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On the Quantification of Habitability: m)

Check for

Current Approaches

Rolando Cardenas, Rosmery Nodarse-Zulueta, Noel Perez,
Daile Avila-Alonso and Osmel Martin

Abstract In this chapter, we outline general ideas to quantify habitability, starting
with a general abiogenesis—biogenesis conceptual model. We connect this model
with the approach of the astrobiological school of quantitative habitability,
specifically with quantitative habitability theory, to devise habitability indexes. We
present two indexes devised by us: the Aquatic Primary Habitability for
photosynthesis-based ecosystems, and the Chemosynthetic Habitability Index for
chemoautotrophy-based ones. As a case study, we present the application of the last
one to hydrothermal vents. It is also mentioned the possibility of embedding
parameters such as net primary productivity, calculated using habitability indexes,
into greater ecological models with several trophic models, making a clear con-
nection between the astrobiological and ecological approaches of quantitative
habitability.

Keywords Abiogenesis—biogenesis model - Quantitative habitability theory
Habitability index

1 Introduction

Quantitative habitability remains an open issue. Currently, there are three (com-
plementary) approaches to quantify habitability. In the astrobiological, the main
premises for life origin (abiogenesis) and evolution (biogenesis) are studied. In the
biogeochemical, emphasis is put on biogeochemical cycles and the availability of
nutrients and energy, while in the ecological a closer look is put at the interactions
between the species in the context of the ecosystem [1]. However, due to the
complexity of life, the quantification of habitability is still a very open science.
Thus, our aim in this paper is to launch some ideas on how to quantify habitability
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in the spirit of this II International Conference on BioGeoSciences (BG-17): from
the small molecular—cellular scales to the enormous astrobiological-cosmological
ones.

We work with the hypothesis that the current level of knowledge of mankind
allows generalizations concerning life in the Universe. So, accepting the principle
of world’s material unity (the most basic laws of Nature, formulated by physics and
chemistry, are valid in the whole observed Universe, which is supported by a wide
set of astrophysical observations), I propose a conceptual model for abiogenesis
(life origin)-biogenesis (life evolution), in principle valid for the entire observed
Universe. From [2, 3] the main ingredients of this model can be inferred, i.e., life
needs:

(1) Biogenic chemical elements (for instance, CHON in Earth): the chemical
(mineral) aspect of life;

(2) A liquid medium (solvent) for the biogenic elements properly mix to form
biomolecules (water on Earth): the mixing (kinetic) aspect of life;

(3) An energy source for the above-mentioned mix proceeds at a proper speed, to
keep low entropy and to perform work (light for photosynthesis, redox
chemical energy for chemosynthesis): the energetic (thermodynamic) aspect of
life;

(4) An appropriate physicochemical environment allowing formed biological
molecules to persist, for instance; adequate temperature range, radiational
regime, etc., the physicochemical aspect of life.

Rocky planetary bodies (either planets or satellites) are the places in the
Universe in which above-mentioned premises are more likely to be fulfilled. It is
very difficult to infer when they first formed, some authors saying that around 1-
2 Gy after the Big Bang were necessary, while others state that 10—17 million could
have been enough [4].

2 The Quantification of Habitability

The main postulate of the (astrobiological) quantitative habitability theory [5] states
that habitability indexes HI can be constructed as a product of environmental
functions fi({x;}) which depend on sets of environmental variables {x;}:

HI = ﬁm}) (1)

Typically, an HI is normalized so that it ranges between 0 (dead environment)
and 1 (optimum for life). A crucial fact is that a properly devised HI can be used to
assess the net primary productivity NPP (rate at which non-living matter transforms
into living matter) of an environment:
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NPP = HI - NPPppx )

where NPP,,, is the maximum NPP.

Relating the main postulate of quantitative habitability theory with the con-
ceptual model for abiogenesis—biogenesis, a generic habitability index can be
written as:

HI = fyfiffoc (3)

where fy, fx. fe, and fpc are functions representing the mineral, kinetic, energetic,
and physicochemical aspects of life, respectively. For each of these aspects, we
have used several functions, some devised by other authors, some devised by us.
However, in order to build an HI, as in every model of Nature, we just include the
functions of those variables which limit habitability; otherwise, the model could be
untreatable from the mathematical point of view. For instance, an HI for a terrestrial
ecosystem can include a function of the solvent water f{H,O), but in an aquatic
ecosystem water is not limiting but optimum, which allows to disregard this
function or, more properly, to set f{lH,O) = 1. Another issue is to consider the
interactions (feedbacks) between variables.

2.1 The Aquatic Primary Habitability Index

Using the methodology of the former section, we investigated the (primary) hab-
itability of aquatic ecosystems. It is usually acknowledged that the main environ-
mental variables controlling life in these ecosystems are light, nutrients,
temperature, and salinity. Then, we propose an HI for aquatic environments without
salt stress, the Aquatic Primary Habitability (APH):

APH = f(L)f(N)f(T) (4)

where f(L), fiN), and f(T) are functions of light, limiting nutrient, and temperature,
respectively. Particular versions of this index are:

APH; = f(L)f(T) (5)
and
APHy = f(L)f(N) (6)

The index represented in Eq. (5) was applied to environments where light, rather
than nutrients, is a limiting variable [6]. Common examples are rocky planets and
satellites orbiting red dwarfs, stars with a light emission much smaller than emis-
sion of solar-type stars.
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The index represented by Eq. (6) was applied to Ana Maria Gulf, a Cuban gulf
of importance for tourism and fisheries [7]. The function of light was inspired in the
E model for photosynthesis [8]:

P(z) _ 1—exp(—Epar(z)/Es)
Ps 1+ Efy(2)

()

where P(z) and Pg are the photosynthesis rates at depth z and the maximum pos-
sible, respectively. Epar(z) and Ejj(z) are the irradiances of photosynthetically
active radiation (PAR) and ultraviolet radiation (UV) at depth z, respectively.
Spectral UV irradiances are convolved with a biological action spectrum weighting
the inhibitory effect on photosynthesis of each wavelength, which is indicated by
the asterisk. Eg is a parameter of photosynthetic efficiency: the smaller its value, the
greater the efficiency of the species to use PAR. Photosynthesis rates are
depth-dependent, so the actual f{L) we use in the aquatic habitability indexes pre-
sented above is an average in all the photic zone normalized respect to the optimum

- ().

The calculation of the optimum average was presented in Cardenas et al. [6]. The
function on nutrients used in Eq. (6) was inspired in an eutrophication index [7, 9].

2.2 A Chemosynthetic Habitability Index

To devise a chemosynthetic habitability index (QHI), we propose to substitute the
light function f{iL) in APH by a function of the chemical energy f(Q), which
chemoautotrophic organisms are able to use:

QHI = f(Q)f (N)A(T) ©)

The form of the chemical function f{Q) can be inspired by suggested analogies
between photosynthesis and chemosynthesis, as can be seen in Figs. 3 and 4 by
Shock and Holland [1]. Ignoring the (still undetected) last stage of chemoinhibition
in above-mentioned Fig. 4, we suggest, by analogy with the non-inhibitory part of
the E model for photosynthesis, the following chemical function [10, 11]:

fQ) =1-e (10)

where [ is the chemical energy per unit area and per unit time that the chemoau-
totrophic organism receives, and ¢ is a parameter of chemosynthetic efficiency.
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The function of nutrients f{N) is inspired in the well-known Michaelis—Menten
kinetics (normalizing respect to its maximum value):

_ Vmax [LN]/(KM + [LN])

f(N) fmax (N)

(11)

where [LN] stands for the concentration of limiting nutrient, v, is the maximum
assimilation rate of the limiting nutrient, and Ky, is the semi-saturation constant
known as Michaelis constant.

As a function of temperature f(T), we take an inverted parabola symmetric
respect to the optimum temperature for life Ty [12]:

To — T \°
f(T) =1~ (ﬁ) (12)

3 Case Studies

We have applied habitability indexes to several scenarios, which can be divided
into extraterrestrial, of Earth’s geological history, current Earth and Cuban context.
In Chap. 8 of these proceedings, the reader can find a detailed application of our
Aquatic Primary Habitability to the Gulf of Ana Maria in Cuba, a
photosynthesis-based ecosystem. Thus, in this chapter we present the application to
a chemosynthesis-based ecosystem: the black smoker TY, located at 2.3 km depth
in the East Pacific Ridge. Hydrothermal vents can host very dynamic ecosystems,
mostly supported by chemosynthesis, although low levels of photosynthesis from
geothermal photons have been reported by Perez et al. [13] and Das et al. [14].
Typically, the reaction which most contributes to chemosynthesis is the oxidation
of hydrogen sulfide:

H,S +20, — SO; +2H* (13)

in which the limiting reactant is dioxygen. This is an extremely rich source of
energy for chemoautotrophs, releasing a free energy:

AG = 794 kJ/mol (14)

To calculate I, we considered that the geometry of the hydrothermal fluid or
effluent is a plane and that the reactants diffuse from it to both right and left
directions in imaginary planes parallel to the hydrothermal fluid plane. Then, the
Fick law was used to calculate the fluxes ¢ of dioxygen:
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(15)

where D is the diffusion coefficient of dioxygen, [O,] is its concentration, and x is
the distance from the hydrothermal fluid plane. The intensity / is found from:

I = oAG (16)

For the calculation of f{Q), it was assumed a null concentration of dioxygen in
the vent and a constant increase up to 5.0 mg/mol at 2.5 m from it. It was also
considered the dependence on temperature of the diffusion coefficient D. For the
calculation of the temperature function f{T), it was assumed that the optimum
temperature for living organisms is 298 K (25 °C), while for the calculation of the
nutrients function f{iV) we considered the wide range of variation of nitrogen
concentration [N] in hydrothermal vents: 10, 100, and 1000 pmol/L. Then, the
chemosynthetic habitability index (QHI) was calculated, and Figs. 1, 2, and 3 show
the results.

From all three plots, we see that chemosynthetic habitability is highly sensitive
to temperature and to the parameter of chemosynthetic efficiency ¢, while it shows
little sensitivity to the concentration of nitrogen (limiting nutrient). However, it
should be noticed that the value taken for the Michaelis constant Ky; for the
evaluation of the function of nutrients is one reported for a generic phytoplankton
organism [15], given the scarcity of corresponding data for chemoautotrophs.

We have presented a first habitability index for chemosynthesis-based ecosys-
tems, specifically for chemoautotrophy-based ones. The index has the spirit of
quantitative habitability from an astrobiological perspective. Its mathematical form
can be considered quite general, although some refinements can be done. Its
application to a case study, hydrothermal vents, showed high sensitivity of
chemoautotrophic life to temperature and to the parameter g, which characterizes
the efficiency with which chemical energy is used by the chemoautotrophs. Scarcity

100
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Fig. 1 Chemosynthetic habitability versus temperature for [N] = 10 pmol/L
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of data for these organisms still limits the refinement and applications of the index,
especially in the deep biosphere. We hope that ongoing and planned expeditions
involving deep sea and continental crust drilling will improve this situation.

On another hand, using Eq. (2) it is possible to estimate parameters, such as net
primary productivity, for both photosynthesis- or chemosynthesis-based ecosys-
tems. It is also possible to embed these parameters into greater ecological models,
making a clear connection between the astrobiological and ecological approaches of
quantitative habitability. In Chap. 8 of this book, an explicit example is presented.

4 Conclusions

In this chapter, we outlined a methodology to quantify habitability. It incorporates
ideas from the astrobiological school, specifically quantitative habitability theory; to
devise habitability indexes valid either for photosynthesis-based ecosystems or for
chemoautotrophy-based ones. Applications to cases studies are presented or men-
tioned. It is also suggested to embed the parameters calculated using habitability
indexes into ecological models of trophic levels. This also shows the applicability
of quantitative habitability theory to spatial-temporal scales typical in ecological
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studies, showing a useful bridge between astrobiology and ecology. In forthcoming
publications, refinements of this methodology will be presented, as well as its
applications to case studies.
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The Dynamical Systems Approach M)
to Modeling: The Universe ki
as a Case Study

Ailier Rivero-Acosta®, Adrian Linares-Rodriguez
and Carlos R. Fadragas

Abstract The acceleration of the expansion of the Universe, as it is indicated by
observations of redshift of light coming from supernovas, anisotropies of cosmo-
logical microwave background radiation, and the large-scale structure of the
Universe, defines one of the most interesting theoretical problems that is facing the
modern cosmology. The aim of this work is to show the analysis of the idea that
inflation and dark energy are two subjects closely related, that is, both equivalents
to the fundamental scalar field known as the standard model Higgs field. We
considered that there exist non-trivial solutions with non-minimal coupling of the
Cosmological Higgs Field to gravity. For this condition, an attractive cosmological
model was derived. Results from applying the dynamical stability analysis show
that the current accelerated expansion of the Universe is one of several possibilities.
The future behavior of the Universe could seriously affect the existence of particles
and structures that we are made of. For that reason, it is important to do some
comments on this idea.

Keywords Cosmological Higgs Field - Dynamical systems - Accelerated
expansion

1 Introduction

The acceleration of the expansion of the late Universe, as it is indicated by
observations [1-6], defines one of the deepest theoretical problems that is facing
modern cosmology. In July 2012 was announced the observation of the Higgs
boson at the CERN. Then, it is a very stimulating task to build a cosmological
model that includes the Cosmological Higgs Field non-minimally coupled to
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gravity and to study the viability of that model in a Friedmann—Robertson—Walker
(FRW) Universe for describing the current acceleration of the expansion of the
Universe.

The Cosmological Higgs Field (CHF) is expected to exist in our Universe. This
field is related to the mechanism which creates inertial mass of particles known as
the Brout-Englert-Higgs mechanism [7, 8].

In the last decades, the Higgs field has been used to explain the inflationary stage
of the Universe for some authors [9, 10] and it is being considered as a possibility to
describe the unknown agent called “dark energy” [11], which is assumed to be the
responsibility of the current accelerated expansion of the Universe.

Although we are not going to focus on this direction, it is necessary to talk about
another important aspect where the CHF has a great significance. As we said before,
the CHF is related to the mechanism which gives mass to subatomic particles. If
particles would not have mass, the gravitational interaction between them could not
be possible. Therefore, the formation of structures in the Universe would not be
possible, so the Universe as we know it today would not exist, and as a result, life
would not exist. Another aspect that could also change radically the face of our
world is the evolution of our Universe.

In the next section, we present the construction of our model. In Sect. 3, we
show the dynamical analysis of the model. In Sect. 4, we discuss the results of our
analysis. Finally, we conclude in Sect. 5 with some remarks.

2 Construction of the Model with the Higgs Field
in a Cosmological Background

As we suggested in the previous section, the Cosmological Higgs Field (CHF) fills
the entire Universe. In the present work, we represented the CHF as described by a
singlet with a U(1) symmetry which is given by:

(1) = %w)e""@ (1)

where ¢(r) and 0(¢) are real-valued functions of time corresponding to the
amplitude and phase of the CHF, respectively. Equations of the model are derived
by the traditional way considering the Lagrangian formalism. The Friedmann
equations read:

k
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The Klein—Gordon equations, for amplitude function ¢(#) and for phase function
0(r), are shown as follows:

. . .
b +3Hp — $0 +%_o (4)
b4300 - 220 _ g (5)

The energy conservation equation is written as follows:

p+3yHp =0 (6)

The self-interaction potential V(¢) [7, 11] is written as follows:

y 2
V(g)=54' - 97+ € ™)

Next, we elaborated the model equations in order to realize the analysis of
stability from the viewpoint of the dynamical system theory. Introducing the new
variables z = (f) and w = 0, and taking k = 1, the dynamical Eqgs. (2)—(6) of the
model finally take the form:

t=—3Hz+¢w’ — i’ + 1’ (8)
¢ =z )
2
W = —3Hw — =2 (10)
¢
p=—3yHp (11)
. 3y-2 2 W A4 i, €,
H=— -t Zopt-L —_H 12
6 373 TR 63 (12)

3 Dynamical Analysis of the Model

Now, the dynamical system technique is applied to analyze the dynamics of the
CHF and its cosmological implications (see [12—15]).

Equations obtained above (8)—(12) represent a system of first-order ordinary
differential equations. Time variable does not appear explicitly at the right-hand side
of these equations and then one says that they represent an autonomous dynamical
system. The polynomial type of the self-interacting potential considered here leads to
have no advantage by introducing the usual Hubble-normalized variables.
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3.1 Determination of the Critical Points

The vector field (8)-(12) of the state space has the components [z, ¢, w, p, H|. The
critical points can be found if the right-hand side of each equation of the system
equals zero, and they are given in Table 1.

Table 1 Critical points of the equations system and their existence
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3.2 Determination of the Eigenvalues for Each
Critical Point

To be able to make the stability analysis of each critical point, one needs to
determine the eigenvalues of the matrix of the linearization of the system (8)—(12)
and evaluate the matrix at that critical point. The procedure is as follows. The
system (8)—(12) must be moved to each critical point, at each time. Next, applying
the perturbation technique around each critical point, we can investigate the
behavior of the system around that critical point. After the origin of the differential
equations is moved to the critical point considered, the linearization method is
applied, and the corresponding Jacobian matrix is transformed to the Jordan
canonical form. The procedure above must be applied to each critical point. In each
case, the set of five eigenvalues corresponding to a given critical point is determined
and then we will try to describe the behavior of the dynamics around that critical
point. It will be made in the following step. In Table 2, the set of five eigenvalues
for eight of the critical points is shown.

The nature of these eigenvalues determines the behavior of the dynamical system
near the critical point considered. When the critical point is hyperbolic, we can
apply the Hartman—Grobman theorem (see [4]).

3.3 Small Description of the Critical Points

The system (8)—(12) exhibits the set of critical points labeled Py, P, ..., Pis. The
critical points Py, P,, P53, Ps, P13, P14, P15, and Pjg have a null value for the
parameter H corresponding this situation to a static Universe. The points P4 and P
exhibit a negative value for the coordinate H corresponding this case to a con-
tracting Universe. On the other hand, critical points Ps, and Pg exhibit a positive
value for the coordinate H corresponding to an expanding Universe. For all the
critical points given in Table 1, the value of coordinate z always equals zero which
indicates that the “translational” kinetic energy is zero.

The coordinate ¢ can take different values, and these values may be of four types
(see Table 1): a negative value for the critical points Ps, P4, and Ps, a positive value
for the critical points Pg, P, and Pg, a different negative value for the points P53 and
P4, and a different positive value for the points Pis5 and P;s. Two values for
coordinate ¢ correspond to points in the graphical behavior of the self-interacting
potential V(¢) versus ¢ where the function exhibits extreme values. For ¢ = i%,

the function V(¢) has a minimum. In Table 1 are displayed the location and
existence conditions of these critical points, and V(¢) and some basic observables
are given in Table 3.

The critical points P4, Ps, P;, and Pg exist for the condition 4 € 1> u4. This
condition corresponds to a nonnegative value of the self-interacting potential V(¢);
that is, V(¢) always will be nonnegative for these critical points. The points P3 and
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