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This book is partially based on a series of lectures I gave during the fall term 2009
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Maurice A. de Gosson

This work is dedicated with all my love to Charlyne,
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Preface

Harmonic analysis is one of the most active and fastest growing parts of both pure
and applied mathematics. It has gone far beyond its primary goal, which was to
study the representation of functions or signals as superpositions of trigonometric
functions (Fourier series). The interest in harmonic analysis has always been great
because of the wealth of its applications, and it plays nowadays a central role in
the study of signal theory and time-frequency analysis. Its interest in pure math-
ematics (especially in functional analysis) has been revived by the introduction of
new functional spaces which are tools of choice for studying regularity properties
of pseudo-differential operators and their applications to mathematical physics.
Methods from symplectic geometry add power and scope to modern harmonic
analysis; historically these methods were perhaps for the first time systematically
used in Folland’s seminal book [59].

The aim of the present book is to give a rigorous and modern treatment of
various objects from harmonic analysis with a strong emphasis on the underlying
symplectic structure (for instance symplectic and metaplectic covariance proper-
ties). More specifically we have in mind two audiences: the time-frequency commu-
nity, and mathematical physicists interested in applications to quantum mechanics.
The concepts and methods are presented in such a way that they should be eas-
ily accessible to students at the upper-undergraduate level (a certain familiarity
with basic Fourier analysis and the elementary theory of distributions is assumed).
Needless to say, this book can also be read with profit by more advanced readers,
and can be used as a reference work by researchers in partial differential equations,
harmonic analysis, and mathematical physics. (Several chapters are part of ongo-
ing research and contain material that is usually not addressed in introductory
texts. For instance Gromov’s non-squeezing theorem from symplectic topology
and its applications, or the theory of phase space pseudodifferential operators.)

Description of the book

This book is divided into parts and chapters, each devoted to a particular topic.
They have been designed in such a way that the material of each chapter can be
covered in a 90 minutes lecture (but this, of course, very much depends on the
student’s background). The parts can be read independently.

xv
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Part I: Symplectic Mechanics

• Chapter 1 is intended to be a review of the main concepts from Hamilto-
nian mechanics; while it can be skipped by the reader wanting to advance
rapidly in the mathematics of harmonic analysis on symplectic spaces, it
is recommended as a reference for a better understanding of the reasons
for which many concepts are introduced. For instance, the Hamiltonian ap-
proach leads to a very natural and “obvious” motivation for consideration
of the Heisenberg–Weyl operators, and of the Weyl pseudo-differential cal-
culus. Also, deformation quantization does not really make sense unless one
understands the mechanical reasons which lie behind it. The main result of
this first chapter is that Hamiltonian flows consist of symplectomorphisms
(the physicist’s canonical transformations). This is proven in detail using an
elementary method, that of the “variational equation” (which is a misnomer,
because there is per se nothing variational in that equation!). We also dis-
cuss other topics, such as Poisson brackets (which is helpful to understand
the first steps of deformation quantization; Hamilton–Jacobi theory is also
briefly discussed).
• In Chapter 2 the basics of the theory of the symplectic group are developed

in a self-contained way. Only an elementary knowledge of linear algebra is re-
quired for understanding of the topics of this chapter; the few parts where we
invoke more sophisticated material such as differential forms can be skipped
by the beginner. A particular emphasis is put on the machinery of free sym-
plectic matrices and their generating functions, which are usually ignored
in first courses. The consideration of this topic simplifies many calculations,
and has the advantage of yielding the easiest approach to the theory of the
metaplectic group. We also discuss classical topics, such as the identification
of the unitary group with a subgroup of the symplectic group.
• In Chapter 3 we refine our study of the symplectic group by introducing the

notion of free symplectic matrix and its generating functions. Free symplectic
matrices can be defined in several different ways. Their importance comes
from the fact that they are in a sense the building blocks of the symplectic
group: every symplectic matrix is the product (in infinitely many ways) of
exactly two free symplectic matrices. This property in turn allows an easy
construction of simple sets of generators for the symplectic group. Last – but
certainly not least! – the notion of free symplectic matrix will be instrumental
for our definition in Chapter 7 of the metaplectic representation.
• In Chapter 4 we discuss the notion of symplectomorphism, which is a gen-

eralization to the non-linear case of the symplectic transformations intro-
duced in the previous chapters. This leads us to define two very interest-
ing groups Symp(2n,R) and Ham(2n,R), respectively the group of all sym-
plectomorphisms, and that of all Hamiltonian symplectomorphisms. These
groups, which are of great interest in current research in symplectic topology,
are non-linear generalizations of the symplectic group Sp(2n,R). The group
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Ham(2n,R) will play an important role in our derivation of Schrödinger’s
equation for arbitrary Hamiltonian functions.
• In Chapter 5 we introduce new and very powerful tools from symplectic

geometry and topology: Gromov’s symplectic non-squeezing theorem, and the
associated notion of symplectic capacity. The importance of these concepts
(which go back to the mid 1980s, and for which Gromov got the Abel Prize in
2009) in applications has probably not yet been fully realized in mathematical
analysis, and even less in mathematical physics.
• In Chapter 6 we address a topic which belongs to both classical and quantum

mechanics, namely uncertainties principles, and we do this from a topological
point of view. We begin by discussing uncertainty principles associated with
a quasi-probability distribution from a quite general point of view (hence
applicable both to the classical and quantum cases), and introduce the asso-
ciated notion of covariance matrix. This enables us to reformulate the strong
version of the uncertainty principle in terms of symplectic capacities. This
approach to both classical and quantum uncertainties is new and due to the
author. It seems to be promising because it allows us to analyze uncertain-
ties which are more general than those usually considered in the literature,
and has led to the definition of “quantum blobs”, which are symplectically
invariant subsets of phase space with minimum symplectic capacity one-half
of Planck’s constant h. We also prove a multi-dimensional Hardy uncertainty
principle, which says that a function and its Fourier transform cannot be
simultaneously dominated by too sharply peaked Gaussians.

Part II: Harmonic Analysis in Symplectic Spaces

• Chapter 7 is devoted to a detailed study of the metaplectic group Mp(2n,R)
as a unitary representation in L2(Rn) of the two-fold covering of the sym-
plectic group Sp(2n,R). The properties of Sp(2n,R), as exposed in Chapters
2 and 3, allow us to identify the generators of the metaplectic group as
“quadratic Fourier transforms”, generalizing the usual Fourier transforms.
We construct with great care the projection (covering) mapping from the
metaplectic group to the symplectic group, having in mind our future appli-
cations to the Wigner transform and the Schrödinger equation. In the forth-
coming chapters we will use systematically the properties of the metaplectic
group, in particular when establishing symplectic/metaplectic covariance for-
mulas in Weyl calculus and the theory of the Wigner transform.
• In Chapter 8 we study two companions, the Heisenberg–Weyl and Gross-

mann–Royer operators. These operators can in a sense be viewed as “quan-
tized” versions of, respectively, translation and reflection operators and are
symplectic Fourier transforms of each other. We also discuss the related no-
tion of Heisenberg group and algebra which play such an important role in
harmonic analysis in phase space; our approach starts with the canonical
commutation relations of quantum mechanics. We also define and briefly dis-
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cuss the affine variant of the metaplectic group, namely the inhomogeneous
metaplectic group AMp(2n,R) which is an extension by the Heisenberg–Weyl
operators of the metaplectic group Mp(2n,R).
• In Chapter 9 we study in great detail various algebraic and functional prop-

erties of the cross-ambiguity and cross-Wigner functions, which are concisely
defined using the Heisenberg–Weyl and Grossmann–Royer operators intro-
duced in the previous chapter. We discuss the relations with the short-time
Fourier transform used in signal and time-frequency analysis. We also prove
a useful inversion formula for the cross-Wigner transform; this formula plays
an important role in the theory of Feichtinger’s modulation spaces which will
be studied later in this book.

Part III: Pseudo-differential Operators and Function Spaces

• In Chapter 10 we present the basics of Weyl calculus, in particular the defini-
tion of the Weyl correspondence which plays such an important role both in
the theory of pseudodifferential operators and in modern quantum mechanics
of which it is one of the pillars. The chapter begins with an introductory sec-
tion where the need for “quantization” is briefly discussed. We prove various
formulas (in particular formulas for the adjoint of a Weyl operator, and that
for the twisted symbol of the composition of two operators).
• In Chapter 11 we take a close look at the notion of coherent states (they are

elementary Gaussian functions); the properties of the metaplectic group al-
low us to give very explicit formulas for their natural extension, the squeezed
coherent states, which play a pivotal role both in harmonic analysis and in
quantum mechanics (especially in the subdiscipline known as quantum op-
tics). This leads us naturally to the consideration of anti-Wick operators (also
called Toeplitz or Berezin operators), of which we give the main properties.
• In Chapter 12 we review two venerable topics from functional analysis: the

theory of Hilbert–Schmidt and the associated theory of trace class operators.
This will allow us to give a precise meaning to the notion of mixed quantum
state in Chapter 13. We discuss in some detail the delicate procedure of cal-
culating the trace. In particular we state and prove a result making legitimate
the integration of the kernel when the operator is a Weyl pseudodifferential
operator.
• In Chapter 13 we give a rigorous definition of the notion of mixed quan-

tum state, and of the associated density operators (called density matri-
ces in quantum mechanics). The relation between density operators and the
Wigner transform is made clear and fully exploited. We discuss the very
delicate notion of positivity for the density operator. This is done by in-
troducing the Kastler–Loupias–Miracle-Sole conditions, which we relate to
the uncertainty principle. We also apply Hardy’s uncertainty principle in its
multi-dimensional form to the characterization of sub-Gaussian mixed states;
the results are stated concisely using the notion of symplectic capacity.
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• Chapter 14 is of a rather technical nature. We introduce Shubin’s global sym-
bol classes, and the associated pseudo-differential operators. Shubin classes
are of a greater use in quantum-mechanics than the ordinary Hörmander
classes because their definition takes into account global properties of poly-
nomial decrease in phase space. We discuss the notion of asymptotic expan-
sion of the symbols, and show that operators which are at first sight much
more general can be reduced to the case of ordinary pseudo-differential oper-
ators. We also study the notion of τ -symbol of a pseudo-differential, and give
formulas allowing one to switch between different values of the parameter τ .

Part IV: Applications

• In Chapter 15 we study a great classic of quantum mechanics, in fact one
of its pillars: Schrödinger’s time-dependent equation. We begin by showing
that this equation can be derived from the theory of the metaplectic group
when associated to a quadratic Hamiltonian function. In the second part of
the chapter we generalize our construction to arbitrary Hamiltonian func-
tions by using Stone’s theorem on strongly continuous one-parameter groups
of unitary operators together with the characteristic property of symplectic
covariance of Weyl pseudo-differential calculus.
• Chapters 16 and 17 are an introduction to Feichtinger’s theory of modula-

tion spaces. The elements ψ of these spaces are functions (or distributions) on
R
n characterized by the property that the cross-Wigner transform W (ψ, φ)

belongs to some weighted Banach space of integrable functions on R
2n for

every “window” φ. The simplest example is provided by the Feichtinger al-
gebra M1(Rn) which is the smallest Banach algebra containing the Schwartz
functions and being invariant under the action of the inhomogeneous group
(Chapter 16). Since Feichtinger’s algebra is a Banach algebra it can be used
with profit as a substitute for the Schwartz space; it allows in particular,
together with its dual, to define a Gelfand triple. Modulation spaces play a
crucial role in time-frequency analysis and in the theory of pseudodifferential
operators. Their importance in quantum mechanics has only been recently
realized, and is being very actively investigated.
• Chapter 18 is an introduction to a new topic, which we have called Bopp

calculus. Bopp operators are pseudodifferential operators of a certain type
acting on phase space functions or distributions. They are associated in a
natural way to the usual Weyl operators by “Bopp quantization rules”, x −→
x + 1

2 i�∂p, p −→ p − 1
2 i�∂x. These rules are often used heuristically by

physicists working in the area of deformation quantization; this chapter gives
a rigorous justification of these manipulations. We note that the theory of
Bopp operators certainly has many applications in pure mathematics and
physics (Schrödinger equation in phase space).
• In Chapter 19 we give a few applications of Bopp calculus. We begin by

studying spectral properties of Bopp operators, which we relate to those of
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the corresponding standard Weyl operators. As an example we derive the en-
ergy levels and eigenfunctions of the magnetic operator (also called Landau
operator). We thereafter show that Bopp pseudodifferential operators allow
one to express deformation quantization in terms of a pseudodifferential the-
ory; this has of course many technical and conceptual advantages since it
allows us to easily prove deep results on “stargenvalues” and “stargenvec-
tors”. The book ends on a beginning: the application of Bopp operators to
an emerging subfield of mathematics called “noncommutative quantum me-
chanics” (NCQM), which has its origins in the quest for quantum gravity.
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Prologue

In this preliminary chapter we introduce some notation and recall basic facts from
linear algebra and vector calculus.

Some notation

Let K = R or C.

• M(m,K) is the algebra of all m×m matrices with entries in K.
• GL(m,K) is the general linear group. It consists of all invertible matrices in
M(m,K).
• SL(m,K) is the special linear group: it is the subgroup of GL(m,K) consisting

of all matrices with determinant equal to 1.
• Sym(m,K) is the vector space of all symmetric matrices in M(m,K); it has

dimension 1
2m(m+1); Sym+(2n,R) is the subset of Sym(m,K) consisting of

the positive definite symmetric matrices.

The elements of R
m should be viewed as column vectors

x =






x1

...
xn






when displayed; for typographic simplicity we will usually write x = (x1, . . . , xn)
in the text. The Euclidean scalar product 〈·, ·〉 and norm | · | on R

m are defined by

x · y = xT y =
m∑

j=1

xjyj .

The gradient operator in the variables x1, . . . , xn will be denoted by

∂x or






∂x1

...
∂xm




 .

xxi
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Let f and g be differentiable functions R
m −→ R

m; in matrix form the chain
rule is

∂x(g ◦ f)(x) = (Df(x))T ∂xf(x) (1)

where Df(x) is the Jacobian matrix of f : if f = (f1, . . . , fm) is a differentiable
mapping R

m −→ R
m then

Df =









∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xm

...
...

. . .
...

∂fm
∂x1

∂fn
∂x2

· · · ∂fm
∂xm









. (2)

Let y = f(x); we will indifferently use the notation Df(x) for the Jacobian matrix
at x. If f is invertible, the inverse function theorem says that

D(f−1)(y) = [Df(x)]−1. (3)

If f : R
m −→ R is a twice continuously differentiable function, its Hessian

calculated at a point x is the symmetric matrix of second derivatives

D2f(x) =










∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2
n










. (4)

Notice that the Jacobian and Hessian matrices are related by the formula

Dx(∂xf)(x) = D2
xf(x). (5)

Also note the following useful formulae:

〈A∂x, ∂x〉 e− 1
2 〈Mx,x〉 = [〈MAMx, x〉 − Tr(AM)] e−

1
2 〈Mx,x〉, (6)

〈Bx, ∂x〉 e− 1
2 〈Mx,x〉 = 〈MBx, x〉 e− 1

2 〈Mx,x〉, (7)

where A, B, and M are symmetric matrices.

The space S(Rn) and its dual S′(Rn)

Very useful classes of functions and distributions are the so-called Schwartz space
S(Rn) and its dual S′(Rn), which is the space of tempered distributions. In our
context they are better adapted than the space C∞

o (Rn) of infinitely differen-
tiable functions with compact support (the latter is not invariant under Fourier
transform).
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Definition 1. The space S(Rn) consists of all infinitely differentiable functions
f : R

n −→ C such that for every pair (α, β) of multi-indices there exists a constant
Cαβ ≥ 0 such that

|xα∂βx f(x)| ≤ Cαβ for x ∈ R
n.

This condition is equivalent to the existence of C′
αβ ≥ 0 such that

|∂βx (xαf)(x)| ≤ C′
αβ for x ∈ R

n.

The proof of the equivalence of the two conditions above is left to the reader;
it readily follows – after some tedious calculations – from Leibniz’s rule for the
derivatives of a product.

Clearly C∞
0 (Rn) ⊂ S(Rn); the archetypical example of a function which

belongs to S(Rn) but not to C∞
0 (Rn) is the Gaussian f(x) = e−|x|2; more generally

the product of a Gaussian by a polynomial is in S(Rn). Note that S(Rn) actually
is an algebra: the product of two elements of S(Rn) is also in S(Rn) (this readily
follows from the chain rule). The formulae

‖f‖(1)αβ = sup
x∈Rn

|xα∂βx f(x)|,

‖f‖(2)αβ = sup
x∈Rn

|∂βx (xαf)(x)|

define equivalent families of semi-norms on S(Rn); one shows that S(Rn) becomes
a Fréchet space for the topology thus defined.

The Fourier transform

Let f : R
n −→ C be an absolutely integrable function

‖f‖L1 =
∫

Rn

|f(x)|dx <∞;

we will write for short f ∈ L1(Rn). By definition the Fourier transform Ff = f̂ is
the function defined by

f̂(ξ) =
(

1
2π

)n/2
∫

Rn

e−iξ·xf(x)dx.

We will use in this book the following variant of the Fourier transform F :

Fψ(x) =
(

1
2π�

)n/2
∫

Rn

e−ix·x
′
ψ(x′)dx′;

here � is a positive parameter, which one identifies in physics with Planck’s con-
stant divided by 2π: � = h/2π (the notation is due to the physicist Dirac). One
proves (Riemann–Lebesgue lemma) that lim|ξ|→∞ f̂(ξ) = 0.
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One of the main properties of the Schwartz space (and of it dual) is that it
is invariant by the Fourier transform:

F : S(Rn) −→ S(Rn),
F : S′(Rn) −→ S′(Rn).

This is in strong contrast with the case of C∞
o (Rn): the only compactly supported

function (or distribution, for that matter) whose Fourier transform is also com-
pactly supported is 0 (this is easily seen if one knows that the Fourier transform
of a compactly supported function is analytic, and can thus never have compact
support).

Proposition 2. The Fourier transforms F : f �−→ f̂ and f �−→ Ff are invertible
automorphisms of S(Rn) which extends by duality into automorphisms of S′(Rn)
defined by

〈f̂ , g〉 = 〈f, ĝ〉 , 〈Ff, g〉 = 〈f, Fg〉
for f ∈ S′(Rn), g ∈ S(Rn). The restriction of these automorphism to L2(Rn) are
unitary.

Proof. Let f ∈ S(Rn); for α, β ∈ N
n we have

ξα∂βξ f̂ = (−i)|α|+|β|∂̂αx xβf ;

since ∂αx x
βf ∈ S(Rn) there exists a constant Cαβ > 0 such that |ξα∂βξ f̂(ξ)| ≤ Cαβ ,

hence f̂ ∈ S(Rn). That the Fourier transform is an invertible automorphism of
S(Rn) follows from the Fourier inversion formula. The two last statements easily
follow from Plancherel’s formula

∫

Rn

f(x)ĝ(x)dx =
∫

Rn

f̂(x)g(x)dx

and their proof is therefore left to the reader. �
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Chapter 1

Hamiltonian Mechanics in a Nutshell

This chapter is an introduction to the basics of Hamiltonian mechanics, with an
emphasis on its symplectic formulation. It thus motivates the symplectic tech-
niques which will be developed in the forthcoming chapters. In fact, Hamiltonian
mechanics is historically the main motivation for the study of the symplectic group
in particular, and of symplectic geometry in general. For complements and an ex-
tended study the reader can consult with profit the treatises by Abraham–Marsden
[2] and Arnol’d [3]; an elementary introduction at the undergraduate level is the
classical book by Goldstein [63] and its re-editions. (This book is written for physi-
cists, however, and the mathematics is not always rigorous.)

Historically, Hamiltonian mechanics goes back to the early work of Hamilton
and Lagrange; its symplectic formulation (as exposed in this chapter) is relatively
recent; see Arnol’d [3] and Abraham et al. [1] for detailed accounts.

1.1 Hamilton’s equations

We will use the notation x = (x1, . . . , xn), p = (p1, . . . , pn) for elements of R
n and

z = (x, p) for elements of R
2n (the “phase space”). When using matrix notation,

x, p, z will always be viewed as column vectors.

1.1.1 Definition of Hamiltonian systems

Let H (“the Hamiltonian”) be a real-valued function in C∞(R2n); more generally
we will consider “time-dependent Hamiltonians” H ∈ C∞(R2n × R), functions of
z and t.

Definition 3. The system of 2n ordinary differential equations

dxj
dt

=
∂H

∂pj
(x, p, t),

dpj
dt

= − ∂H
∂xj

(x, p, t) (1.1)

is called the Hamilton equations associated with H .

3M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics,  
Pseudo-Differential Operators 7, DOI 10.1007/978-3-7643-9992-4_ , © Springer Basel AG 2011 1



4 Chapter 1. Hamiltonian Mechanics in a Nutshell

To simplify the discussion we will assume that for every z0 = (x0, p0) belong-
ing to an open subset Ω of R

2n, this system has a unique solution t �−→ z(t) =
(x(t), p(t)) such that z(0) = z0, defined for −T ≤ t ≤ T where T > 0. (See
Abraham–Marsden [2], Ch. 1, §2.1, for a general discussion of global existence and
uniqueness, including the important notion of “flow box”.)

A basic example is the following; we state it in the case n = 1:

H(x, p) =
p2

2m
+ U(x) (1.2)

where m is a positive constant (“the mass”) and U a smooth function (“the po-
tential”). In this case Hamilton’s equations are

dx

dt
=

p

m
,
dp

dt
= −U ′(x). (1.3)

In physics one writes v = p/m (it is the velocity) and dp/dt, so that these equations
are just a restatement of Newton’s second law, familiar from elementary physics;
the quantity p2/2m is the “kinetic energy”. (We have discussed in some detail the
physical interpretation of Hamilton’s equations in [65].)

This example motivates the following definition:

Definition 4. Let t �−→ z(t) be a solution of Hamilton’s equations. The number
E(t) = H(z(t)) is called the energy along the solution curve through z0 = z(0)
at time t. When H is time-independent, we have H(z(t)) = H(z(0)) for every t.
More generally, any function which is constant along the curves t �−→ z(t) is called
a “constant of the motion”.

That the energy E is a constant for time-independent Hamiltonians follows
from the chain rule applied to H(z(t)), taking Hamilton’s equations into consid-
eration: setting z = z(t) we have

d

dt
H(z(t)) =

n∑

j=1

∂H

∂xj
(z)

dxj
dt

+
∂H

∂pj
(z)

dpj
dt

= 0.

In the case of time-dependent Hamiltonians the same argument shows that
d

dt
H(z(t), t) =

∂H

∂t
(z(t), t)

hence the energy E(t) = H(z(t), t) is not a constant of the motion.

1.1.2 A simple existence and uniqueness result

Here is an existence result which is sufficient for many applications to physics. We
assume that the Hamiltonian is time-independent and of the type

H(x, p) =
∑n

j=1

p2
j

2mj
+ U(x)

where U ∈ C∞(Rn).
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Proposition 5. If U ≥ a for some constant a, then every solution of Hamilton’s
equations

dxj
dt

=
pj
mj

,
dpj
dt

= − ∂U
∂xj

(x)

(1 ≤ j ≤ n) exists for all times (and is unique).

Proof. In view of the local existence theory for ordinary differential equations it
suffices to show that the solutions t �−→ z(t) remain in bounded sets for finite times.
Since Hamilton’s equations are insensitive to the addition of a constant to the
Hamiltonian we may assume a = 0, and rescaling if necessary the momentum and
position coordinates it is no restriction neither to assumemj = 1 for 1 ≤ j ≤ n. For
notational simplicity we moreover assume n = 1. Let thus t → z(t) = (x(t), p(t))
be a solution curve of the equations

dx

dt
= p ,

dp

dt
= −∂U

∂x
(x)

and let E = H(z(t)) be the energy; since H ≥ U we have E ≥ U(x(t)). In view of
the triangle inequality

|x(t)| ≤ |x(0)|+ |x(t) − x(0)| ≤ |x(0)|+
∫ t

0

∣
∣ d
dtx(s)

∣
∣ ds;

since d
dtx(s) = p(s) and

p(t) =
√

2(E − U(x(t)) ≤
√

2E (1.4)

we have:

|x(t)| ≤ |x(0)|+
∫ t

0

|p(s)| ds ≤ |x(0)|+
∫ t

0

√

2(E − U(x(s))ds

so that
|x(t)| ≤ |x(0)|+ t

√
2E. (1.5)

The inequalities (1.4) and (1.5) show that for t in any finite time-interval [0, T ]
the functions t �−→ x(t) and t �−→ p(t) = x(t), and hence t �−→ z(t), stay forever
in a bounded set. �

One can show (see [1], §4.1) that the conclusions of Proposition 5 still hold
if one replaces the boundedness condition U ≥ a by the much weaker requirement

U(x) ≥ a− b|x|2 for b > 0

where a and b are some constants (b > 0). This condition cannot be very much
relaxed; for instance one shows (ibid.) that already in the case n = 1 the solutions
of the Hamilton equations for

H(x, p) =
p2

2m
− ε2

8
x2+(4/ε)

are not defined for all t if ε > 0.
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1.2 Hamiltonian fields and flows

From now on we will use the following more compact notation, borrowed from
mechanics: time derivatives (i.e., derivatives with respect to t) will be denoted
by putting a dot over the letter standing for the function. For instance, ẋ means
dx/dt. Derivatives will in general be written as ∂x, ∂xj , etc. instead of ∂/∂x, ∂/∂xj .
We will also freely use the notation ∂x for the gradient (∂x1 , . . . , ∂xn). Similarly,
∂z = (∂x, ∂p) is the gradient in the 2n variables z1 = x1, . . . , zn = xn; zn+1 =
p1, . . . , z2n = pn.

The Hamilton equations (1.1) can be rewritten in compact form as

ż = J∂zH(z) (1.6)

where J is the “standard symplectic matrix” defined by

J =
(

0 I
−I 0

)

where 0 and I are the n× n zero and identity matrices. That matrix will play an
essential role in all of this book.

1.2.1 The Hamilton vector field

Assume first that H is a time-independent Hamiltonian function.

Definition 6. We call the vector field

XH = J∂zH = (∂xH,−∂pH)

the “Hamilton vector field of H”; the operator J∂z is called a “symplectic gradi-
ent”.

It follows from the elementary theory of ordinary autonomous differential
equations that the system (1.1) defines a flow (φHt ): by definition the function
t �−→ z(t) = φHt (z0) is the solution of Hamilton’s equations with z(0) = z0 and we
have

φHt φ
H
t′ = φHt+t′ , φH0 = I (1.7)

when t, t′ and t + t′ are in the interval [−T, T ]. In particular each φHt is a diffeo-
morphism such that (φHt )−1 = φH−t.

Definition 7. One says that (φHt ) is the flow generated by the Hamilton equations
for H .

The Hamilton vector field is gradient-free:

divXH = ∂x (∂pH)− ∂p (∂xH) = 0


