthrans early on had a wider distribution	
	and that they were phylogenetically related to the pangolins.	
	But the fact that <i>Eurotamandua</i> had no xenarthrous	
	articulations, and other xenarthran characteristics	
	have convinced many that it is probably an early pangolin	
	and had no connection to the xenarthrans	119
Fig. 6.4	Phylogeny of Xenarthra, including extinct taxa.	
e	Many doubt a close phylogenetic connection of <i>Eurotamandua</i>	
	to the Xenarthra	120
Fig. 6.5	This shows an anterior view of thoracic vertebrate number	
e	14 and a posterior view of thoracic vertebrate number 13.	
	ax = anterior xenarthrous facet; alz = anterior lateral	
	zygapophyseal facet; pmz = posterior medial zygapophyseal	
	facet; $px = posterior$ xenarthrous facet; $plz = posterior$	
	lateral zygapophyseal facet	120
Fig. 6.6	Lumbar vertebrae of an armadillo showing normal	
e	zygapophyses (z) and xenarthrous joints (x. dx. vx)	121
Fig. 6.7	Osteoderms of <i>Riostegotherium</i> ; their form suggests	
e	that of armadillos	122
Fig. 6.8	The common 12-banded armadillo (Dasypus), found	
e	in wide extensions of South America, has also invaded	
	parts of the southern United States	123
Fig. 6.9	The primitive armadillo <i>Utaetus</i> from the Early Eocene	
-	of 60 Ma	123

Fig. 6.10	<i>Holmesina</i> was a pampathere genus that extended from southern North America to South America. Other species lived in North and South America
	These were much larger than typical armadillos often reaching 225 kg
Fig. 6.11	The horned armadillo, <i>Peltephilus ferox</i> , of the Oligocene and Miocene of Argentina. <i>Peltophilus ferox</i> was probably carrivorous and a predator on small animals
Fig. 6.12	<i>Doedicurus clavicaudatus</i> was perhaps the largest of the glyptodonts. This animal flourished during the Pleistocene and had a height of 1.5 m (5 feet) and an overall length of around 3.6 m (12 feet). Two <i>Macrauchenia</i> are in the background
Fig. 6.13	<i>Glyptodon</i> was a very large, armored glyptodont and probably would not have had trouble defending itself from jaguars, when they appeared in South America about five million years ago
Fig. 6.14	Parapropalaehoplophorus septentrionalis from northern Chilean Santacrucian SALMA
Fig. 6.15	Megatherium americanum, the largest ground sloth known
Fig. 6.16	Glossotherium robustum
Fig. 6.17	<i>Thalassocnus natans</i> was partially aquatic and fed on marine vegetation from the Pacific coast of South America
Fig. 7.1	Skull and lower mandible of <i>Myocastor coypus</i> hystricognathous lower jaw and hystricomorphous zygomasseteric system. The relative size of the infraorbital foramen through which part of the masseter medialis passes, connecting to the bone on the opposite side of the skull defines the Hystricognathi
Fig. 7.2	A hypothetical illustration of the tiny 40 g <i>Canaanimys</i> rodent, among the first rodents to reach South America
Fig. 7.3	<i>Platypittamys brachyodon</i> was previously thought to be the oldest caviomorph rodent from the Octodontidae
Fig. 7.4	A cavioid rodent, Cuniculus paca, Agoutidae family146
Fig. 7.5	<i>Eocardia</i> of the Early to Middle Miocene were probably ancestors of the cavies, capybaras, and maras of today
Fig. 7.6	A porcupine, <i>Erethizon dorsatum</i> Erethezontoidea (Erethezontidae)
Fig. 7.7	<i>Chinchilla</i> , Chinchilloidea (Chinchillidae). (By Thirteen squared). Chinchillas live in the southern Andes Mountains at around 4000 m formerly in Chile, Peru, Argentina, and Bolivia in "herds" of about 14–100 individuals. They are now reduced mostly to living in Chile because of their constant pursuit for their fine pelts

Fig. 7.8	<i>Diplomys caniceps</i> Echimyidae. (By R. Mintern). The arboreal soft-furred spiny rat is found in Northwest Colombia	
	in tropical and subtropical lowland moist forest	149
Fig. 7.9	Tympanoctomys cordubensis, extinct Octodontidae	
	from Argentina	150
Fig. 7.10	Octodon degu (Octodontidae)	151
Fig. 7.11	Ctenomys brasiliensis Ctenomyidae (in Alcide Dessalines	
	d'Orbigny (1847) Voyage dans l'Amérique méridionale)	152
Fig. 7.12	Josephoartigasia monesi, the largest rodent so far discovered,	
	might have weighed upward of 1000 kg and was found	
	on the lower Río Plata	153
Fig. 7.13	Female capybara with young	155
Fig. 8.1	Some distinguishing characters between the catarrhines	
	and platyrrhines	162
Fig. 8.2	The rather odd image of Tremacebus harringtoni was drawn	
	by Rusconi C. 1935 based on the then known skull	167
Fig. 8.3	Holotype cranium and upper molars of K. blakei, a new genus	
	of platyrrhine primate from the Miocene of Argentina.	
	Frontal (a), right lateral (b), palatial (c), and posterior	
	views of MPM-PV 5000 and an illustration of the cheek teeth	
	(e), (f) MPM-PV 1607 in occlusal view. (Scale bare, 1 cm)	169
Fig. 8.4	Cebupithecia sarmientoi an obvious pithecine from La Venta	
	(a) hypothetical drawing of a live animal, (b) a skull	
	of Cebuspithecia (12 Ma)	172
Fig. 8.5	The head of the large ateline primate <i>Cartelles coimbrafilhoi</i>	
	had a head very similar to that of <i>Alouatta</i>	174
Fig. 9.1	Relationship of continents in the Early Paleocene 66 Ma	
	showing Chicxulub (Chixulub on this map) zone,	
	which impacted earth roughly 65.5 million years	
	ago and caused the extinction of the nonavian dinosaurs	
	among other groups	186
Fig. 9.2	Middle Eocene and the existence of the La Meseta fauna	
	in Antarctica. By this time the Antarctic-Australian land	
	connection had been broken, although a connection continued	
	between southern South America and Antarctica until	
	around 30 Ma	186
Fig. 9.3	The underwater topography that connects the southernmost	
	point of South America with the Antarctic Peninsula.	
	This topography was above water earlier than about 30 Ma	
	and formed a barrier to ocean currents	187
Fig. 9.4	Location of Seymour (Marambio) Island in relation	
	to the Antarctic Peninsula	187