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Preface

This work will introduce the wave equations in higher dimensions at an advanced
level addressing students of physics, mathematics and chemistry. The aim is to put
the mathematical and physical concepts and techniques like the wave equations,
group theory, generalized hypervirial theorem, the Levinson theorem, exact and
proper quantization rules related to the higher dimensions at the reader’s disposal.
For this purpose, we attempt to provide a comprehensive description of the wave
equations including the non-relativistic Schrödinger equation, relativistic Dirac and
Klein-Gordon equations in higher dimensions and their wide applications in quan-
tum mechanics which complements the traditional coverage found in the existing
quantum mechanics textbooks. Related to this field are the quantum mechanics and
group theory. In fact, the author’s driving force has been his desire to provide a
comprehensive review volume that includes some new and significant results about
the wave equations in higher dimensions drawn from the teaching and research ex-
perience of the author since the literature is inundated with scattered articles in this
field and to pave the reader’s way into this territory as rapidly as possible. We have
made the effort to present the clear and understandable derivations and include the
necessary mathematical steps so that the intelligent and diligent reader is able to fol-
low the text with relative ease, in particular, when mathematically difficult material
is presented. The author also embraces enthusiastically the potential of the LaTeX
typesetting language to enrich the presentation of the formulas as to make the log-
ical pattern behind the mathematics more transparent. In addition, any suggestions
and criticism to improve the text are most welcome. It should be pointed out that
the main effort to follow the text and master the material is left to the reader even
though this book makes an effort to serve the reader as much as was possible for the
author.

This book starts out in Chap. 1 with a comprehensive review for the wave equa-
tions in higher dimensions and builds on this to introduce in Chap. 2 the fundamen-
tal theory about the SO(N ) group to be used in the successive Chaps. 3–5 includ-
ing the non-relativistic Schrödinger equation, relativistic Dirac and Klein-Gordon
equations. As important applications in non-relativistic quantum mechanics, from
Chap. 6 to Chap. 12, we shall apply the theories proposed in Part II to study some
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important quantum systems such as the harmonic oscillator, Coulomb potential, the
Levinson theorem, generalized hypervirial theorem, exact and proper quantization
rules and Langer modification, the Schrödinger equation with position-dependent
mass and others. We shall illustrate two important applications in relativistic Dirac
and Klein-Gordon equations with the Coulomb potential in Chaps. 13 and 14. As
crucial generalized applications of Dirac equation in higher dimensions, we shall
study the Levinson theorem, generalized hypervirial theorem and Kaluza-Klein the-
ory in Chaps. 15–17. Some conclusions and outlooks are given in Chap. 18. Some
useful reference materials such as group theory, group representations, fundamental
properties of Lie groups and Lie algebras, the angular momentum theory and the
confluent hypergeometric functions are sketched in Appendices A–E.

This book is in a stage of continuing development, various chapters, e.g., on
the quantum gravity, on the Kaluza-Klein theory, on the supersymmetry and string
theory, on the high dimensional brane will be added to the extent that the respective
topics expand. At the present stage, however, the work presented for such topics
should be complete enough to serve the reader.

This book shall give the theoretical physicists and researchers a fresh outlook
and new ways of handling some important and interesting quantum systems in sev-
eral branches of physics. This book can be used by graduate students and young
researchers in physics, especially theoretical and mathematical physics. It is also
suitable for some graduate students in theoretical chemistry.

Shi-Hai DongMexico city, Mexico
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Chapter 1
Introduction

1 Basic Review

The exact solutions of wave equations with a spherically symmetric potential have
become an important subject in quantum mechanics [1–6]. It should be noticed that
many works along this line have been carried out in the usual three dimensional
space. However, what extra dimensions could there possibly be if we never see
them? It turns out that we do not really know yet how many dimensions our world
has. Nevertheless, all that our current observations tell us is that the world around
us is at least (3 + 1) dimensional space-time as illustrated in general relativity.

The idea of extra dimensions has a rich history, dating back at least as far as
the middle of 1910s and earlier 1920s when the Nordstrom-Kaluza-Klein theory1—
usually named as the Kaluza-Klein theory—was proposed [8–11]. This theory is a
physical model that seeks to unify two fundamental forces of gravitation and electro-
magnetism. More precisely, the idea of additional spatial dimensions is from string
theory, the only self-consistent quantum theory of gravity so far. For a consistent
description of gravity, scientist needs more than (3 + 1) dimensions, and the world
could have up to 11 or more spatial dimensions. The reason why we do not feel these
additional spatial dimensions in our life is because they are very different from the

1The theory was first proposed by the Finnish physicist Gunnar Nordström in 1914. Before Ein-
stein’s general relativity theory was presented, Nordström proposed a relativistic theory for grav-
ity. He unified his gravity theory with Maxwell’s electromagnetism through introducing a 5-vector
gauge field where the first four components are identified with Maxwell’s vector potential Aμ

and the 5th component with the scalar gravity field. After that in 1919 a German mathematician
Theodor Kaluza performed similar calculations but with Einstein’s gravity theory and Maxwell’s
electromagnetism. In terms of a circular extra dimension Kaluza obtained a 4-dimensional action
from a 5-dimensional one. The 4-action contained a graviton, an Abelian gauge boson identified
as the photon and a scalar field that Kaluza put to be constant. The resulting equations can be sep-
arated out into further sets of equations, one of which is equivalent to Einstein’s field equations,
another set equivalent to Maxwell’s equations for electromagnetic field and the final part an extra
scalar field now termed the “radian”. In 1926, it was Swedish physicist Oskar Klein who focused
on the resulting higher modes of the particles and the size of the extra dimension [7].
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three dimensions. It is possible that our world is “pinned” to a three-dimensional
so-called brane located in a higher dimensional space. We could be restrained to a
usual three-dimensional world, which is in fact a part of a more complicated multi-
dimensional universe.2 Perhaps, we could feel these extra dimensions through their
effect on gravity. While the forces such as the electromagnetic, weak, and strong in-
teractions that hold our world together are constrained to the (3+1) dimensions, the
gravitational interaction always occupies the entire universe, thus allowing it to feel
the effects of extra dimensions. Unfortunately, since gravity is a very weak force
and the radius of extra dimensions is tiny and as large as 1 mm so that the gravi-
tational interaction between them becomes very weak. Until now, no evidence for
extra dimensions was found from the high-energy particle accelerators experiments,
but we cannot say that they do not exist at all. The search for extra dimensions is
not over yet. On the contrary, it has only just started. Scientists have been look-
ing for the effects of extra dimensions in collisions that produce different types of
particles, such as quarks and searching events where gravitons are produced in the
collisions and then leave our three-dimensional world, traveling off into one of the
other dimensions [12].

We have noticed that almost all works about higher dimensional wave equations
addressed the generalized orbit angular momentum [13–15], in which Louck stud-
ied the harmonic oscillator potential as an exactly solvable model. In fact, such a
generalization should go back to the earlier works by Appel, Fock, Bargmann, Som-
merfeld et al. [16–19], the notes left by Bateman edited by Erdélyi in 1950s [20] and
others [21]. Most of them paid more attention to the harmonic oscillator [13–15,
22, 23] than hydrogen atom [24–29]. Following Louck’s work, de Broglie and his
collaborators [30] proposed the generating bases as the hyperspherical harmonics to
analyze the higher dimensional harmonic oscillator and molecular vibration. They
considered the rotator model of elementary particles as relativistic extended struc-
tures in Minkowski space under the assumption that elementary particles are not
pointlike, but are rather, extended structures in Minkowski space. Two years later,
Granzow presented orthogonal polar coordinate systems in N dimensional space
and showed explicit representations for total orbital angular momentum operator
[31]. He also proved that the transformation from polar coordinates to Cartesian
ones has a unique form xn = Rf n(θ), n ∈ Z; θ = (θ1, θ2, . . . , θN−1), where xn

could be interpreted as the wavefunction in quantum system. Based on the gener-
alized orbital angular momentum theory, Bergmann and Frishman established the
relation between the hydrogen atom and multidimensional harmonic oscillator by
performing simple transformations on wave equations and wavefunctions [32]. Fol-
lowing this, Čížek and Paldus presented a relation between them for the special
case of even dimensions [33]. Kostelecky, Nieto and Truax obtained a more general

2This is just like an insect crawling on a sheet of paper. For this insect, the universe is pretty
much two-dimensional since it cannot leave the surface of that paper. As a result, the insect only
knows the surface, but up and down does not make any sense as long as it has to stay on the sheet
of that paper. These extra spatial dimensions, if they really exist, are thought to be curled-up, or
“compactified”.
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mapping for arbitrary d and even D that involves a free parameter along with the
corresponding mappings to the supersymmetric partners of these systems [34], in
which they adopted the results about the D-dimensional oscillator with spin-orbit
coupling obtained by Balantekin [35]. One decade later, Kostelecky and his collab-
orator Russell restudied this topic, but following the supersymmetry-based quantum
defect theory [36]. Among the special cases is an injection from bound states of the
three-dimensional radial Coulomb system into a three-dimensional radial isotropic
oscillator where one of two systems has an analytical quantum defect. Also, they
considered the issue of mapping the continuum states [36]. It should be pointed out
that most of contributions about the relationship between the hydrogen atom and
harmonic oscillator in D dimensions are based on the transformation of the radial
equations.

Closely related to this, however, Zeng, Su and Li have made use of algebraic
method, i.e., an su(1,1) algebra as a bridge to establish a most general and simplest
relationship between their energy levels and eigenstates [37]. Similar to this, Lévai,
Kónya and Papp proposed a unified su(1,1) algebraic treatment to the Coulomb and
harmonic oscillator potentials in D dimensions by using Green’s operator calculated
from a Hilbert basis and the generalized Coulomb-Sturmian basis [38]. Except for
these relations, it is noticed that there exist the degeneracies between the hydrogen
atom and harmonic oscillator. For example, Shea and Aravind studied the degen-
eracies of the spherical well, harmonic oscillator and hydrogen atom in arbitrary
dimensions from the view point of group theory [39]. In a similar way, Jafarizadeh,
Kirchberg and their coauthors investigated the degeneracies of the Coulomb poten-
tial in higher dimensions d by using the irreducible representations of the group
SO(d + 1) [40, 41]. The reason why the harmonic oscillator and hydrogen atom
are taken as typically soluble models is because their study represents an interesting
field of mathematical physics in itself, but more importantly results from them are
essential for the description of realistic physical problems.

Obviously, there are no more essential advances on the higher dimensional wave
equations in 1970s. On the contrary, the study on this field has revived and attracted
much attention to many authors in 1980s, e.g., the eigenvalues of the Schrödinger
equation for spherically symmetric states for various types of potentials in N dimen-
sions by using perturbative and non-perturbative methods [42], the 1/N expansion
technique for the Schrödinger equation [43–53], the generalized D-dimensional os-
cillator [54]. It should be noticed that the special case about the 1/N method was
extended by Papp [55], who dealt with the q-deformed radial Schrödinger equa-
tion in N dimensions through the underlying SO(N) group realized in Refs. [56,
57] and opened a new way to derive q-deformed 1/N -energy formulas for arbitrary
spherically symmetrical potentials such as the harmonic oscillator and the Coulomb
potential.

Except for these, the higher dimensional Schrödinger equation are also concerned
with the following scattered fields such as the position and momentum informa-
tion entropies of the D-dimensional harmonic oscillator and hydrogen atom [58],
the Fermi pseudo-potential in arbitrary dimensions [59], the uncertainty relation
for Fisher information of D-dimensional single-particle systems with central po-
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tentials [60], the dimensional expansion for the Ising limit of quantum field the-
ory [61], the scalar Casimir effect for an N -dimensional sphere [62], the multidi-
mensional extension of a WKB improvement for the spherical quantum billiard zeta
functions [63], the study of bound states in continuous D dimensions [64], the sup-
persymmetry and relationship between a class of singular potentials in arbitrary di-
mensions [65], the bound states and resonances for “sombrero” potential in arbitrary
dimensions [66], the renormalization of the inverse squared potential in D dimen-
sions [67], the generalized coherent states for the d-dimensional Coulomb prob-
lem [68], the quantum particles trapped in a position-dependent mass barrier [69,
70], the harmonic oscillator in arbitrary dimensions with minimal length uncertainty
relations [71], the stable hydrogen atom in higher dimensions [72], the relation be-
tween dimension and angular momentum for radially symmetric potential in D-
dimensional space [73], the D-dimensional hydrogenic systems in position and mo-
mentum spaces [74], the first-order intertwining operators and position-dependent
mass Schrödinger equation in d dimensions [75], intertwined isospectral potentials
in arbitrary dimensions [76], convergent iterative solutions for a sombrero-shaped
potential in any space dimension and arbitrary angular momentum [77].

On the other hand, a number of contributions related to the higher dimensional
Schrödinger equation have been carried out in atomic physics. For example, Hosoya
investigated the hierarchical structure of the set of atomic orbital wavefunctions of
D-dimensional atoms by using the set of their rectangular coordinate expressions
[78]. In terms of group theory Dunn and Watson developed a formalism for the N

electron D-dimensional Schwartz expansion and applied it to study the Schrödinger
equation for two-electron system [79, 80]. However, their method seems rather com-
plicated. To overcome the difficulty occurred in [79, 80], Ma and his coauthors made
use of the group theory method [81] to develop a different formalism to separate the
D-dimensional rotational degrees of freedom from the internal degrees of freedom.
They have studied quantum three-body system [82], interdimensional degeneracies
for quantum three-body and N -body systems [83, 84], the quantum four-body sys-
tem [85] and the D-dimensional helium atom [86].

As illustrated above, we find that most of contributions have been made to
higher dimensional Schrödinger equation. In comparison with the non-relativistic
Schrödinger equation case, undoubtedly the studies of relativistic Dirac and Klein-
Gordon equations in higher dimensions seem less than those in the Schrödinger
equation case. Nevertheless, there are considerable works appearing in the liter-
ature. For example, Nieto dealt with the hydrogen atom in arbitrary dimensions D

and particularly studied the Klein-Gordon equation case [87]. This might be the ear-
liest contribution to the generalized Klein-Gordon equation, to our best knowledge.
In fact, such a generalization can be easily achieved from the Schrödinger equa-
tion since the same Laplacian is involved for both equations. On the other hand,
Joseph made a great contribution to self-adjoint ladder operators [88–90], in partic-
ular he applied this method to study the solutions of the generalized angular momen-
tum problem. This revealed many interesting aspects of this approach to eigenvalue
problems and specially its relationship to the addition of angular momentum. In that
work, he obtained a complete set of irreducible unitary representations of the under-
lying algebra so(n) and calculated the corresponding Clebsch-Gordon coefficients
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(CGCs) for the addition of spin and angular momentum in arbitrary dimensions.
Without doubt, this shall provide some useful preliminaries including the spin al-
gebra and Dirac operators to study the Dirac equation in higher dimensions [91],
which was derived by using the fundamental properties of symmetry group SO(N ).
Unfortunately, we have not recognized his work [88–90] before our study [91]. In
the middle of 1980s, Bollini and Giambiagi extended the Wess-Zumino model to
higher dimensions, which led to a generalized Klein-Gordon equation [92]. In terms
of the 1/N expansion technique, the relativistic Dirac and Klein-Gordon equations
were performed [93–98]. Lin carried out the path integration of a relativistic parti-
cle on an N -dimensional sphere [99]. Recently, we have studied the Klein-Gordon
equation with a Coulomb potential in N dimensions by traditional approach [100].
Others related to the Klein-Gordon equation with the Kratzer and pseudoharmonic
potential potentials as well as the comparison theorems for the Klein-Gordon equa-
tion [101–103] have also been studied.

For solvable higher dimensional wave equations, since the energy levels depend
on the dimension N and then bound state energy levels in different dimensions
would be of interest. With this spirit we have studied the effect of dimension N on
the energy levels for some interesting and important quantum systems. For exam-
ple, we have dealt with the higher dimensional Klein-Gordon equation case [100],
the Dirac equation with a Coulomb potential [104], the D-dimensional relativistic
equations with a Coulomb plus a scalar potential [105, 106], the D-dimensional
Schrödinger equation with the pseudoharmonic potential and the Coulomb plus an
inverse squared potential [107, 108]. On the other hand, we have established the
Levinson theorem3 for the Schrödinger equation and Dirac equation in N dimen-
sions [111, 112] and obtained the generalized hypervirial theorem [113, 114].

One of the reasons why the higher dimensional theories have attracted much
attention to many authors is that the higher dimensional theories allow us to re-
duce enormous amounts of information into a concise, elegant fashion that unifies
the two great theories of the 20th century: Quantum Theory and Relativity. It is
evident to show that the contributions mentioned above are made within the frame-
work of quantum theory. Consequently, it is necessary to review the development
of the relativity and gravity in higher dimensional wave equations for complete-
ness. For example, based on our recent work [91] Lin studied the Friedel sum
rule, the Levinson theorem and the Atiyah-Singer index [115, 116]. Such method
was also generalized to quantum modes of the scalar field on AdSd+1 space-time
[117] as well as geometric models of the (d + 1)-dimensional relativistic rotating
oscillators [118]. More importantly, it should be noted that the generalization of
the Dirac equation to higher dimensions might shed light on the solution of the
Kaluza-Klein theory in higher dimensions if the extra dimensions are space-like.
This theory has become a focus of attention for many particle physicists in past
several decades. Its revival stems from the work on the string theory and also from

3It was first proposed by Levinson in 1949 [109] and reviewed by Ma [110]. The Levinson theorem
establishes the relation between the number of the bound states and the phase shift of the scattering
states at the zero momentum.
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Fig. 1.1 The relations among the SO(N ) group, central fields, non-relativistic and relativistic
equations

the supergravity theory. Until now, the study of gravity theory and other relevant
fields has become a main and interesting topic. These contributions can be summa-
rized as follows: the brane models [119], scalar field contribution to rotating black
hole entropy [120], brane cosmology [121], N -dimensional Vaidya metric with a
cosmological constant in double-null coordinates [122], the spherical gravitational
collapse in N dimensions [123], the motion of a dipole in a cosmic string back-
ground [124], repulsive Casimir effect from extra dimensions and Robin boundary
conditions [125], extremal black hole/CFT correspondence in gauged supergravity
[126], massive fermion emission from higher dimensional black holes [127], mag-
netic and electric black holes [128], fermion families from two layer warped extra
dimensions [129], quasinormal behavior of the D-dimensional Schwarzschild black
hole [130], the study of the Schrödinger-Newton equations in D dimensions [131],
rotating Einstein-Maxwell-Dilaton black holes in D dimensions [132], the Kaluza-
Klein theory in the limit of large number of extra dimensions [133], gauge invari-
ance of the one-loop effective potential in (d + 1)-dimensional Kaluza-Klein theory
[134] and the multicentered solution for maximally charged dilaton black holes in
arbitrary dimensions [135].

Heretofore, it should be emphasized that the symmetry group SO(N ) for the sym-
metrically central fields plays an important role in higher dimensional wave equa-
tions. Therefore, we shall outline this group in next Chapter. The relations among
those related topics are shown in Fig. 1.1.

2 Motivations and Aims

The motivations of this work are as follows. Since the literature related to this field
is inundated with scattered articles on this topic we try to give a comprehensive re-
view of the wave equations in higher dimensions and their wide-spread applications
in quantum mechanics, which shall fill the gap in the existing quantum mechanics
textbooks. In particular, we attempt to make use of fundamental properties of the



2 Motivations and Aims 9

rotational group SO(N) to study the higher dimensional wave equations with sym-
metrically central fields. In this book, we are going to put the mathematical and
physical concepts at the reader’s disposal and to pave the reader’s way into this
territory as rapidly as possible.
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