Matthias Finkbeiner Editor

Towards Life Cycle Sustainability Management

Towards Life Cycle Sustainability Management

Matthias Finkbeiner Editor

Towards Life Cycle Sustainability Management

Editor Prof. Dr. Matthias Finkbeiner Chair of Sustainable Engineering Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany matthias.finkbeiner@tu-berlin.de

ISBN 978-94-007-1898-2 e-ISBN 978-94-007-1899-9 DOI 10.1007/978-94-007-1899-9 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2011933605

© Springer Science+Business Media B.V. 2011

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Table of Contents

Pre	eface x	i
Lis	t of Figuresxv	7
Lis	t of Tablesxxv	7
Lis	t of Contributorsxxx	i
PA	RT I: LCSM Approaches	
1.	Integrating Sustainability Considerations into Product Development: A Practical Tool for Prioritising Social Sustainability Indicators and Experiences from Real Case Application	3
2.	A Life Cycle Stakeholder Management Framework for Enhanced Collaboration Between Stakeholders with Competing Interests	5
3.	Stakeholder Consultation: What do Decision Makers in Public Policy and Industry Want to Know Regarding Abiotic Resource Use?	7
4.	Life Cycle Management Capability: An Alternative Approach to Sustainability Assessment	
5.	The Sustainability Consortium: A Stakeholder Approach to Improve Consumer Product Sustainability	3
6.	A Social Hotspot Database for Acquiring Greater Visibility in Product Supply Chains: Overview and Application to Orange Juice	3

PART II: LCM Methods and Tools

7.	A Novel Weighting Method in LCIA and its Application in Chinese Policy Context	. 65
8.	The Usefulness of an Actor's Perspective in LCA Henrikke Baumann, Johanna Berlin, Birgit Brunklaus, Mathias Lindkvist, Birger Löfgren, and Anne-Marie Tillman	. 73
9.	Review on Land Use Considerations in Life Cycle Assessment: Methodological Perspectives for Marine Ecosystems Juliette Langlois, Arnaud Hélias, Jean-Philippe Delgenès and Jean-Philippe Steyer	. 85
10.	Visual Accounting Andreas Moeller and Martina Prox	. 97
11.	International Reference Life Cycle Data System (ILCD) Handbook: Review Schemes for Life Cycle Assessment Kirana Chomkhamsri, Marc-Andree Wolf and Rana Pant	107
12.	Time and Life Cycle Assessment: How to Take Time into Account in the Inventory Step? Pierre Collet, Arnaud Hélias, Laurent Lardon and Jean-Philippe Steyer	119
13.	A Method of Prospective Technological Assessment of Nanotechnological Techniques Michael Steinfeldt	131
14.	State of the Art Study - How is Environmental Performance Measured for Buildings/Constructions? Anne Rønning and Kari-Anne Lyng	141

PART III: Water Footprint

15.	Comparison of Water Footprint for Industrial Products in Japan, China and USA	155
	Sadataka Horie, Ichiro Daigo, Yasunari Matsuno and Yoshihiro Adachi	
16.	Assessment of the Water Footprint of Wheat in Mexico Carole Farell, Sylvie Turpin and Nydia Suppen	161
17.	Water Footprints in Four Selected Breweries in Nigeria Ife K. Adewumi, Oludare J. Oyebode, Kingsley C. Igbokwe and Olutobi G. Aluko	171

18.	Development and Application of a Water Footprint Metric for Agricultural Products and the Food Industry Bradley Ridoutt	. 183
19.	LCA Characterisation of Freshwater Use on Human Health and Through Compensation Anne-Marie Boulay, Cecile Bulle, Louise Deschênes and Manuele Margni	. 193
PA	RT IV: LCM of Processes and Organisations	
20.	How to Measure and Manage the Life Cycle Greenhouse Gas Impact of a Global Multinational Company Nicole Unger, Henry King and Siri Calvert	. 207
21.	Best Practice Application of LCM by Retailers to Improve Product Supply Chain Sustainability David Styles, Harald Schoenberger and José Luis Galvez-Martos	. 217
22.	Life Cycle Management Approach to the Design of Large-Scale Resorts Kristin Lee Brown, Daniel Clayton Greer and Ben Schwegler	. 229
23.	Greening Events: Waste Reduction Through the Integration of Life Cycle Management into Event Organisation at ESCi Marta Anglada Roig, Sonia Bautista Ortiz and Pere Fullana i Palmer	. 239
24.	Challenges for LCAs of Complex Systems: The Case of a Large-Scale Precious Metal Refinery Plant Anna Stamp, Christina E.M. Meskers, Markus Reimer, Patrick Wäger, Hans-Jörg Althaus and Roland W. Scholz	. 247
25.	Life Cycle Inventory of Pine and Eucalyptus Cellulose Production in Chile: Effect of Process Modifications Patricia González, Mabel Vega and Claudio Zaror	. 259
26.	Life Cycle Assessment of Integrated Solid Waste Management System of Delhi Amitabh Kumar Srivastava and Arvind Kumar Nema	. 267
27.	LCM of Rainwater Harvesting Systems in Emerging Neighbourhoods in Colombia Tito Morales-Pinzón, Sara Angrill, Joan Rieradevall, Xavier Gabarrell, Carles M. Gasol and Alejandro Josa	. 277

PART V: LCM in the Agriculture and Food Sectors

28.	Environmental Profiles of Farm Types in Switzerland Based on LCA Daniel U. Baumgartner, Johanna Mieleitner, Martina Alig and Gérard Gaillard	291
29.	The Use of Models to Account for the Variability of Agricultural Data Brigitte Langevin, Laurent Lardon and Claudine Basset-Mens	. 301
30.	Modular Extrapolation Approach for Crop LCA MEXALCA: Global Warming Potential of Different Crops and its Relationship to the Yield	. 309
	Thomas Nemecek, Karin Weiler, Katharina Plassmann, Julian Schnetzer, Gérard Gaillard, Donna Jefferies, Tirma García–Suárez, Henry King and Llorenç Milà i Canals	
31.	Regional Assessment of Waste Flow Eco-Synergy in Food Production: Using Compost and Polluted Ground Water in Mediterranean Horticulture Crops Julia Martínez-Blanco, Pere Muñoz, Joan Rieradevall, Juan I Montero and Assumpció Antón	.319
32.	Assessing Management Influence on Environmental Impacts Under Uncertainty: A Case Study of Paddy Rice Production in Japan Kiyotada Hayashi	. 331
33.	Assessing Environmental Sustainability of Different Apple Supply Chains in Northern Italy Alessandro K. Cerutti, Daniela Galizia, Sander Bruun, Gabriella M. Mellano, Gabriele L. Beccaro and Giancarlo Bounous	. 341
34.	The Effect of CO ₂ Information Labelling for the Pork Produced with Feed Made from Food Residuals Hideaki Kurishima, Tatsuo Hishinuma and Yutaka Genchi	. 349
PA	RT VI: LCM in the Packaging Sector	
35.	Role of Packaging in LCA of Food Products	.359

	Frans Silvenius, Juha-Matti Katajajuuri, Kaisa Grönman, Risto Soukka Heta-Kaisa Koivupuro and Yrjö Virtanen	
36.	Packaging Legislation and Unintended Consequences: A Case Study on the Necessity of Life Cycle Management	371
	James Michael Martinez	

37.	Carbon Footprint of Beverage Packaging in the United Kingdom Haruna Gujba and Adisa Azapagic	381
38.	Enhanced Resource Efficiency with Packaging Steel Evelyne Frauman and Norbert Hatscher	391
39.	Damage Assessment Model for Freshwater Consumption and a Case Study on PET Bottle Production Applied New Technology for Water Footprint Reduction Masaharu Motoshita, Norihiro Itsubo, Kiyotaka Tahara and Atsushi Inaba	399

PART VII: LCM in the Energy Sector

40.	Sustainability Assessment of Biomass Utilisation in East Asian Countries
41.	Life Cycle Inventory of Physic Nut Biodiesel: Comparison Between the Manual and Mechanised Agricultural Production Systems Practiced in Brazil
42.	Life Cycle Assessment of Biodiesel Production from Microalgae Oil: Effect of Algae Species and Cultivation System
43.	Modelling the Inventory of Hydropower Plants
44.	Life Cycle Carbon Dioxide Emission and Stock of Domestic Wood Resources using Material Flow Analysis and Life Cycle Assessment
45.	Analysis on Correlation Relationship Between Life Cycle Greenhouse Gas Emission and Life Cycle Cost of Electricity Generation System for Energy Resources
46.	Development and Application of a LCA Model for Coal Conversion Products (Coal to Y)

PART VIII: LCM in the Electronics and ICT Sectors

47.	European LCA Standardisation of ICT: Equipment, Networks, and Services Anders S.G. Andrae	483
48.	Product Carbon Footprint (PCF) Assessment of a Dell OptiPlex 780 Desktop – Results and Recommendations Markus Stutz	495
49.	State of the Art in Life Cycle Assessment of Laptops and Remaining Challenges on the Component Level: The Case of Integrated Circuits Ran Liu, Siddharth Prakash, Karsten Schischke, Lutz Stobbe	501
50.	The Concept of Monitoring of LCM Results Based on Refrigerators Case Study Przemyslaw Kurczewski and Krzysztof Koper	513
51.	Life Cycle Management of F-Gas-Free Refrigeration Technology: The Case of F-Gases-Free Frozen Dessert Equipment Francesca Cappellaro, Grazia Barberio and Paolo Masoni	523
PA	RT IX: LCM in the Mobility Sector	
52.	Assessment of the Environmental Impacts of Electric Vehicle Concepts Michael Held and Michael Baumann	535
53.	A Consistency Analysis of LCA Based Communication and Stakeholders Needs to Improve the Dialogue on New Electric Vehicle Stephane Morel, Tatiana Reyes and Adeline Darmon	547
54.	Design for Environment and Environmental Certificate at Mercedes-Benz Cars Klaus Ruhland, Rüdiger Hoffmann, Halil Cetiner and Bruno Stark	557
55.	Implementing Life Cycle Engineering Efficiently into Automotive Industry Processes	567
56.	Environmental Product Declaration of a Commuter Train Kathy Reimann, Sara Paulsson, Yannos Wikström and Saemundur Weaving	579
Ind	lex	587

Preface

Towards Life Cycle Sustainability Management

The global society has undergone a paradigm shift from environmental protection towards sustainability. Sustainability does not only focus on the environmental impact, it rather consists of the three dimensions "environment", "economy" and "social well-being", for which society needs to find a balance or even an optimum. Sustainability has become mainstream these days. It is accepted by all stakeholders - be it multinational companies, governments or NGOs. Unfortunately, this common understanding merely relates to the general concept rather than actions. But lip service is not enough to achieve a sustainable development of our societies. If we want to make sustainability happen as concrete reality in both public policy making and corporate strategies, sustainability cannot please everybody. To make it happen, we have to be able to discern good and evil. This requires that we are able to address the question, how sustainability performance can be measured, especially for companies, products and processes. We have to be smart enough to be able to measure it or the real and substantial implementation of the sustainability concept will remain just wishful thinking.

In order to achieve reliable and robust sustainability assessment results it is inevitable that the principles of comprehensiveness and life cycle perspective are applied. The life cycle perspective considers for products all life cycle stages and for organisations the complete supply or value chains, from raw material extraction and acquisition, through energy and material production and manufacturing, to use and end of life treatment and final disposal. Through such a systematic overview and perspective, the unintentional shifting of environmental burdens, economic benefits and social well-being between life cycle stages or individual processes can be identified and possibly avoided. Another important principle is comprehensiveness, because it considers "all" attributes or aspects of environmental, economic and social performance and interventions. By considering all attributes and aspects within one assessment in a cross-media and multidimensional perspective, potential trade-offs can be identified and assessed.

This is where life cycle assessment (LCA) and life cycle management (LCM) come into play. LCA is the internationally accepted method for measuring environmental performance and LCM is in a nutshell about the application of LCA or rather life cycle thinking (LCT). It is still a relatively young concept in the environmental community with pioneering work done by a Working Group of the Society of Environmental Toxicology and Chemistry (SETAC) at the end of the last century. At that time, my definition of LCM was "a comprehensive approach towards

product and organisation related environmental management tools that follow a life cycle perspective." The United Nations Environment Programme (UNEP) and SETAC later launched the Life Cycle Initiative to enable users around the world to put life cycle thinking into effective practice and introduced LCM as one of their areas of work.

While the measurement of the environmental dimension of sustainability with LCA is well established, similar approaches were developed more recently for the economic (life cycle costing – LCC) and the social (social LCA – SLCA) dimensions of sustainability. This development is crucial, because it fosters the opportunity for life cycle based sustainability assessments. Walter Klöpffer put this idea into the conceptual formula:

LCSA	= LCA + LCC + SLCA
LCSA	= Life Cycle Sustainability Assessment
LCA	= Environmental Life Cycle Assessment
LCC	= Life Cycle Costing
SLCA	= Social Life Cycle Assessment

Even though there is definitely still room to improve and expand the implementation of LCA as part of an environmental LCM approach, I believe the time has come to expand the concept to include the other pillars of sustainability in a more explicit way. This is reflected in our choice of the title of this book "Towards Life Cycle Sustainability Management". Life Cycle Sustainability Management or LCSM is the implementation of life cycle based sustainability assessment or LCSA into real world decision making processes, be it on the product, process or organisation level. In a nutshell, LCSM aims at maximising the triple bottom line (3BL) and is based on LCSA as one key element of a broader toolbox:

LCSM = f(LCSA) = max(3BL)

This book is a selection of the most relevant contributions to the LCM 2011 conference in Berlin. The Life Cycle Management conference series is established as one of the leading events worldwide in the field of environmental, economic and social sustainability. The unique feature of LCM is practical solutions for the implementation of life cycle approaches into strategic and operational decision-making. The 2011 conference motto "Towards Life Cycle Sustainability Management" was chosen to address and to focus on the implementation challenge of sustainability as outlined above. In total, 414 abstracts representing more than 1100 authors from 47 countries were submitted.

Because of the excellent overall quality of the contributions it was quite a challenge to select the 56 papers for this book. They are structured in nine Parts. The first four Parts focus on the more general, methodological topics. Part I

addresses general LCSM approaches that go beyond the more traditional LCM methods and tools which are covered in Part II. Part III deals with water footprinting as specific and emerging topic. LCM applications for processes and organisations are the content of Part IV. The remaining five Parts deal with the implementation of LCM approaches in relevant industrial sectors, namely the agriculture and food sectors (Part V), the packaging sector (Part VI), the energy sector (Part VII), the electronics and ICT sectors (Part VIII) and the mobility sector (Part IX).

The authors of this volume come from 29 countries including Africa, Asia, Europe and the Americas. They represent the developed and the developing world as well as a variety of stakeholders from multinational companies, academia, NGOs to public policy. I am very grateful for their excellent and timely contributions.

In addition to the core contribution of the authors this book was only possible due to the efforts of many colleagues and friends. I am very grateful for the support of the co-chair of the LCM 2011 conference, Stephan Krinke, and all members of the scientific committee: Carina Alles, Emmanuelle Aoustin, Pankaj Bhatia, Clare Broadbent, Andrea Brown Smatlan, Maurizio Cellura, Roland Clift, Mary Ann Curran, Ichiro Daigo, James Fava, Jeppe Frydendal, Pere Fullana, Gerard Gaillard, Mark Goedkoop, Minako Hara, Michael Hauschild, Jens Hesselbach, Arpad Horvath, Atsushi Inaba, Allan Astrup Jensen, Anne Johnson, Juha Kaila, Gregory Keoleian, Henry King, Walter Klöpffer, Annette Koehler, Paolo Masoni, Yasunari Matsuno, Llorenc Mila i Canals, Nils Nissen, Philippa Notten, Erwin Ostermann, Rana Pant, Claus Stig Pedersen, Gerald Rebitzer, Helmut Rechberger, Klaus Ruhland, Günther Seliger, Guido Sonnemann, Nydia Suppen, Ladji Tikana, Sonia Valdivia, Paul Vaughan and Harro von Blottnitz. Their efforts in soliciting and selecting the right mix of contributions were extremely valuable.

I particularly like to thank my Sustainable Engineering group at TU Berlin for all their support. Special thanks have to go to the core editing team consisting of Annekatrin Lehmann, Laura Schneider and Marzia Traverso for their generous commitment on top of their regular duties. I also like to acknowledge the technical support of Robert Ackermann, Adrian Caesar and Martina Creutzfeldt.

Last, but not least, sincere thanks to my family for their courtesy and patience.

Berlin Prof. Dr. Matthias Finkbeiner

List of Figures

Chapte Fig. 1:	er 2 Framework for sustainability stakeholder management in a LCSM context	23
Chapte Fig. 1:	er 3 Example of a post-it used for the inventory of decision contexts	29
Chapte Fig. 1:	er 4 Example assessment questionnaire for LCM capability	39
Chapte Fig. 1: Fig. 2:	er 5 Component relationships and their users How sustainability performance drivers (SPDs) and indicators create product specific declarations	47 48
Chapte Fig. 1: Fig. 2: Fig. 3:	Flow chart for the decision maker analysis of an SKF roller bearing Environmental impacts related to different actors To left: Distribution of CO ₂ e emissions for production of one bearing unit (reformulated dominance analysis) - To right: Distribution of CO ₂ e emissions for manufacturing of one bearing unit at SKF	75 76
Fig. 4:	System boundaries when relating environmental consequences to an	. 77
Fig. 5:	actor's manufacturing processes	78
Fig. 6:	Environmental impacts of actors in the buildings chain depending on their choice.	81
Chapte Fig. 1:	er 9 Representation of land use impacts due to transformation and Occupation processes	87
Chapte	er 10	
Fig. 1: Fig. 2: Fig. 3:	Material flow cost accounting software prototype Visualisation of life cycle phases within the flow chart editor Charts and tables as flow chart editor elements	102 103 103

Fig. 1:	Life cycle thinking and assessment - coherence and quality-assurance support for EU SCP/SIP policies 108
Fig. 2:	ILCD handbook guidance documents
Fig. 3:	Scoring system for eligible reviewers/review teams and for qualification
•	as a potential member of a review team
Fig. 4:	LCA reviewer self-registry application
Chapte	er 12
Fig. 1:	Main steps of the introduction of time in the LCI
Fig. 2:	Overview of the system of biodiesel production from rapeseed. For the sake of clarity agricultural machines are not described. An example
D ¹ 0	is given for the tractor
Fig. 3:	Selection of the couples {process, emission}
Chapte	er 13
Fig. 1:	Comparison of the cumulative energy requirements for various carbon nanoparticle manufacturing processes [MJ-equivalents/kg material]
Fig. 2:	Comparison of the cumulative energy requirements for the production of various conventional and nanoscaled materials and components
Fig. 3:	Comparison of the global warming potential for the production of various conventional and nanoscaled materials $[CO_2e/kg \text{ product}] \dots 137$
Chapte	er 14
Fig. 1:	Life cycle phases of a building
Chapte	er 15
Fig. 1:	The WF for iron and steel industry in Japan, China and the U.S
Fig. 2:	The WF for a passenger car in Japan, China and the U.S
Chapte	er 18
Fig. 1:	Distribution of global freshwater withdrawals by local water stress index (WSI)
Fig. 2:	Comparison of water use inventory (L) and water use impact (L H_2O-e) results 185
Fig 3.	Example of farm water balance model 190
Fig. 4:	Proposed impact pathway relating land use to human health

Fig. 1:	Impact assessment of water use - for midpoint level and endpoint level	. 195
Fig. 2:	Process and water use impacts from compensation and on human health from deprivation for the production of 1 ton of corrugated board in the region of Cape Town in South Africa.	.202
Chapte	er 20	
Fig. 1:	The main pillars and structure of the Unilever Sustainable Living Plan	208
Fig. 2:	Schematic flow showing the step of greenhouse gas baseline measurement process	.211
Fig. 3:	Example of schematic outline of system boundaries for the food Model	211
Fig. 4:	Greenhouse gas footprint breakdown according to life cycle stages for the Unilever portfolio for 2008 measured in 14 countries, based	
	on approximately 1,600 representative products	.212
Fig. 5:	Greenhouse gas footprint breakdown according to product category for the Unilever portfolio for 2008 measured in 14 countries, based	
	on approximately 1,600 representative products	.212
Chante	er 21	
Fig. 1:	Proposed sequence of key questions and actions representing best practice for systematic supply chain improvement, classified as prerequisites or one of two strategies	225
Fig. 2:	Retailer control points (R) for hotspots within the value chain of cotton	. 220
8	textiles	.227
Chant		
Fig. 1.	Concentual process man for evaluating and implementing sustainable	
1 lg. 1.	design solutions (SDS) within WDPR	235
Chapte	er 23	
Fig. 1:	Number and type of one-day events held at ESCi during the academic	
E' 0	years 2008–2009, 2009–2010 and 2010–2011	.242
Fig. 2:	Waste generation by person and event type	.243
Chapte	er 24	
Fig. 1:	The Hoboken metal refinery system	.249
Fig. 2:	Schematic view on one sub-process	253
Fig. 3:	Results for material flow data from 2009.	.255

Fig. 1:	Present waste flow in the study area	.269
Fig. 2:	Fluctuation of waste quantities in Delhi	270
Fig. 3:	System boundary for the present study	273
	27	
Chapte		202
Fig. 1:	Global warming potential behaviour based on RWH	.282
F1g. 2:	Relationship between storage volume and RWH.	.283
F1g. 3:	Proportion of total environmental impacts and contribution of the	
	systems urban for 15m ⁻ built ⁻ storage volume and 11,856 m ⁻ year ⁻	204
Ein A.	OF KWH potential	. 284
F1g. 4:	Proportion of total environmental impacts and contribution of the systems unly for $85m^3$ huilt ⁻¹ storage values and $2.806m^3$ year ⁻¹ of	
	BWH notontial	205
Fig 5.	Relationship between storage volume and GWP (100a) of household	. 203
1 lg. <i>J</i> .	water consumption	286
	water consumption	. 280
Chapte	er 28	
Fig. 1:	Energy demand per ha UAA (utilised agricultural area) for different	
•	farm types	.295
Fig. 2:	Environmental profiles for the 3 functions land management,	
	productive function and financial function for different farm types	. 297
	20	
Chapte	er 29	
F1g. 1:	Nitrogen losses and associated environmental impacts (plain lines:	202
E: 0	direct emissions, dashed lines: indirect emissions)	. 302
F1g. 2:	Distribution of NH_3 and N_2O emissions expressed as relative factors	204
Eia 2.	of band spreading emissions	205
Fig. 5: Fig. 4 :	Distribution of NIL omissions for the slurry application techniques	206
Fig. 4.	Simulated density functions and ranges of relative factors calculated	. 300
rig. <i>3</i> .	from the literature review for NH ₂ and N ₂ O	306
		. 500
Chapte	er 30	

- Fig. 1: Worldwide means of the global warming potential per ha and growing season of 27 crops weighted by production volumes, showing the season of 27 crops weighted by production volumes, showing the contribution of the modules and the potential effects of deforestation.312

Fig. 3:	Worldwide means of GWPs of 27 crops per ha weighted by production volumes and per kg as a function of the yield.	.314
Fig. 4:	Global warming potential of wheat per ha and per kg as a function of the yield for all producing countries with a share $>0.1\%$ of the	
Fig. 5:	worldwide production volume. Global warming potential of pea per ha and per kg as a function of the yield for all producing countries with a share $>0.1\%$ of the worldwide production volume	.315
		. 510
Chapte	er 31	222
Fig. 1:	Nitrogen demand from the Catalan horticulture sector	. 323
F1g. 2:	the first year from OFMSW composted. (b) Potential nitrogen available	224
Eig 2.	Irom ground water irrigation	. 324
Fig. 3. Fig. 4:	Contribution of the three sources of nutrients to the total demand of nutrients of Catalan horticulture sector in the eco-synergy	. 323
	scenario	.326
Fig. 5:	Global warming savings for the eco-synergy scenario	.327
Chante	er 32	
Fig. 1:	Difference in mean CO ₂ emissions between direct seeding and transplanting	. 337
Chapte	er 33	
Fig. 1:	System boundary and modelling of the apple production phase. Dotted box refers to processes that differ according to the three scenarios	. 343
Fig. 2:	Schematic description of transport channels for the considered supply	
	chains	. 344
Fig. 3:	Hotspot analysis for the three supply chains	. 345
Fig. 4:	Normalised impact assessment for 1 kg of Golden Delicious produced	
D ' 7	in Piedmont, at the end of three main supply chain scenarios	. 346
F1g. 5:	Weighted results (EDIP method 1997) presented as the sum of the	
	A, B and C	. 346
C1		
Chapte Eige 1	er 34	251
Fig. 1:	Exemplary questionnaire sneet	252
$r_{1g. 2}$	Fourt-or-putchase (FOF) advertising 1001	. 333
1'1g. 5.	residuals	355
	105144415	. 555

Fig. 1:	The carbon footprint of ham system divided in four phases: Waste management, packaging production, production chain of ham and
	unnecessary production of ham due household waste
Fig. 2:	The share of package production, production chain of product loss and waste management of the carbon footprint of dark bread packaging system other parts of production chain of bread excluded 366
Fig. 3:	The share of package production, production chain of product loss and waste management of the carbon footprint of ham packaging
	system, other parts of production chain of ham excluded
F1g. 4:	The product loss, package production chain and waste management in different waste management scenarios in soygurt-case
Chapte	er 36
Fig. 1:	Energy usage required in the manufacture of 16oz. hot cups
Fig. 2:	Air emissions generated in the manufacture of 16oz. hot cups
Fig. 3:	Waterborne emissions generated in the manufacture of 16oz. hot cups 376
Fig. 4:	Greenhouse gas emissions generated in the manufacture of 16oz.
	hot cups
Fig. 5:	Solid waste (by weight) for 16oz. hot cups
Fig. 6:	Solid waste (by volume) for 16oz. hot cups
Chapte	er 37
Fig. 1:	System boundary for the beverage packaging
Fig. 2:	Carbon footprint of milk packaging
Fig. 3:	Carbon footprint of juice packaging
Fig. 4:	Carbon footprint of water packaging
Fig. 5:	Carbon footprint of beer and wine packaging
Chapte	er 38
Fig. 1:	EU 27 recycling rates in 2008 for different packaging materials
Fig. 2:	Evolution of EU 27 recycling rates and equivalent reduction
U	in indice of CO ₂ emissions (from 1991 to 2008)
Fig. 3:	Development of weights of some standard steel packing in Europe
Fig. 4:	Development of CO ₂ emissions of some standard steel packing
•	in Europe
Chapte	er 39
Fig. 1:	Schematic diagram of assessment flow on human health damage due
-	to domestic water scarcity
Fig. 2:	Schematic diagram of assessment flow on human health damage due
	to agricultural water scarcity

Fig. 3:	Distribution map of integrated damage factors of each country404
Fig. 4:	The rate of damage on each endpoint for countries with the high- ranking rate of human health damage due to domestic water scarcity 404
Fig. 5:	The rate of damage on each endpoint for countries with the high-
Fig. 6:	ranking rate of social asset damage due to agricultural water scarcity405 System boundary of the assessment
Fig. 7:	The input amount of freshwater in each life stage
Fig. 8:	The amount of consumptive water in each stage of both systems
Fig 9.	With advanced and conventional filling technologies
8	related to PET bottle production system with advanced filling
D ¹ 10	technology in representative countries
F1g. 10	Distribution map of the contribution rate of freshwater savings
	impact in each country
Chapte	er 40
Fig. 1:	Location of four pilot studies with different feedstocks for biomass energy
~	
Chapte	er 42 Diagram of the production of hisdiagel from Nannachlopping agaitang 420
Fig. 1. Fig. 2:	GHG emissions of processes for biodiesel production from Microalgae 440
Fig. 3:	Energy consumption and NER values of processes for biodiesel
	production from microalgae
Chapte	er 43
Fig. 1:	Comparison of MAEs for different estimators
Chapte	er 44
Fig. 1:	Forest sector mitigation strategies need to be assessed with regard to
	their impacts on carbon storage in forest ecosystems on sustainable harvest rates and on net GHG emissions across all sectors 454
Fig. 2:	Life-cycle greenhouse gas emission of wooden and concrete house 456
Chapte	er 45
Fig. 1:	Cost of electricity generation for energy resources per 1 kWh462
Fig. 2:	GHG emission of electricity generation for energy resources per 1 k Wh462
1 1g. J.	resources and correlation between GHG emissions and cost

Fig. 1:	System limits of Coal-to-MeOH route	474
Fig. 2:	GHG emissions for 5 CTY products	476
Fig. 3:	Methanol from coal vs. conventional fuels	478
Chapte	er 47	
Fig. 1:	Standardised result for ICT Equipment: laptops	489
Fig. 2:	Standardised result for ICT networks: FTTH	490
Fig. 3:	Standardised result for ICT Services: Video conferences	491
Chapte	er 48	
Fig. 1:	Dell OptiPlex 780 desktops; Mini Tower is at far left	496
Fig. 2:	Total product carbon footprint [kg CO ₂ e] of the OptiPlex 780 Mini	108
	Tower in the 05, Europe and Australia	490
Chapte	er 49	
Fig. 1:	Global warming potential (GWP) of laptops in the manufacturing stage	502
Chapte	er 50	
Fig. 1:	Comparison of LCA/LCC results for different variants of the analysed refrigerator	521
Chapte	er 51	
Fig. 1:	Comparative environmental impact assessment between R-404a and CO ₂ -based ice-cream machines	529
Chante	er 52	
Fig 1.	Global warming potential of the production and use of EVs and CVs	538
Fig 2	Acidification potential of the production and use of EVs and CVs	539
Fig. 3:	GWP of the production and use of EVs and CVs (scenario 2020)	541
Fig. 4:	AP of the production and use of EVs and CVs (scenario 2020)	541
Fig. 5:	GWP of a mini-class BEV in city use, low mileage	543
Fig. 6:	GWP of a mini-class BEV in city use, high mileage	543
Chapte	er 53	
Fig. 1:	Mapping of countries according to the HDI and EPI (ecosystem	

0	11 0	e	· · · · · · · · · · · · · · · · · · ·	2	
	vitality) indexes				549
Fig. 2:	LCA communica	tion strategy wheel for each	"eco-maturity"	level	554

Fig. 1:	Process design for environment and brochure environmental certificate	. 558
Fig. 2:	Comparison of carbon dioxide emissions - S 400 HYBRID vs. S 350	
	[t/car]	560
Fig. 3:	Comparison of selected parameters for the S 400 HYBRID and S 350	. 561
Fig. 4:	Comparison of selected material and energy sources [unit/car]	562
Fig. 5:	Recycling concept of the S 400 HYBRID	563
Fig. 6:	Use of recycled materials in the S-Class	564
Fig. 7:	Use of renewable raw materials in the S-Class	565

Chapter 55

Fig. 1:	Environmental strategy Volkswagen Group	569
Fig. 2:	Environmental management at Volkswagen	570
Fig. 3:	Lightweight design and environmental break-even	574
Fig. 4:	Environmentally friendly lightweight design, aspects and measures .	575
Fig. 5:	Well-to-Wheel analysis of power trains and fuel options	576
-		

Fig. 1:	Material composition of the studied train based on production
	and maintenance
Fig. 2:	Comparison of emissions of CO2e for different modes of transport 585
Fig. 3:	Contribution of life cycle phases to POCP for the studied train

List of Tables

Tab. 1:	Social sustainability indicators used in the case application and final scores.	8
Chapte	er 3	
Tab. 1:	Participants of stakeholder consultation process on the AoP resource	28
Tab. 2:	Results of decision contexts	29
Chapte	er 4	
Tab. 1:	Results for literature search on key words (number of citations)	36
Tab. 2:	LCM capability maturity model	37
Chapte	er 6	
Tab. 1:	Top ten sectors by worker hours (WH) for total, skilled, and unskilled workforce for the production of orange juice (OJ) in the United States	-
T 1 0	(XAC = South Central Africa Region)	58
Tab. 2:	Highest exporting countries for the materials used in orange juice production	59
Tab. 3:	Country-specific sectors (CSS) most at risk for social hotspots to be present based on the supply chain of orange juice	60
Chapte	er 7	
Tab. 1:	Original political targets and the comparable targets after adjustment	67
Tab. 2:	Primary dataset of three processes and data sources	68
Tab. 3:	LCI/LCIA results and ECER score	69
Tab. 4:	Contribution analysis of three processes in terms of ECER score	69
Tab. 5:	Normalised weighting factors of the three methods for Chinese ECER targets	71
Chapte	er 9	
Tab. 1:	Impacts of marine activities on marine ecosystem layers	92
Chapte	er 10	
Tab. 1:	Dictionary within the meta data repository	101

Tab. 1:	Example for minimum review requirements of each LCA work for ILCD system based on stakeholder involvement, and technical
	knowledge of the audience
Tab. 2:	Draft overview of methods used for review
Chapte	r 12
Tab. 1:	Time scales associated with the impacts
Tab. 2:	Materials fluxes required to construct the agricultural machines
Tab. 3:	Results
Chapte	r 13
Tab. 1:	Overview of studies of published LCAs of the manufacture of nanoparticles and nanocomponents
Chapte	r 15
Tab. 1:	Comparison of data sources and estimation methods in the three countries
Tab. 2:	The WF for crude steel and the amount of crude steel production in Japan and China
Tab. 3:	Total amount of water withdrawal for upstream life cycle until producing crude steel in Japan and China
Chapte	r 16
Tab. 1:	Water footprint of irrigated wheat in Mexico (period: 2004-2009) 166
Tab. 2:	Studies on water footprint of wheat in Mexico
Chapte	r 17
Tab. 1:	Water footprint in Lagos and Ilesa breweries
Tab. 2:	Water footprint in Ama and Ibadan Plants of Nigeria Breweries Plc 175
Tab. 3:	Beer losses during production in Lagos NB Plc and Ilesa Breweries
	Plc
Tab. 4:	Beer losses during production in Ama and Ibadan NB Breweries Plc 177
Tab. 5:	Potential economic savings at Lagos and Ilesa breweries
Tab. 6:	Potential economic savings at Ama and Ibadan breweries
Tab. 7:	The average water, electricity and black oil consumption in the breweries179
Chante	r 18
Tab. 1	Water balance (kg per day) for a 1 year-old steer in Bathurst (33°25' S
- 40. 1.	149°34' E) in July (winter) compared to Walgett (30°1' S, 148°7' E) in January (summer)
Tab 2.	Variation in area of rice and cotton under irritation in Australia
1 av. 2.	(000 ba) 100
	(000 lia)

Tab. 1:	Water category sample	. 195
Tab. 2:	Midpoint indexes $(m^3 - eq./m^3)$ water withdrawn/released) and resulting	
	water stress indicators (WSI, in m ³ -eq) for a process withdrawing	
	100 m ³ of water type S2a and releasing 80m ³ of water S3. in	
	different regions	.201
Chapte	er 21	
Tab. 1:	Proposed classification of widely recognised third party environment-	
	related standards commonly applied to products	.220
Tab. 2:	Front-runner retailer performance across priority food product	
	groups	.222
Tab. 3:	Front-runner retailer performance across priority non-food product	
	groups	. 224
Chante	ar 73	
Tab 1.	Assumptions and empirical data collected per event type	242
140.1.	Assumptions and empirical data concerca per event type	. 272
Chapte	er 24	
Tab. 1:	Metals processed at Hoboken and grade of the product leaving the	
	plant	.250
~		
Chapte	er 25	•
Tab. 1:	Main chemical loads associated to BK cellulose production in Chile	.264
Tab. 2:	Main environmental loads of BK cellulose production in Chile	.265
Chante	or 26	
Tab. 1:	Source wise generation of the MSW (tonnes/day) in Delhi	.270
Tab. 2:	Solid waste composition of Delhi (in %)	.270
Tab. 3:	Details of existing composting plants in Delhi	.271
Tab. 4:	Emissions for ISWM	.274
Chapte	er 27	
Tab. 1:	Population, domestic water consumption and general climatic data	
	for the selected urban areas	.279
Tab. 2:	Estimated parameters of exponential model for each urban area	.282
Tab. 3:	Potential environmental impacts of the RWH system in each urban	
	area and storage volume of 85m ³	. 284
Tab. 4:	Tap water potential environmental impacts avoid	. 284
Chart	Ser 29	
Tab 1.	Cr 20	202
Tab. 1:	Identified subgroups of action for the different form times.	293
1 au. 2.	identified spheres of action for the different farm types	. 270

Chapter 30 Tab. 1: Overview of the modules of MEXALCA	311	
Chapter 32 Tab. 1: Example sources of uncertainty in the simplified LCA of rice	334 335	
Tab. 5: Differences between differe	337	
Chapter 34 Tab. 1: Attributes and standards of conjoint analysis	352 354	
Chapter 35 Tab. 1: The packaging alternatives of the case studies	362 363	
of system (incl. variation between different WM scenarios). 3 Chapter 36 Tab. 1: Summary comparison of environmental effects of 16oz, hot cups. 3	365	
Chapter 37 Tab. 1: Chamatoriation of mills markeding		
Tab. 2: Characteristics of juice packaging	384	
Tab. 3: Characteristics of water packaging 3 Tab. 4: Characteristics of hear and wing packaging 3	384	
Tab. 4. Characteristics of beer and wine packaging	383	
Chapter 38 Tab. 1: EU 27 recycling rates	394	
Chapter 40 Tab. 1: Calculation of HDI4	419	
 Chapter 41 Tab. 1: Main environmental aspects of the life-cycle inventory for the production of physic nut grains – inputs	433 435	

Tab. 1: System characteristics 44	-5
Tab. 2: Properties of the kriging estimator 44	15
1 00	
Chanton 15	
Tab. 1: Summary of life cycle GHG emissions (g CO_2e/kWh) for electricity	
generation for energy resources	53
Tab 2: Summary of life cycle cost (US cent/kWh) for electricity generation	
for onergy resources	2
101 energy resources)3
Chapter 46	
Tab 1: CTY products LHVs and main applications 47	13
Tab 2: Fresh water and primary energy consumption for 5 CTV products	17
Tab. 2. Thesh water and primary energy consumption for 5 CTT products47	
Tab. 3: Preliminary ranking system	1
Chanter 47	
Tab. 1: Example of LCA results for two lentons (49)	6
Tab. 1. Example of ECA festilis for two rapids	50
Tab. 2: Example of LCA results for two FTTH networks	57
Tab. 3: Example of LCA results for three video conference LCAs	38
•	
Chantor 10	
1ab. 1: Silicon wafer, front-end and back-end production per region)4
Tab. 2: Direct energy and material inputs and output of front-end process	
referring to 1 cm^2 good die out)6
Tab 3: Overview on the energy demand of back and process in different	
rab. 5. Overview on the energy demand of back-end process in different	~
sources)/
Tab. 4: Advantage and disadvantage of different reference units)9
Chapter 50	
	7
1 ab. 1: LCM results presentation matrix	. /
Tab. 2: LCA results of analysed refrigerator variants	.9
Tab. 3: LCC results of analysed refrigerator variants	9
Tab 4: Life cycle analysis results for variant 2 51	0
Tab. 4. Ene cycle analysis results for variant 2	
Tab. 5: Life cycle analysis results for variant 3	20
Tab. 6: Life cycle analysis results for variant 4	20
Chanton 51	
Lab. I: Global warming potential and ozone depletion potential of main	
refrigerants	24
Tab 2. Applicability of natural refrigerants to refrigerating and freezing	
aquinmente	6
equipinents	.0