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Preface

High-dimensional data are nowadays rule rather than exception in areas like in-
formation technology, bioinformatics or astronomy, to name just a few. The word
“high-dimensional” refers to the situation where the number of unknown param-
eters which are to be estimated is one or several orders of magnitude larger than
the number of samples in the data. Classical statistical inference cannot be used for
high-dimensional problems. For example, least-squares fitting of a linear model hav-
ing many more unknown parameters than observations and assigning corresponding
standard errors and measures of significance is ill-posed. It is rather obvious that
without additional assumptions, or say restricting to a certain class of models, high-
dimensional statistical inference is impossible. A well-established framework for fit-
ting many parameters is based on assuming structural smoothness, enabling estima-
tion of smooth functions. The last years have witnessed a revolution of methodolog-
ical, computational and mathematical advances which allow for high-dimensional
statistical inference based on assuming certain notions of sparsity. Shifting the fo-
cus from smoothness to sparsity constraints, or combining the two, opens the path
for many more applications involving complex data. For example, the sparsity as-
sumption that the health status of a person is depending only on a few among sev-
eral thousands of biomarkers appears much more realistic than considering a model
where all the thousands of variables would contribute in a smooth way to the state
of health.

This book brings together methodological concepts, computational algorithms, a
few applications and mathematical theory for high-dimensional statistics. The math-
ematical underpinning of methodology and computing has implications on explor-
ing exciting possibilities and understanding fundamental limitations. In this sense,
the combination of methodology and theory builds the foundation of the book. We
present the methods and their potential for data analysis with a view on the un-
derlying mathematical assumptions and properties and vice-versa, the theoretical
derivations are motivated by applicability and implications to real data problems.
The mathematical results yield additional insights and allow to categorize different
methods and algorithms in terms of what they can achieve and what not. The book
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viii Preface

is not meant as an overview of the state-of-the-art, but rather as a selective treatment
with emphasis on our own work.

Itis possible to read the book with more emphasis on methods and applications or on
theory; but of course, one can also focus on all aspects with equal intensity. As such,
we hope that the book will be useful and appealing to statisticians, data analysts
and other researchers who appreciate the possibilities to learn about methods and
algorithms, mathematical theory and the combination of both of them.

This book emerged from a very nice collaboration between the authors. We ac-
knowledge many people who have contributed in various ways to its completion.
Wolfgang Hirdle proposed to write a book on high-dimensional statistics while hik-
ing in the black forest at Oberwolfach, and we are thankful for it. Alain Hauser,
Mohamed Hebiri, Markus Kalisch, Johannes Lederer, Lukas Meier, Nicolai Mein-
shausen, Patric Miiller, Jiirg Schelldorfer and Nicolas Stadler have contributed with
many original ideas and concepts as collaborators of joint research projects or mak-
ing some thoughtful suggestions for the book. Finally, we would like to express
our gratitude to our families for providing a different, interesting, supportive and
beautiful environment.

Ziirich, December 2010 Peter Biihlmann and Sara van de Geer
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Chapter 1

Introduction

Abstract High-dimensional statistics refers to statistical inference when the number
of unknown parameters is of much larger order than sample size. We present some
introductory motivation and a rough picture about high-dimensional statistics.

1.1 The framework

High-dimensional statistics refers to statistical inference when the number of un-
known parameters p is of much larger order than sample size n, that is: p > n. This
encompasses supervised regression and classification models where the number of
covariates is of much larger order than n, unsupervised settings such as clustering or
graphical modeling with more variables than observations or multiple testing where
the number of considered testing hypotheses is larger than sample size. Among the
mentioned examples, we discuss in this book regression and classification, graphical
modeling and a few aspects of multiple testing.

High-dimensional statistics has relations to other areas. The methodological con-
cepts share some common aspects with nonparametric statistics and machine learn-
ing, all of them involving a high degree of complexity making regularization nec-
essary. An early and important book about statistics for complex data is Breiman
et al. (1984) with a strong emphasis placed on the CART algorithm. The influential
book by Hastie et al. (2001) covers a very broad range of methods and techniques at
the interface between statistics and machine learning, also called “statistical learn-
ing” and “data mining”. From an algorithmic point of view, convex optimization
is a key ingredient for regularized likelihood problems which are a central focus
of our book, and such optimization arises also in the area of kernel methods from
machine learning, cf. Scholkopf and Smola (2002). We include also some devi-
ations where non-convex optimization or iterative algorithms are used. Regarding
many aspects of optimization, the book by Bertsekas (1995) has been an important

P. Bithlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory 1
and Applications, Springer Series in Statistics, DOI 10.1007/978-3-642-20192-9 1,
© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

source for our use and understanding. Furthermore, the mathematical analysis of
high-dimensional statistical inference has important connections to approximation
theory, cf. Temlyakov (2008), in particular in the context of sparse approximations.

1.2 The possibilities and challenges

A simple yet very useful model for high-dimensional data is a linear model

)4 .
Yi=u+ Y X +e(i=1,...n), (1.1)
j=1

with p > n. It is intuitively clear that the unknown intercept tt and parameter vector
B = (Bi,...,B,)" can only be estimated reasonably well, based on n observations,
if B is sparse in some sense. Sparsity can be quantified in terms of the ¢,-norm for
1 < g < oo, the analogue (which is not a norm) with 0 < g < 1, or the {y-analogue
(which is not a norm) ||B|9 = |{j; B; # 0}| which counts the number of non-zero
entries of the parameter. Note that the notation || 3|3 = Z?:l 1B|° (where 0° = 0) is

inanalogy to [|B]|g =X/, |B;|? for 0 < g < co. In contrast to £, the £1-norm || B |1 =
27:1 |B;| measures sparsity in a different way and has a computational advantage of
being a convex function in 3.

Roughly speaking, high-dimensional statistical inference is possible, in the sense of
leading to reasonable accuracy or asymptotic consistency, if

log(p) - (sparsity(B)) < n,

depending on how we define sparsity and the setting under consideration.

Early progress of high-dimensional statistical inference has been achieved a while
ago: Donoho and Johnstone (1994) present beautiful and clean results for the case
of orthogonal design in a linear model where p = n. A lot of work has been done
to analyze much more general designs in linear or generalized linear models where
p > n, as occurring in many applications nowadays, cf. Donoho and Huo (2001),
Donoho and Elad (2003), Fuchs (2004) and many other references given later. We
present in this book a detailed treatment for high-dimensional linear and general-
ized linear models. Much of the methodology and techniques relies on the idea of
{-penalization for the negative log-likelihood, including versions of such regular-
ization methods. Such /;-penalization has become tremendously popular due to its
computational attractiveness and its statistical properties which reach optimality un-
der certain conditions. Other problems involve more complicated models with e.g.
some nonparametric components or some more demanding likelihood functions as
occurring in e.g. mixture models. We also describe results and aspects when going
beyond generalized linear models.
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For sound statistical inference, we would like to quantify uncertainty of estimates
or predictions. In particular, if statistical results cannot be validated with a scientific
experiment, as for example in bio-medicine where say biomarkers of patients cannot
be manipulated, the scientific conclusions hinge on statistical results only. In such
cases, high-dimensional statistical inference must be equipped with measures of
uncertainty, stability or significance. Our book presents some early ideas in this
direction but more refined answers need to be developed in the future.

1.3 About the book

The book is intended for graduate students and researchers in statistics or related
fields who are interested in methodological themes and/or detailed mathematical
theory for high-dimensional statistics. It is possible to read the methodology and
theory parts of the book separately.

Besides methodology and theory, the book touches on applications, as suggested
by its title. Regarding the latter, we present illustrations largely without detailed
scientific interpretation. Thus, the main emphasis is clearly on methodology and
theory. We believe that the theory has its implications on using methods in prac-
tice and the book interweaves these aspects. For example, when using the so-called
Lasso (¢;-penalization) method for high-dimensional regression, the theory gives
some important insights about variable selection and more particularly about false
positive and false negative selections.

The book presents important advances in high-dimensional statistical inference.
Some of them, like the Lasso and some of its versions, are treated comprehensively
with details on practical methodology, computation and mathematical theory. Other
themes, like boosting algorithms and graphical modeling with covariance estima-
tion, are discussed from a more practical view point and with less detailed mathe-
matical theory. However, all chapters include a supporting mathematical argumen-
tation.

1.3.1 Organization of the book

The book combines practical methodology and mathematical theory. For the so-
called Lasso and group Lasso and versions thereof in linear, generalized linear
and additive models, there are separate theory and methods chapters with cross-
references to each other.

Other chapters on non-convex negative likelihood problems, stable solutions, p-
values for high-dimensional inference, boosting algorithms or graphical modeling
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with covariance estimation are presenting in each chapter the methods and some
mathematical theory. The last chapter on probability inequalities presents mathe-
matical results and theory which are used at various places in the book. Figure 1.1
gives an overview which parts belong closely to each other.

Fig. 1.1 Organization of the book. The arrowheads indicate the directions in which the chapters
relate to each other. Chapters 2, 3, 4 and 5 describe statistical methodology and computation,
Chapters 6, 7, 8 and 14 present detailed mathematical theory, and the remaining Chapters 9, 10,
11, 12 and 13 each contain methodological, theoretical and computational aspects.

1.4 Some examples

High-dimensional data arises nowadays in a wide variety of applications. The book
contains illustrations and applications to problems from biology, a field of our own
interest. However, the presented material includes models, methods, algorithms and
theory whose relevance is very generic. In particular, we consider high-dimensional
linear and generalized linear models as well as the more flexible generalized additive
models, and both of them cover a very broad range of applications. Other areas
of high-dimensional data applications include text mining, pattern recognition in
imaging, astronomy and climate research.
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1.4.1 Prediction and biomarker discovery in genomics

In genomics with high-throughput measurements, thousands of variables such as
expressions of genes and abundances of proteins can be measured for each person
in a (pre-)clinical study. A typical goal is to classify the health status of a person,
e.g. healthy or diseased, based on its bio-molecular profile, i.e., the thousands of
bio-molecular variables measured for the person.

1.4.1.1 Further biology applications treated in the book

We briefly describe now examples from genomics which will be considered in the
book.

We consider motif regression in Chapters 2, 5, 10 and 11. The goal is to infer short
DNA-words of approximate length 8§ — 16 base pairs, e.g., “ACCGTTAC”, where a
certain protein or transcription factor binds to the DNA. We have supervised data
available with a continuous response variable ¥; and p-dimensional covariates X;
with continuous values. Thereby Y; measures e.g. binding intensity of the protein
of interest in the ith region of the whole DNA sequence and X; contains abundance
scores of p candidate motifs (or DNA words) in the ith region of the DNA. We
relate the response ¥; and the covariates X; with a linear model as in (1.1) (or an ad-

ditive model as in Chapter 5), where Xi(/ ) denotes the abundance score of candidate
word j in DNA region i. The task is to infer which candidate words are relevant for
explaining the response Y. Statistically, we want to find the variables X /) whose
corresponding regression coefficients f3; are substantial in absolute value or signif-
icantly different from zero. That is, motif regression is concerned about variable
or feature selection. The typical sizes for motif regression are n ~ 50 — 1’000 and
p ~ 100 —2'000 and hence, the number of variables or the dimensionality p is about
of the same order as sample size n. In this sense, motif regression is a fairly but not
truly high-dimensional problem.

Another example is the prediction of DNA splice sites which are the regions between
coding and non-coding DNA segments. The problem is discussed in Chapter 4. We
have binary response variables ¥; € {0,1}, encoding whether there is a splice site
or not at a certain position 7 of the DNA sequence, and categorical p-dimensional
covariates X; € {A,C,G, T }” with four categories corresponding to the letters of the
DNA alphabet. The p categorical variables correspond to p neighboring values of a
certain position i of the DNA sequence: for example, 3 positions to the left and 4 po-
sitions to the right from /, corresponding to p =7 and e.g. X; = (4,A,T,G,G,C,G).
We model the data as a binary logistic regression whose covariates consist of 7
factors each having 4 levels. The primary goal here is prediction or classification
of a new, unknown splice site. The typical sizes for DNA splice site prediction is
n ~ 10’000 — 50000 and p ~ 5 — 20. When allowing for all interactions, the num-
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ber of parameters in the logistic model is 4” which can be huge in comparison to n,
e.g., 419 ~ 1.05-10°. Depending on how many interactions we allow, the problem
may involve a million unknown parameters which is of larger order than the typical
sample size.

In Chapters 9 and 10 we illustrate some methods for a problem about riboflavin
production with bacillus subtilis. The data consists of continuous response variables
Y;, measuring the log-concentration of riboflavin, and p-dimensional covariates X;
containing the log-expressions from essentially all genes from bacillus subtilis, for
the ith individual. The goal is primarily variable selection to increase understanding
which genes are relevant for the riboflavin production rate. A linear model as in
(1.1) is often a reasonable approximation but we will also discuss in Chapter 9 a
mixture model which is an attempt to model inhomogeneity of the data. The size of
the data is about n ~ 70 — 150 and p = 4088, and hence it is a real high-dimensional
problem.

Finally, we consider in Chapter 13 an unsupervised problem about genes in two
biosynthesis pathways in arabidopsis thaliana. The data consists of continuous gene
expressions from 39 genes for n = 118 samples of different arabidopsis plants. We
illustrate covariance estimation and aspects of graphical modeling which involve
39-40/2 = 780 covariance parameters, i.e., more parameters than sample size.



Chapter 2

Lasso for linear models

Abstract The Lasso, proposed by Tibshirani (1996), is an acronym for Least Abso-
lute Shrinkage and Selection Operator. Among the main reasons why it has become
very popular for high-dimensional estimation problems are its statistical accuracy
for prediction and variable selection coupled with its computational feasibility. Fur-
thermore, since the Lasso is a penalized likelihood approach, the method is rather
general and can be used in a broad variety of models. In the simple case of a linear
model with orthonormal design, the Lasso equals the soft thresholding estimator
introduced and analyzed by Donoho and Johnstone (1994). The Lasso for linear
models is the core example to develop the methodology for ¢;-penalization in high-
dimensional settings. We discuss in this chapter some fundamental methodological
and computational aspects of the Lasso. We also present the adaptive Lasso, an im-
portant two-stage procedure which addresses some bias problems of the Lasso. The
methodological steps are supported by describing various theoretical results which
will be fully developed in Chapters 6 and 7.

2.1 Organization of the chapter

We present in this chapter the Lasso for linear models from a methodological point
of view. Theoretical results are loosely described to support methodology and prac-
tical steps for analyzing high-dimensional data. After an introduction in Section
2.2 with the definition of the Lasso for linear models, we focus in Section 2.4 on
prediction of a new response when given a new covariate. Afterwards, we discuss
in Section 2.5 the Lasso for estimating the regression coefficients which is rather
different from prediction. An important implication will be that under certain con-
ditions, the Lasso will have the screening property for variable selection saying that
it will include all relevant variables whose regression coefficients are sufficiently
large (besides potentially false positive selections). In Section 2.6 we discuss the
more ambitious goal of variable selection in terms of exact recovery of all the rele-
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vant variables. Some of the drawbacks of the Lasso can be addressed by two-stage or
multi-stage procedures. Among them are the adaptive Lasso (Zou, 2006) and the re-
laxed Lasso (Meinshausen, 2007), discussed in Sections 2.8 and 2.10, respectively.
Finally, we present concepts and ideas for computational algorithms in Section 2.12.

2.2 Introduction and preliminaries

We consider here the setting where the observed data are realizations of
(X17Y1)) MR ) (XI’HYn)

with p-dimensional covariates X; € 2~ C R? and univariate response variables
Y; € % C R. The covariates are either deterministic fixed values or random vari-
ables: regarding the methodology, there is no difference between these two cases.
Typically, we assume that the samples are independent but the generalization to
stationary processes poses no essential methodological or theoretical problems.

Modeling high-dimensional data is challenging. For a continuous response variable
Y € R, a simple yet very useful approach is given by a linear model

p .
Yi=Y BxY +e(i=1,....n), 2.1)
j=1
where €1,...,¢&, i.i.d., independent of {X;; i = 1,...,n} and with E[g;] = 0.

For simplicity and without loss of generality, we usually assume that the intercept
is zero and that all covariates are centered and measured on the same scale. Both
of these assumptions can be approximately achieved by empirical mean centering
and scaling with the standard deviation, and the standardized data then satisfies
Y=n'YL Yi=0and 67 :=n"'Y1, (x\/ ~X")2 = 1 forall j. The only unusual
aspect of the linear model in (2.1) is the fact that p > n.

We often use for (2.1) the matrix- and vector-notation
Y=XB+¢

with response vector Y1, design matrix X, ,, parameter vector 3,1 and error
vector &, 1. If the model is correct, we denote the true underlying parameter by 3°.
We denote the best approximating parameter, in a sense to be specified, by *: this
case will be discussed from a theory point of view in Chapter 6 in Section 6.2.3.
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2.2.1 The Lasso estimator

If p > n, the ordinary least squares estimator is not unique and will heavily overfit
the data. Thus, a form of complexity regularization will be necessary. We focus here
on regularization with the ¢;-penalty. The parameters in model (2.1) are estimated
with the Lasso (Tibshirani, 1996):

B =argmin<IY—XﬁII%/nMIﬁIIl) 22)
B

where [[Y — X3 = X2y (¥ — (XB))% Bl = X2, 1B;] and where A > 0 is a
penalty parameter. The estimator has the property that it does variable selection in
the sense that (A1) = 0 for some j’s (depending on the choice of 4) and f;(1)
can be thought as a shrunken least squares estimator; hence, the name Least Abso-
lute Shrinkage and Selection Operator (LASSO). An intuitive explanation for the

variable selection property is given below.

The optimization in (2.2) is convex, enabling efficient computation of the estimator,
see Section 2.12. In addition, the optimization problem in (2.2) is equivalent to

Borimal (R) = argmin ||Y —XB|3/n, (2.3)
BilIBIli <R

with a one-to-one correspondence between A in (2.2) and R in (2.3), depending
on the data (X,Y), ..., (X,,Y,). Such an equivalence holds since ||Y — XB||3/n is
convex in f with convex constraint ||3]|; < R, see for example Bertsekas (1995, Ch.
5.3).

Because of the /;-geometry, the Lasso is performing variable selection in the sense
that an estimated component can be exactly zero. To see this, we consider the rep-
resentation in (2.3) and Figure 2.1: the residual sum of squares reaches a minimal
value (for certain constellations of the data) if its contour lines hit the f1-ball in its
corner which corresponds to the first component ﬁprimal,l being equal to zero. Figure
2.1 indicates that such a phenomenon does not occur with say Ridge regression,

Brigge (1) =argmin(||Y—Xl3||%/n+7tBII%>,
B

with its equivalent primal solution

BRidge;primal (R) = argmin HY—XﬁH%/n, 2.4)
BillBl2<R

with again a data-dependent one-to-one correspondence between A and R.
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Fig. 2.1 Left: Contour lines of residual sum of squares, with [§ being the least squares estimator,
and /;-ball corresponding to the Lasso problem in (2.3). Right: Analogous to left panel but with
{xball corresponding to Ridge regression in (2.4). The figure is as in Tibshirani (1996).

2.2.1.1 Estimation of the error variance

The estimator in (2.2) does not directly provide an estimate for the error variance
o. One can construct an estimator using the residual sum of squares and the degrees
of freedom of the Lasso (Section 2.11). Alternatively, and rigorously developed, we
can estimate 3 and ¢ simultaneously using a reparametrization: this is discussed
in detail in Section 9.2.2.1 from Chapter 9.

2.3 Orthonormal design

It is instructive to consider the orthonormal design where p = n and the design ma-
trix satisfies n1X7X = Ipxp. In this case, the Lasso estimator is the soft-threshold
estimator

A

Bi(A) =sign(Z)(|Zj| = 2/2)+, Zj = (X"Y);/n (j=1,....,p=n), (2.5
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where (x)4 = max(x,0) denotes the positive part and Z; equals the ordinary least
squares estimator for f3;. This follows from the general characterization in Lemma
2.1 below and we leave a direct derivation (without using Lemma 2.1) as Problem
2.1. Thus, the estimator can be written as

Bi(A) = geofin/2(Z),

where gqof 2 (2) = sign(z)(|z] — A ) 1, is the soft-threshold function depicted in Figure
2.2. There, we also show for comparison the hard-threshold and the adaptive Lasso

threshold functions

o - — Adaptive Lasso B
- - Hard-thresholding .
Soft-thresholding e

Fig. 2.2 Various threshold functions g(-) for orthonormal design: soft-threshold (dashed line),

hard-threshold (dotted line), Adaptive Lasso (solid line). The estimators are of the form 3 i =8(Z))
with Z; as in (2.5).

estimator (see Section 2.8) for 3; defined by

B\hard,j(}’) = ghard,l/Z(Zj)> 8hard, A (Z) = Z1(|Z| < )L)7
B\adapt.,j(af) = gadapt,l/Z(Zj)a gadapt,l (Z) = Z(l _)‘/lz‘z)-ﬁ- = sign(z)(|z\ —l/|Z|)+.

2.4 Prediction

We refer to prediction whenever the goal is estimation of the regression function
E[Y|X =x] = Z?:l B;x\Y) in model (2.1). This is also the relevant quantity for pre-
dicting a new response.



