Wolfgang Wagner

Groundwater in the Arab Middle East

Groundwater in the Arab Middle East

Wolfgang Wagner

Groundwater in the Arab Middle East

Wolfgang Wagner Hohenzollernstr. 21 30161 Hannover Germany uwwagner@gmx.de

ISBN 978-3-642-19350-7 e-ISBN 978-3-642-19351-4 DOI 10.1007/978-3-642-19351-4 Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011931780

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Ursula and to my colleagues and friends in the Arab countries

If all the waters would be salty and man would have to change it to achieve its sweetness, great efforts would arise to man. The sublime Creator has saved, in his grace, his creatures these efforts through the effect of the sun on the water of the sea and the rise of the vapour from the sea; the winds then disperse these vapours wherever he wants, and it arrives as rain water at these locations. That is then stored in rivulets within the mountains and under the earth. He then brings out part of the water and lets flow wadis and rivers, and springs and wells appear in such a degree that it is sufficient for the creatures for 1 year until rain comes again in the following year.

Al Qazwini Zakariya ibn Muhamad ibn Mahmud abu Yahya, ca. 1262 (AH 665)

Introduction

The region covering the Arabian Peninsula and the adjoining northern Arabian countries coincides approximately with a specific large geologic structure: the Arabian Plate. Politically the region includes the countries of the Arabian Peninsula together with the northern Arab countries: Al Mashreq – the eastern part of the caliphate or of the Arab World. In a geographic political view the region may be denominated Arab Middle East (Ash Sharq al Awsat) or Western Asia.

The Arab Middle East with an area of 3.7 million km² forms a small subcontinent between the Mediterranean Sea, Red Sea, Arabian Sea, the Gulf and, in the north, the Zagros–Taurus mountain chains. About 90% of the region are semiarid to arid steppe or desert areas. As perennial rivers exist only in the northern and western margins of the Arab Middle East, the use of groundwater resources is an essential basis for the economic development and survival of the countries. The region includes 12 Arab countries; water demand/supply previews indicate precarious situations in the near future for most of these countries.

The idea of compiling a book on "Groundwater in the Arab Middle East" arose from the professional activities of the author as hydrogeologist in the services of the German Government between 1965 and 1998, much of which was devoted to groundwater projects in the Middle East. The information presented in the book is based on reviews of a large number of publications, reports and documents as well as on field experience in various Arab countries.

The groundwater projects in the Middle East, in which the author had the chance to participate, were carried out in the framework of Technical Cooperation between national or international institutions of the region and the Federal Institute of Geosciences and Natural Resources, BGR, Hannover, partly in connection with activities of the German Agency for Technical Cooperation, GTZ, Eschborn. The projects were sponsored by the Ministry for Economic Cooperation and Development, Bonn. Regional information on groundwater conditions in the Middle East were obtained, in particular, through long-term assignments of the author to international institutions: The Arab Centre for the Studies of Arid Zones and Dry Lands of the Arab League (ACSAD), Damascus, and the United Nations Economic and Social Commission for Western Asia (ESCWA), Amman and Beirut.

Contents of the Book

The book gives an outline of prevailing hydrogeologic conditions on the Arabian Plate together with the geologic background. Emphasis is given to relationships between the main features influencing the hydrogeologic conditions:

- · Regional and sub-regional geologic developments
- Paleogeographic conditions
- Morphology
- Climate and paleo-climate

and the resulting hydrogeologic features:

- Formation of aquifers
- Distribution of major aquifers
- Major groundwater flow systems
- · Occurrence of renewable and fossil groundwater

Information on groundwater conditions in the various hydrogeologic subregions of the Arabian Plate is presented in a summarized form with comparative evaluations of hydrochemical and isotope data from different hydrogeologic units. Reported data on hydraulic aquifer parameters, recharge rates and groundwater flow volumes are listed with a view to arrive at characteristic values under specific hydrogeologic and climatic conditions.

The review of hydrogeologic conditions in this book is obviously a look back to information accumulated by the scientific-technical community during the past decades. It does not deal, in detail, with main actual problems and techniques for groundwater utilization, such as quantitative assessments of groundwater resources, groundwater management planning, legal aspects of safe groundwater exploitation and groundwater protection, artificial measures for groundwater management.

The presentation of groundwater conditions refers prevailingly to the state of knowledge in the late 1990s but includes information from more recent publications. For some areas, no recently updated information has been available. This will not affect the relevance of the description of the general hydrogeologic conditions, but the state of groundwater exploitation, of water quality and of remaining resources may have changed significantly in some areas during short periods.

The area considered in the outline of groundwater conditions covers approximately the Arabian Plate, as delineated in Chap. 1, with minor deviations: political boundaries are not coinciding with the plate boundaries, e.g. in the north, where the plate extends into Turkish territory. Information on the following countries is included: Bahrain, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, United Arab Emirates, West Bank and Gaza, Yemen. Relevant information from results of investigations and research in Israel is considered, but no attempt is made for including an outline of hydrogeologic conditions in Israel.

Remarks on Graphic Presentations, Transcriptions and References

Much of the information presented in this book is shown in a generalized manner.

Maps are included as rough sketch drawings indicating locations and geographic, geologic or hydrogeologic features. The sketch maps are intended to provide a general orientation of locations and features mentioned in the text. Geographic latitudes and longitudes are indicated at the frame of most sketches.

For discussion of hydrochemical and isotope data, standardized diagrams are used, mainly Piper diagrams and plots of $\delta^{18}O/\delta^2H$ data.

In the trilinear "Piper diagram" (Piper 1944), concentrations of major ions in meq% are plotted in a cation triangle and an anion triangle, and the cation and anion points of one water analysis are combined through projection into a diamond field (Fig. 1.5). Hydrochemical water types are generally defined according to the predominant cation and anion of a water group. Frequently, major ions of groundwaters from a specific aquifer and area vary over considerable ranges and the definition of water types has to include more than one cation and/or anion (e.g. Ca–Na–HCO₃–Cl type water).

The $\delta^{18}O/\delta^2H$ plots are presented in a uniform scale with $\delta^{18}O$ between -9% and +3% and δ^2H between -70% and +15%. For orientation two meteoric water lines are shown on each $\delta^{18}O/\delta^2H$ diagram (Fig. 1.6): the Global Meteoric Water line (GMWL, $\delta^2H=8\times\delta^{18}O+10$) and the Mediterranean Meteoric Water Line (MMWL, $\delta^2H=8\times\delta^{18}O+22$).

Transcriptions of Arabic location names are made in a somewhat simplified manner:

- Symbols for characters which do not exist in English script are omitted, such as hamza φ or ain ξ,
- Duplication of consonants are largely avoided
- The feminine ending with the Arabic consonant h o is written as "a" (not "ah")
- The consonant dad ض is written as dh

In order to avoid multiple citations of references within the text, evaluated publications are generally listed at the end of each sub-chapter, except for direct quotations. In Chap. 1, relevant publications are, in most cases, cited also at the appropriate passages of the text.

Denomination of Stratigraphic Units

Names of stratigraphic units have been adopted as commonly applied in the hydrogeologic literature of the concerned countries or regions. Generally, litho-stratigraphic units are denominated "formation" or, in relation to hydrogeologic features, "aquifer" or "aquitard", e.g. "Umm er Radhuma formation", "Umm er Radhuma aquifer", "Rus formation", "Rus aquitard". The term "group" is applied, where several formations compose a larger stratigraphic or hydro-stratigraphic complex, but no definite differentiation has been followed between the terms formation, group or super-group.

In the geologic literature of the Arab countries, the Cretaceous has been subdivided into

• Lower Cretaceous (up to Albian) and Upper Cretaceous (Cenomanian to Maastrichtian)

or

• Early Cretaceous (up to Aptian), Middle Cretaceous (Albian–Turonian), Late Cretaceous (Coniacain–Maastrichtian)

In this book, the differentiation into Lower Cretaceous and Upper Cretaceous is applied.

Acknowledgements

The activities in projects, carried out by the author in Arab countries, involved the cooperation with a great number of specialists from national and international institutions. It will not be possible to name all colleagues who directly contributed to the knowledge which is summarized in this book. Especially extensive professional information and stimulations were received from Jean Khouri in Damascus, Bader Hirzalla in Aman, Hans Bender and Mebus A. Geyh in Hannover. A special privilege was the opportunity to participate in discussions with Louis Dubertret and D.J. Burdon, scientists who had established fundamental parts of the hydrogeology of the Middle East.

Particularly valuable information on groundwater investigations or problems in specific countries or sub-regions has been provided by the following colleagues: Abdulla Droubi, Refat Rajab, Watheq Rasoul Agha, Nabil Rofail, Said Zahra in Damascus (ACSAD), Aziz Ghadban and Hisham Abu Ayyash in Damascus, Adnan Al-Baeini in Soueida, Rifaat Haoui in Aleppo, Samir Hijazin, Mohammad Almomani, Raja Gedeon, Jamil Rashdan, Ali Subah in Aman, Bassam Adib Jabir and Hassan Jaafer in Beirut, Amitabha Mukhopadhyay in Kuwait, Mohamed Sager Al-Asam, Muhamed Saeed Abdullah and Muhamed Abdul Haq in Dubai, Waleed K. Al-Zubari in Bahrain, Eduard Boeckh, Manfred Hobler, Armin Margane, Christian Neumann-Redlin, Hellmut Vierhuff in Hannover (BGR), Yucel Yurtsever in Vienna (IAEA), Omar Touqan, Omar Joudeh, Mohamed J. Abdelrazzak in Aman and Beirut (ESCWA).

The missions and investigations in the different Arab countries were supported ex-officio, but in many cases also through personal encouragement, by officials and political representatives of many ministries, governmental authorities and institutions in the concerned countries, in Germany and in organizations of the United Nations and of the Arab League. That support as well as the contribution of information from the above mentioned colleagues and of many scientists, who are not mentioned here explicitly, is gratefully acknowledged.

Several authors whose publications were used rather extensively for compilation of the book should be included in the acknowledgements: V.P. Ponikarov et al. (1967a, b): geology and hydrogeology of Syria; Zuhair Kattan: isotope hydrologic aspects in Syria; Friedrich Bender and collaborators: geology of Jordan; Elias Salameh: various features of the hydrogeology of Jordan; Al-Sayari and Zötl (1978), Jado and Zötl (1984) and H.S. Edgell (1997): hydrogeology of Saudi Arabia; Alsharhan et al. (2001): hydrogeology of the eastern part of the Arabian Peninsula; John W. Lloyd: hydrogeologic aspects of various areas of the Middle East.

The author is also indebted to a considerable number of specialists of BGR (Hannover) for their essential contributions for the execution of groundwater projects in Arab countries in various geoscientific fields.

Special thanks have to be extended to Springer Verlag and to Mr. E. Balamurugan and his team of SPi Technologies India in Chennai for the efforts in editing and publishing the book.

Contents

1	The	e Arabian Plate: Geology and Hydrogeologic	
•	Ch	aracteristics	1
	11	Geology and Main Orographic Units	1
	1.1	1 1 1 Geologic and Structural Features	1
		1.1.2 Orographic Sub-division of the Arabian Plate	7
	12	Occurrence of Aquifers	8
	1.2	1.2.1 Paleogeographic Environment and the Formation	. 0
		of Aquifers	8
		1.2.2 Stratigraphic Distribution of Main Aquifers	14
		1.2.3 Major Aquifer Complexes	20
	1.3	Main Groundwater Flow Systems	21
		1.3.1 Types of Hydrogeologic Basins	22
		1.3.2 Major Hydrologic Basins and Groundwater	
		Flow Systems	26
		1.3.3 Hydrogeologic Provinces and Sub-regions	28
	1.4	Groundwater Regimes: Quantitative Aspects	28
		1.4.1 General Features of Groundwater Regimes	
		on the Arabian Plate	28
		1.4.2 Hydraulic Characteristics	29
		1.4.3 Groundwater Recharge	31
		1.4.4 Groundwater Discharge and Flow Volumes	37
	1.5	Groundwater Salinity and Major Hydrochemical Processes	39
		1.5.1 General Distribution of Groundwater Salinity	39
		1.5.2 Dissolved Substances in Precipitation and in	
		the Unsaturated Zone	40
		1.5.3 Hydrochemical Composition of Runoff Water	
		and Shallow Groundwater	45
		1.5.4 Hydrochemistry of Main Aquifers	48
		1.5.5 Main Hydrochemical Types of Groundwater	50
	1.6	Recent and Fossil Groundwater: Aspects of	
		Isotope Hydrology	52

1.0.1	in the Arab Middle East
1.6.2	³ H and ¹⁴ C Data
1.6.3	Stable Isotopes of Oxygen and Hydrogen

2 Northwestern Mountain and Rift Zone of the Northern Arabian Platform

Arabian Platform	63
2.1 Geographic and Hydrologic Features	63
2.1.1 Morphology, Climate, Vegetation and Water Supply	63
2.1.2 Main Hydrologic Basins and River Flow	69
2.2 Geology	73
2.2.1 Stratigraphic Sequence in the Mountain Areas	73
2.2.2 Geologic Structure of the Mountain Massifs	79
2.2.3 Geologic Set-Up of the Rift Valleys	84
2.3 Main Aquifers	87
2.3.1 Stratigraphic Distribution of Main Aquifers	87
2.3.2 Highlands of Judea and Jordan	89
2.3.3 Jordan–Dead Sea–Wadi Araba Rift Valley	93
2.3.4 Lebanon and Antilebanon Mountains and Bekaa	94
2.3.5 Ansariye Mountains and Middle Orontes Area	97
2.4 Groundwater Regimes	99
2.4.1 Hydraulic Parameters	99
2.4.2 Groundwater Recharge	100
2.4.3 Groundwater Flow Systems and Flow Volumes	102
2.5 Groundwater Salinity and Hydrochemistry	114
2.5.1 Mesozoic Karst Aquifers	114
2.5.2 Nummulitic Limestone Aquifers	122
2.5.3 Aquifers in Intermountain and Foreland Depressions	123
2.6 Isotopic Composition of the Groundwater	128
2.6.1 Groundwater Age	128
2.6.2 Stable Isotopes of Oxygen and Hydrogen	130

3	Eastern Part of the Northern Arabian Platform	139
	3.1 Al Badiye, Hamad and the Transitional Zone	139
	3.1.1 Morphology, Hydrography, Climate and Land Use	139
	3.2 Geology	145
	3.2.1 General Geologic Structure	145
	3.2.2 Litho-Stratigraphic Sequence	147
	3.2.3 Lithologic Features of the Upper Cretaceous - Paleogene	
	Sequence	152
	3.2.4 Tectonic Structure of the Geologic Sub-units	153

3.3 Aquifers and Groundwater Regimes	156
3.3.1 Main Aquifers	156
3.3.2 Groundwater Regimes	163
3.4 Groundwater Salinity and Hydrochemistry	168
3.4.1 Groundwater Salinity Distribution	168
3.4.2 Hydrochemistry of Paleogene Chalk Aquifers	169
3.4.3 Hydrochemical Features of Cretaceous and Neogene -	
Quaternary Aquifers in Northern Syria	173
3.4.4 Hydrochemical Features of Aquifers in the Palmyrean	
Zone and the Southeast of the Northern Arabian Plate	176
3.5 Groundwater Age, Information from Isotope Data	179
$3.5.1^{-14}$ C and ³ H Data	179
3.5.2 Stable Isotopes of Oxygen and Hydrogen	181
3.5.3 Pleistocene and Holocene Groundwater	188

4 North Arabian Volcanic Province: Jebel

	l Arab–Golan–Al Harra	189
	.1 Geographic and Geologic Set-Up	189
	4.1.1 Landscape and Climate	189
	4.1.2 Geologic Structure	192
	.2 Aquifer Systems and General Groundwater Regime	195
	4.2.1 Aquiferous Zones and Hydraulic Conditions	195
	4.2.2 Recharge Conditions	198
	.3 Hydrogeologic Sub-Basins and Groundwater Flow Systems	200
	4.3.1 Hydrogeologic Sub-Areas	200
	4.3.2 Jebel el Arab Mountain Massif	200
	4.3.3 Yarmouk Sub-Basin	202
	4.3.4 Azraq Sub-Basin	205
	4.3.5 Wadi Dhuleil	207
	4.3.6 Hamad	207
	.4 Groundwater Salinity and Hydrochemistry	208
	4.4.1 Salinity Distribution and Hydrochemical Environment	208
	4.4.2 Hydrochemical Features in Different	
	Hydrogeologic Areas	210
	.5 Hydrogeologic Information from Isotope Data	216
	4.5.1 3 H and 14 C Data	216
	4.5.2 Stable Isotopes of Oxygen and Hydrogen	217
	4.5.3 Impact of Irrigation Return Flow	220
	4.5.4 Isotope Data and Groundwater Regime	221
5	ntarior Shalf	222
5	1 Geologic and Geographic Set Up	223
	5.1.1 General Geologic Structure	223
		445

		5.1.2 Climate and Landscape	224
		5.1.3 Stratigraphic Sequence	227
	5.2	Main Aquifers	231
		5.2.1 Cambro–Ordovician Sandstone Aquifers	231
		5.2.2 Permian–Jurassic Aquifers of the Tuwayq Segments	234
		5.2.3 Cretaceous Sandstone Aquifers	235
	5.3	Groundwater Regimes	237
		5.3.1 Hydraulic Parameters	237
		5.3.2 Groundwater Recharge	238
		5.3.3 Groundwater Flow Systems and Flow Volumes	239
	5.4	Groundwater Salinity and Hydrochemistry	241
		5.4.1 Sandstone Aquifers	241
		5.4.2 Carbonate Aquifers	245
	5.5	Recent and Pleistocene Groundwater: Information	
		from Isotope Data	246
		5.5.1 Groundwater Age	246
		5.5.2 Stable Isotopes of Oxygen and Hydrogen	247
6	Fac	stern Arahian Platform	251
U	6 1	Geologic and Geographic Set-Up	251
	0.1	6.1.1 General Geologic Structure	251
		6.1.2 Climate Morphology and Hydrography	253
		6.1.3 Sedimentary Cover of the Eastern Arabian Platform	255
	62	Multi-Aquifer System of the Funbrates_Gulf_Rub	200
	0.2	al Khali Basin	265
		6.2.1 General Hydrogeologic System	265
		6.2.2. Hydro-Stratigraphic Sequence	265
		6.2.2 Tryato-Stratigraphic Sequence	260
		6.2.4 Gravel Plain Aquifers	207
	63	Groundwater Regimes	275
	0.5	6 3 1 Hydraulic Parameters	275
		6.3.2 Groundwater Recharge	278
		6.3.2 Groundwater Flow Systems and Flow Volumes	281
	64	Groundwater Salinity and Hydrochemistry	287
	0.1	6.4.1. Groundwater Salinity in Multi-Aquifer Systems	207
		of the Fundrates-Gulf-Rub al Khali Basin	287
		6.4.2 Paleogene Aquifers	289
		6.4.3 Neogene and Quaternary Aquifers	296
		6.4.4 Groundwater Discharge Zones	297
	65	Shallow Groundwater Lenses Above the Brackish Main	_//
	0.5	Aquifer System	300
		651 Bahrain	300
		652 Oatar	301
		Olon Zunat	501

		6.5.3 Northern Kuwait	303
		6.5.4 Al Wusta Area in Oman	304
	6.6	Groundwater Age and Paleohydrology: Information	
		from Isotope Data	305
		6.6.1 Groundwater Age	305
		6.6.2 Stable Isotopes of Oxygen and Hydrogen	307
	6.7	Gypsum, Sabkhas, Sand Dunes: Particular Hydrogeologic	
		Features of the Shelf Area of the Arabian Peninsula	315
		6.7.1 Influence of Evaporite Formations on the Hydrogeologic	
		Conditions	315
		6.7.2 Hydrogeologic Features of Sabkhas	316
		6.7.3 Recharge in Sand Dunes	318
-	A	tion Chield	221
/		Castana Mambalana and Clinete	321
	/.1	Geology, Morphology and Climate	321
		7.1.1 Geology	321
		7.1.2 Morphology	324
		7.1.3 Climate and Vegetation	328
	7.2	Aquifers on the Crystalline Shield	329
		7.2.1 Aquifers in Wadis and Morphologic Depressions	329
		7.2.2 Groundwater Regimes	333
		7.2.3 Groundwater Salinity and Hydrochemistry	335
	7.3	Sedimentary and Volcanic Aquifers Within the Arabian	
		Shield in Yemen	340
		7.3.1 Main Aquifers	340
		7.3.2 Groundwater Regimes	346
		7.3.3 Groundwater Salinity and Hydrochemistry	348
	7.4	Information from Isotope Data	350
		7.4.1 Groundwater Age	350
		7.4.2 Stable Isotopes of Oxygen and Hydrogen	350
8	Om	an Mountains	353
0	81	Geographic and Geologic Setup	353
	0.1	8.1.1 Morphology and Climate	353
		8.1.2 Geology	356
	82	Hydrogeologic Conditions in the Hajar Limestone Areas	350
	0.2	8.2.1 The Aquifer	359
		8.2.2. Groundwater Dagimas	339
		0.2.2 Oroundwater Regimes	262
	0.2	6.2.5 Groundwater Samily and Hydrochemistry	362
	8.3	Groundwater in the Ophiolite Mountains	364
		8.3.1 Aquiterous Zones	364

		8.3.2 Groundwater Regimes	365
		8.3.3 Groundwater Salinity and Hydrochemistry	368
	8.4	Information from Isotope Data	371
		8.4.1 Groundwater Age	371
		8.4.2 Stable Isotopes of Oxygen and Hydrogen	372
9	Aa	uifers in Coastal Plains of the Arabian Plate	377
,	9 1	General Features of the Coastal Plains	377
	7.1	9.1.1 Distribution of Coastal Aquifers	377
		912 Groundwater Regimes	377
		913 Hydrochemical Aspects	378
	92	Mediterranean Sea Coast	380
	1.2	9.2.1 Coast Along the Ansarive and Lebanon Mountains	380
		9.2.2 Gaza Strip	381
	9.3	Red Sea Coast	383
		9.3.1 Main Geographic and Geologic Features	383
		9.3.2 Coastal Plains Between Agaba and Jedda	384
		9.3.3 Tihama Plain in Saudi Arabia and Yemen	385
	9.4	Coast of the Gulf of Aden and the Arabian Sea	389
		9.4.1 Geologic and Morphologic Structure	389
		9.4.2 Hydrogeologic Features	392
	9.5	Batina Coastal Plain in the United Arab Emirates and Oman	394
		9.5.1 Geographic and Geologic Set-Up	394
		9.5.2 Aquiferous Zones and Groundwater Regimes	395
		9.5.3 Groundwater Salinity and Hydrochemistry	400
	9.6	Information from Isotope Data	405
		9.6.1 Indications of Recent Recharge	405
		9.6.2 Stable Isotopes of Oxygen and Hydrogen	406
Ref	fore	1005	413
ne	erer	ites	413
Ind	lex		431

List of Figures

Fig. 1.1	Main geologic-structural units of the Arabian Plate	2
Fig. 1.2	Morphologic features of the Arabian Plate. Compiled after	
	Wohlfahrt (1980) and various other sources	9
Fig. 1.3	Main hydrologic basins of the Arabian Plate	23
Fig. 1.4	Mean annual precipitation on the Arabian Plate	32
Fig. 1.5	Piper diagram: Rain water samples from meteorologic	
	stations in Jordan and Syria	42
Fig. 1.6	δ^{18} O/ δ^2 H diagram: Examples of Holocene and Pleistocene	
-	groundwaters from different areas of the Arabian Plate	60
Fig. 2.1	Main orographic-geographic units of the northwestern	
-	mountain and rift zone	64
Fig. 2.2	Main rivers and wadis in the northwestern mountain	
-	and rift zone	69
Fig. 2.3	Main hydrologic basins of the northwestern mountain	
	and rift zone	70
Fig. 2.4	Northwestern mountain and rift zone, location map,	
-	northern part	74
Fig. 2.5	Northwestern mountain and rift zone, location map,	
-	southern part	75
Fig. 2.6	Main geologic structures of the northwestern mountain	
•	and rift zone	80
Fig. 2.7	Outcrops of Mesozoic carbonate formations in the northwestern	
•	mountain and rift zone	88
Fig. 2.8	Wadis and springs in the Jordan river catchment	104
Fig. 2.9	Main wadis and springs in the Lebanon mountain area	
-	and the Bekaa	110
Fig. 2.10	Piper diagram: Spring water samples from the Judea aquifer	
-	of the West Bank	116
Fig. 2.11	Piper diagram: Groundwater samples from Upper Cretaceous	
-	carbonate aquifers of the highlands of Jordan	117
Fig. 2.12	Piper diagram: Spring water from Mesozoic aquifers of the	
-	Antilebanon mountains	120

Fig. 2.13	Piper diagram: Groundwater samples from Mesozoic	
	carbonate aquifers of northwestern Syria	122
Fig. 2.14	Piper diagram: Groundwater samples from nummulitic	
	limestone aquifers	123
Fig. 2.15	Piper diagram: Groundwater samples from various aquifers of	
	the Jordan valley	125
Fig. 2.16	$\delta^{10}O/\delta^2H$ diagram: Rain water samples of stations in the	
	northwestern mountain and rift zone	131
Fig. 2.17	δ^{10} O/ δ^2 H diagram: Groundwater samples from Mesozoic	
	aquifers in northwestern Jordan between the highlands	
	of Irbid – Ajlun and the Jordan valley	134
Fig. 2.18	$\delta^{18}O/\delta^{2}H$ diagram: Water samples from springs and wells	
	in the Antilebanon and Ansariye mountains in Syria	135
Fig. 2.19	$\delta^{18}O/\delta^2H$ diagram: Groundwater samples from the Qalamoun	
	area, Syria	136
Fig. 3.1	Main orographic–geographic units of the eastern part	
	of the northern Arabian platform	140
Fig. 3.2	Main structural geologic units of the eastern part	
	of the northern Arabian platform	146
Fig. 3.3	Location map of the northeastern part of the north	
	Arabian platform	147
Fig. 3.4	Location map of the southeastern part of the north	
	Arabian platform	148
Fig. 3.5	Piper diagram: Groundwater samples from Paleogene	
	chalk aquifers	172
Fig. 3.6	Piper diagram: Groundwater samples from Paleogene chalk	
	aquifers of the Aleppo plateau, northern Syria	172
Fig. 3.7	Piper diagram: Groundwater samples from the deeper Upper	
	Cretaceous aquifer of the Aleppo plateau	174
Fig. 3.8	Piper diagram: Groundwater samples from Paleogene aquifers	
	in the Syrian Jezire	175
Fig. 3.9	Piper diagram: Groundwater samples from the southern	
	steppe and Hamad in Syria	178
Fig. 3.10	Piper diagram: Groundwater samples from the Hamad	
	in northeastern Jordan	178
Fig. 3.11	δ^{18} O/ δ^2 H diagram: Rain water samples from stations	
	in the east of Syria and Jordan	181
Fig. 3.12	δ^{18} O/ δ^{2} H diagram: Groundwater samples from	
	the Aleppo plateau	183
Fig. 3.13	δ^{18} O/ δ^2 H diagram: Groundwater samples from	
	the Syrian Jezire	184
Fig. 3.14	δ^{18} O/ δ^2 H diagram: Groundwater samples from the Palmyrean	
	fold zone, Syria	185

Fig. 3.15	δ^{18} O/ δ^{2} H diagram: Groundwater samples from the southern	
-	Syrian steppe and Hamad	186
Fig. 3.16	δ^{18} O and 3 H values of groundwater samples from the southern	
-	Syrian steppe and Hamad	186
Fig. 3.17	δ^{18} O and 14 C values of groundwater samples from the southern	
	Syrian steppe and Hamad	187
Fig. 4.1	North Arabian volcanic province	190
Fig. 4.2	Jebel el Arab basalt field, location map, main	
•	hydrologic basins	201
Fig. 4.3	Location map of Yarmouk catchment	202
Fig. 4.4	Groundwater salinity distribution in Jebel el Arab basalt field	
U	from ESCWA (1996)	209
Fig. 4.5	Piper diagram: Groundwater samples from the basalt aquifer in	
U	the Jebel el Arab–Hauran–Mzeirib area, shallow groundwater	
	in the Jebel el Arab mountain area, groundwater in the Hauran	
	plain, water of springs in the Mzeirib–Wadi Hreer area	211
Fig. 4.6	Piper diagram: Groundwater samples from the basalt aquifer	
U	in the Mafraq area and northeastern desert of Jordan	213
Fig. 4.7	Piper diagram: Groundwater samples from the basalt aquifer	
0	in the Azrag area. AWSA well field, springs in Azrag plain	213
Fig. 4.8	Piper diagram: Groundwater samples from the basalt aquifer	
0	in the Dhuleil area. northern Jordan	215
Fig. 4.9	¹⁴ C water ages in the Jebel el Arab basalt field	
8>	after ESCWA (1996)	217
Fig. 4.10	$\delta^{18}O/\delta^2H$ diagram: Rain water samples from the Jebel el	
1.8	Arab basalt area stations Suweida Ezraa Azrag	218
Fig 411	$\delta^{18}O/\delta^2H$ diagram: Groundwater samples from the lebel el	210
115. 111	Arab_Hauran_Mzeirib area	219
Fig 4 12	δ^{18} O/ δ^2 H diagram: Groundwater samples from the	21)
115. 1.12	Mafran_Azrag areas	219
Fig 413	δ^{18} O/ δ^{2} H diagram: Samples from springs and AWSA	21)
115. 1.15	well field AWSA well field spring	220
Fig 4 14	$\delta^{18} \Omega / \delta^2 H$ diagram: Groundwater samples from Wadi Dhuleil	220
1 15. 4.14	and the Azrag nlain	221
Fig 5.1	Interior Shelf main geologic units	221
Fig. 5.1 Fig 5.2	Interior Shelf, location man	224
Fig. 5.2	Piper diagram: Groundwater samples from the Disi aquifer	223
11g. 5.5	southern Jordan	2/3
Fig 5 1	Piper diagram: Groundwater samples from the Miniur	243
11g. 5.4	and Wasia aquifers. Saudi Arabia	245
Fig 55	and wasta aquiters, Sauut Ataula $\delta^{18} \Omega/\delta^2 H$ diagram: Groundwater samples from the Disi equifer	24J
1 1g. J.J	in southern Jordan	210
Fig 56	$\delta^{18} \Omega/\delta^2 H$ diagram: Groundwater samples from the Turrenz	248
Fig. 5.0	o O/o ri diagram: Oroundwater samples from the Tuwayq	240
	пошнания	248

Fig. 6.1	Main geologic-structural units of the eastern	
•	Arabian platform	252
Fig. 6.2	Eastern Arabian platform, location map, northern part	254
Fig. 6.3	Eastern Arabian platform, location map, southern part	255
Fig. 6.4	Geomorphologic features on the eastern Arabian plate	256
Fig. 6.5	Eastern Arabian platform: gravel fans, paleo-drainage system	259
Fig. 6.6	Eastern Arabian platform: groundwater flow systems	282
Fig. 6.7	Major springs in the Euphrates valley	284
Fig. 6.8	Eastern Arabian platform: groundwater salinity distribution	288
Fig. 6.9	Piper diagram: Groundwater samples from the Umm er	
•	Radhuma aquifer of the Suman plateau, Saudi Arabia	291
Fig. 6.10	Piper diagram: Groundwater samples from the Umm er	
C	Radhuma aquifer of eastern Saudi Arabia	292
Fig. 6.11	Piper diagram: Water samples of springs in the Euphrates	
•	valley, Iraq	294
Fig. 6.12	Piper diagram: Groundwater samples from the Damam	
•	aquifer in Kuwait	294
Fig. 6.13	Well fields in Kuwait	295
Fig. 6.14	Piper diagram: Water samples from the Al Hasa discharge	
•	area, eastern Saudi Arabia	299
Fig. 6.15	Piper diagram: Groundwater samples from Tertiary aquifers in	
•	discharge and exploitation areas of eastern Saudi Arabia	299
Fig. 6.16	Piper diagram: Groundwater samples from fresh water lenses	
-	in northern Kuwait	304
Fig. 6.17	δ^{18} O/ δ^{2} H diagram: Groundwater samples from the Umm er	
	Radhuma aquifer of the Suman plateau, Saudi Arabia	308
Fig. 6.18	δ^{18} O/ δ^{2} H diagram: Groundwater samples from Tertiary aquifers	
	in eastern Saudi Arabia	309
Fig. 6.19	δ^{18} O/ δ^{2} H diagram: Groundwater samples from Tertiary aquifers	
	in Kuwait	310
Fig. 6.20	δ^{18} O/ δ^{2} H diagram: Groundwater samples from Tertiary aquifers	
	in Bahrain	311
Fig. 6.21	δ^{18} O/ δ^{2} H diagram: Groundwater samples from Tertiary aquifers	
	in Qatar	312
Fig. 6.22	δ^{18} O/ δ^{2} H diagram: Groundwater samples from aquifers	
	in the western gravel plain and the sand dune area	
	of the United Arab Emirates	313
Fig. 7.1	Arabian Shield, outcrops of main geologic units	322
Fig. 7.2	Arabian Shield, location map, northern part	325
Fig. 7.3	Arabian Shield, location map, southern part	326
Fig. 7.4	Mean annual precipitation on the Arabian Shield	329
Fig. 7.5	Piper diagram: Groundwater samples from wadis on	
	the western escarpment of the Arabian Shield between	
	Madina and Taif	339

Fig. 7.6	Piper diagram: Groundwater samples from the Wadi Fatima catchment. Arabian Shield, western Saudi Arabia	339
Fig. 7.7	Piper diagram: Groundwater samples from the Damm area,	
	Arabian Shield, western Saudi Arabia	340
Fig. 7.8	Outcrops of geologic formations in the western highlands and	
	escarpment of Yemen	342
Fig. 7.9	Piper diagram: Groundwater samples from the Amran valley,	
	northern Yemen	349
Fig. 7.10	δ^{18} O/ δ^2 H diagram: Groundwater samples from wadi aquifers	
	in the highlands and the escarpment between Jeddah and	
	Madina, western Saudi Arabia	351
Fig. 7.11	δ^{18} O/ δ^{2} H diagram: Groundwater samples from Wadi Rima,	
-	Arabian Shield, western Saudi Arabia	351
Fig. 7.12	δ^{18} O/ δ^{2} H diagram: Groundwater samples from the Sanaa-Mahwit	
-	area, Yemen Sanaa high plain, "Mahwit escarpment	352
Fig. 8.1	Northern Oman mountains, location map	354
Fig. 8.2	Oman mountains, location map of Al Hajar al Sharqi	
e	and Al Hajar al Gharbi	355
Fig. 8.3	Outcrops of main geologic units in the Oman mountains	357
Fig. 8.4	Piper diagram: Groundwater samples from the Hajar aquifer	
U	of the Musandam peninsula, United Arab Emirates	363
Fig. 8.5	Piper diagram: Groundwater samples from the ophiolite	
e	mountains of the United Arab Emirates	369
Fig. 8.6	Piper diagram: Groundwater samples from the ophiolite	
U	mountains of Oman (dolerite, gabbro, peridotite)	369
Fig. 8.7	Piper diagram: Falaj water from ophiolites in the	
0	United Arab Emirates	370
Fig. 8.8	$\delta^{18}O/\delta^2H$ diagram: Groundwater samples from the Hajar	
0	aquifer of the Musandam Peninsula in the United Arab Emirates	373
Fig. 8.9	δ^{18} O/ δ^{2} H diagram: Groundwater samples from the ophiolite	
0	mountains in the United Arab Emirates	374
Fig. 8.10	δ^{18} O/ δ^2 H diagram: Water samples from alkaline springs in the	
0	ophiolite mountains of Oman	376
Fig. 9.1	Gaza coastal area. location map	382
Fig. 9.2	Coastal areas in the south of the Arabian Peninsula,	
0	location map	391
Fig. 9.3	Batina coastal plain in the United Arab Emirates, salt water	-
0	intrusion and locations	395
Fig. 9.4	Piper diagram: Mean values of groundwater samples	
0	from well fields on the eastern coastal plains	
	of the United Arab Emirates	401
Fig. 9.5	Piper diagram: Mean values of groundwater samples	. 1
8.9.0	from well fields on the eastern coastal plains of the	
	United Arab Emirates	402

Piper diagram: Groundwater samples from irrigation wells on	
the Fujayra coastal plain, United Arab Emirates	403
δ^{18} O/ δ^{2} H diagram: Groundwater samples from the Jedda	
coastal plain	407
$\delta^{18}O/\delta^2H$ diagram: Groundwater samples from the Tihama	
coastal plain in Saudi Arabia	407
δ^{18} O/ δ^{2} H diagram: Groundwater samples from the Salala	
coastal plain, Oman	409
δ^{18} O/ δ^{2} H diagram: Groundwater samples from the Batina	
coastal plain in the United Arab Emirates	411
	Piper diagram: Groundwater samples from irrigation wells on the Fujayra coastal plain, United Arab Emirates

List of Tables

Table 1.1	Depositional environment and main lithologic varieties	
	(after Murris 1984, modified)	12
Table 1.2	Selected hydrogeologic sub-regions of the Arabian Plate	28
Table 1.3	Hydraulic parameter values of major aquifers of the	
	Arabian Plate	31
Table 1.4	Anion concentrations and electrical conductivity values in	
	precipitation at different meteorologic stations of the	
	Arab Middle East	41
Table 1.5	Mean Cl concentrations in soil water and groundwater at	
	observation stations in Jordan (from König 1994)	44
Table 1.6	Concentration of major ions in flood water, cisterns, spring	
	water and shallow groundwater in Jordan, Syria and western	
	Saudi Arabia	47
Table 2.1	Stratigraphic sequence in the Judean highlands and the	
	highlands of Jordan	77
Table 2.2	Stratigraphic sequence of the Lebanon mountains.	
	Simplified scheme after Khair et al. (1992), UNDP (1970)	78
Table 2.3	Scheme of main aquifers in the northwestern mountain	
	and rift zone	90
Table 2.4	Estimates of annual groundwater recharge for various	
	catchment areas of the West Bank after Gvirtzman (1994),	
	Kroitorou et al. (1985, 1992), Sunna (1995)	100
Table 2.5	Mean annual discharge of springs on the eastern slope of	
	the Judean highlands after Kroitorou et al. (1985, 1992),	
	Sunna (1995)	103
Table 2.6	Mean discharge of major springs at the west slope of	
	the Lebanon mountains after Khair et al. (1992), Shatilah,	
	UNDP (1970)	109
Table 2.7	Mean δ^{18} O and δ^{2} H values of precipitation in different	
	areas of the northwestern mountain and rift zone	130
Table 2.8	δ^{18} O and δ^{3} H values in different parts of the Damascus	
	plain	136

			•	•	•
XX	(1	v	1	1	1
	•		•	•	•

Table 3.1	Scheme of main aquifers in the eastern part of the northern	
	Arabian platform	158
Table 3.2	Hydraulic parameter values of aquifers in eastern Jordan	164
Table 3.3	Hydrochemical parameters of chalk groundwaters in different	
	areas of the northern Arabian platform	173
Table 3.4	Ranges of δ^{18} O and d values in different areas of the eastern	
	part of the northern Arabian platform	187
Table 5.1	Sedimentary sequence of the Tuwayq mountain zone	229
Table 5.2	Hydrostratigraphic scheme of Paleozoic–Lower Cretaceous	
	formations in the Tabuk–Disi segment of the Interior Shelf	233
Table 5.3	Hydrostratigraphic scheme of Paleozoic–Cretaceous	
	formations in the Tabuk–Sakaka area	234
Table 5.4	Estimated recharge rates on the Interior Shelf in central	
	Saudi Arabia	239
Table 6.1	Hydrostratigraphic scheme of the eastern Arabian platform	262
Table 6.2	Thickness and position of the Damam aquifer	271
Table 6.3	Well yields in Paleogene–Neogene aquifers	
	in southern Iraq	283
Table 6.4	Discharge of main springs in the Euphrates valley	
	1979/1980	284
Table 6.5	Groundwater extraction from tertiary aquifers	
	in northeastern Saudi Arabia after Abderrahman et al. (1995),	
	Zubari (1997)	286
Table 7.1	Hydrostratigraphic scheme of the shield area in Yemen after	
	van der Gun and Ahmed (1995), Robertson (1992)	341
Table 7.2	Hydraulic parameter values of aquifers in Yemen	346
Table 8.1	Hydrostratigraphic sequence in the Oman mountains	360
Table 8.2	Major ion concentrations (mg/l) of fresh and brackish	
	components of groundwater in Hajar aquifer of the	
	Musandam peninsula	364
Table 9.1	Changes in ionic ratios in groundwater affected by salt	
	water/fresh water fronts	380
Table 9.2	Average annual streamflow in major wadis of the Tihama	
	of Yemen	387
Table 9.3	Isotope values of groundwater from the eastern coastal	
	plain of the United Arab Emirates	411

Chapter 1 The Arabian Plate: Geology and Hydrogeologic Characteristics

1.1 Geology and Main Orographic Units

1.1.1 Geologic and Structural Features

1.1.1.1 Arabian Plate

The Arabian Plate extends approximately over the region known as Arab Middle East, which includes the Arabian Peninsula together with the adjoining northern Arab countries (Al Mashreq). Until the early Tertiary, the Arabian Plate was connected to the African Plate, one of the huge main plates of the earth crust. During the Tertiary, the sector which became the Arabian Plate was separated from the African Plate with the opening of the Red Sea and Gulf of Aden rift structures.

Descriptions of the regional geological framework of the Arabian Plate can be found in publications by Ponikarov et al. (1967a), Powers et al. (1966), Bender (1974a), Beydoun (1991), Alsharhan and Nairn (1997), Alsharhan et al. (2001), Al-Sayari and Zötl (1978).

The development of the Arabian Plate included the following main stages (Beydoun 1991):

- The basement of the plate was formed during the Precambrian as part of the Nubo-Arabian craton.
- During the Paleozoic until the Permian, the sector comprising the present Arabian Plate occupied a marginal shelf position on the Gondwana supercontinent.
- In the early Mesozoic, plate boundaries developed on the northeast, southeast, north and northwest margins with the opening of the Neo-Tethys and the Indian Ocean.
- During the middle to late Tertiary, collision of the Arabian Plate with the Eurasian continent compressed and modified the north and northeast margins of the plate, and rift tectonics opening the Red Sea–Dead Sea graben and the Gulf of Aden created a new northwest margin and the south and southwest margins.