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Chapter 1
Overview and Organization

Viability theory designs and develops mathematical and algorithmic methods
for investigating the adaptation to viability constraints of evolutions governed
by complex systems under uncertainty that are found in many domains involv-
ing living beings, from biological evolution to economics, from environmental
sciences to financial markets, from control theory and robotics to cognitive
sciences. It involves interdisciplinary investigations spanning fields that have
traditionally developed in isolation.

The purpose of this book is to present an initiation to applications of
viability theory, explaining and motivating the main concepts and illustrating
them with numerous numerical examples taken from various fields.

Viability Theory. New Directions plays the role of a second edition
of Viability Theory, [18, Aubin| (1991), presenting advances occurred in
set-valued analysis and viability theory during the two decades following
the publication of the series of monographs: Differential Inclusions. Set-
Valued Maps and Viability Theory, [25, Aubin & Cellina] (1984), Set-valued
Analysis, 27, Aubin & Frankowska] (1990), Analyse qualitative, [85, Dordan]
(1995), Neural Networks and Qualitative Physics: A Viability Approach, [21,
Aubin] (1996), Dynamic Economic Theory: A Viability Approach, 22, Aubin]
(1997), Mutational, Morphological Analysis: Tools for Shape Regulation and
Morphogenesis, [23, Aubin] (2000), Mutational Analysis, [150, Lorenz] (2010)
and Sustainable Management of Natural Resources, [77, De Lara & Doyen]
(2008).

The monograph La mort du devin, I’émergence du démiurge. Essai sur
la contingence et la viabilité des systémes, [24, Aubin] (2010), divulges ver-
nacularly the motivations, concepts, theorems and applications found in this
book. Its English version, The Demise of the Seer, the Rise of the Demiurge.
Essay on contingency, viability and inertia of systems, is under preparation.

However, several issues presented in the first edition of Viability Theory,
[18, Aubin] are not covered in this second edition for lack of room. They con-
cern Haddad’s viability theorems for functional differential inclusions where
both the dynamics and the constraints depend on the history (or path) of

J.-P. Aubin et al., Viability Theory, DOI 10.1007/978-3-642-16684-6_1, 1
(© Springer-Verlag Berlin Heidelberg 2011



2 1 Overview and Organization

the evolution and the Shi Shuzhong viability theorems dealing with partial
differential evolution equation (of parabolic type) in Sobolev spaces, as well
as fuzzy control systems and constraints, and, above all, differential (or
dynamic) games. A sizable monograph on tychastic and stochastic viability
and, for instance, their applications to finance, would be needed to deal with
uncertainty issues where the actor has no power on the choice of the uncertain
parameters, taking over the problems treated in this book in the worst case
(tychastic approach) or in average (stochastic approach).

We have chosen an outline, which is increasing with respect to mathemat-
ical technical difficulty, relegating to the end the proofs of the main Viability
and Invariance Theorems (see Chap. 19, p.769).

The proofs of the theorems presented in Set-valued analysis [27, Aubin &
Frankowska] (1990) and in convex analysis (see Optima and Equilibria, [19,
Aubin]), are not duplicated but referred to. An appendix, Set- Valued Analysis
at a Glance (18, p. 713) provides without proofs the statements of the main
results of set-valued analysis used in these monographs. The notations used
in this book are summarised in its Sect. 18.1, p. 713.

1.1 Motivations

1.1.1 Chance and Necessity

The purpose of viability “theory” (in the sense of a sequence [thedria,
procession] of mathematical tools sharing a common background, and not
necessarily an attempt to explain something [thedrein, to observe]) is to
attempt to answer directly the question of dynamic adaptation of uncertain
evolutionary systems to environments defined by constraints, that we called
viability constraints for obvious reasons. Hence the name of this body of
mathematical results developed since the end of the 1970s that needed to forge
a differential calculus of set-valued maps (set-valued analysis), differential
inclusions and differential calculus in metric spaces (mutational analysis).
These results, how imperfect they might be to answer this challenge, have
at least been motivated by social and biological sciences, even though
constrained and shaped by the mathematical training of their authors.

It is by now a consensus that the evolution of many variables describing
systems, organizations, networks arising in biology and human and social
sciences do not evolve in a deterministic way, not even always in a stochastic
way as it is usually understood, but evolve with a Darwinian flavor.

Viability theory started in 1976 by translating mathematically the title

Chance and  Necessity

i) 0
z(t)e F(z(t) & z(t)eK
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of the famous 1973 book by Jacques Monod, Chance and Necessity (see
[163, Monod]), taken from an (apocryphical?) quotation of Democritus who
held that “the whole universe is but the fruit of two qualities, chance and

necessity”.
- o
/v:lutions

 states

Initial
state

timtx

Fig. 1.1 The mathematical translation of “chance”.

The mathematical translation of “chance” is the differential inclusion z'(t) €
F(xz(t)), which is a type of evolutionary engine (called an evolutionary
system) associating with any initial state x the subset S(x) of evolutions
starting at x and governed by the differential inclusion above. The figure
displays evolutions starting from a give initial state, which are functions from
time (in abscissas) to the state space (ordinates).

The system is said to be deterministic if for any initial state z, S(z) is made
of one and only one evolution, whereas “contingent uncertainty” happens
when the subset S(x) of evolutions contains more than one evolution for at
least one initial state. “Contingence is a non-necessity, it is a characteristic
attribute of freedom”, wrote Gottfried Leibniz.

Fig. 1.2 The mathematical translation of “necessity”.
The mathematical translation of “necessity” is the requirement that for all
t > 0, z(t) € K, meaning that at each instant, “viability constraints” are
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satisfied by the state of the system. The figure represents the state space
as the plane, and the environment defined as a subset. It shows two initial
states, one, xq from which all evolutions violate the constraints in finite time,
the other one x1, from which starts one viable evolution and another one
which is not viable.

One purpose of viability theory is to attempt to answer directly the
question that some economists, biologists or engineers ask: “Complex
organizations, systems and networks, yes, but for what purpose?” The answer
we suggest: “to adapt to the environment.”

This is the case in economics when we have to adapt to scarcity constraints,
balances between supply and demand, and many other constraints.

This is also the case in biology, since Claude Bernard’s “constance du
milieu intérieur” and Walter Cannon’s “homeostasis”. This is naturally the
case in ecology and environmental studies.

This is equally the case in control theory and, in particular, in robotics,
when the state of the system must evolve while avoiding obstacles forever or
until they reach a target.

In summary, the environment is described by viability constraints of various
types, a word encompassing polysemous concepts as stability, confinement,
homeostasis, adaptation, etc., expressing the idea that some variables must
obey some constraints (representing physical, social, biological and economic
constraints, etc.) that can never be violated. So, viability theory started as
the confrontation of evolutionary systems governing evolutions and viability
constraints that such evolutions must obey.

At the same time, controls, subsets of controls, in engineering, regulons
(regulatory controls) such as prices, messages, coalitions of actors, con-
nectionnist operators in biological and social sciences, which parameterize
evolutionary systems, do evolve: Their evolution must be consistent with
the constraints, and the targets or objectives they must reach in finite or
prescribed time. The aim of viability theory is to provide the “regulation
maps” associating with any state the (possibly empty) subset of controls or
regulons governing viable evolutions.

Together with the selection of evolutions governed by teleological objec-
tives, mathematically translated by intertemporal optimality criteria as in
optimal control, viability theory offers other selection mechanisms by requir-
ing evolutions to obey several forms of viability requirements. In social and
biological sciences, intertemporal optimization can be replaced by myopic,
opportunistic, conservative and lazy selection mechanisms of viable evolutions
that involve present knowledge, sometimes the knowledge of the history
(or the path) of the evolution, instead of anticipations or knowledge of
the future (whenever the evolution of these systems cannot be reproduced
experimentally). Other forms of uncertainty do not obey statistical laws, but
also take into account unforeseeable rare events (tyches, or perturbations,
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disturbances) that must be avoided at all costs (precautionary principle!).
These systems can be regulated by using regulation (or cybernetical) controls
that have to be chosen as feedbacks for guaranteeing the viability of
constraints and/or the capturability of targets and objectives, possibly
against perturbations played by “Nature”, which we call tyches.

However, there is no reason why collective constraints are satisfied at each
instant by evolutions under uncertainty governed by evolutionary systems.
This leads us to the study of how to correct either the dynamics, and/or
the constraints in order to restore viability. This may allow us to provide
an explanation of the formation and the evolution of controls and regulons
through regulation or adjustment laws that can be designed (and computed)
to insure viability, as well as other procedures, such as using impulses
(evolutions with infinite velocity) governed by other systems, or by regulating
the evolution of the environment.

Presented in such an evolutionary perspective, this approach of (complex)
evolutionary systems departs from main stream modelling by a direct
approach:

1 [Direct Approach.] It consists in studying properties of evolutions
governed by an evolutionary system: gather the larger number of properties
of evolutions starting from each initial state. It may be an information both
costly and useless, since our human brains cannot handle simultaneously
too many observations and concepts.

Moreover, it may happen that evolutions starting from a given initial state
satisfy properties which are lost by evolutions starting from another initial
state, even close to it (sensitivity analysis) or governed by (stability analysis).

Viability theory rather uses instead an inverse approach:

2 [Inverse Approach.] A set of prescribed properties of evolutions being
given, study the (possibly empty) subsets of initial states from which

1. starts at least one evolution governed by the evolutionary system
satisfying the prescribed properties,
2. all evolutions starting from it satisfy these prescribed properties.

These two subsets coincide whenever the evolutionary system is determin-
1stic.

1 Stating that one should limit, bound or even forbid potential dangerous actions, without
waiting for a scientific proof of their hazardous consequences, whatever the economic cost.
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Stationarity, periodicity and asymptotic behavior are examples of classical
properties motivated by physical sciences which have been extensively
studied.

We thus have to add to this list of classical properties other ones, such as
concepts of viability of an environment, of capturability of a target in finite
time, and of other concepts combining properties of this type.

1.1.2 Motivating Applications

For dealing with these issues, one needs “dedicated” concepts and formal
tools, algorithms and mathematical techniques motivated by complex systems
evolving under uncertainty. For instance, and without going into details, we
can mention systems sharing common features:

1. Systems designed by human brains in the sense that agents, actors,

decision-makers act on the evolutionary system, as in engineering. Control
theory and differential games, conveniently revisited, provide numer-
ous metaphors and tools for grasping viability questions. Problems in
control design, stability, reachability, intertemporal optimality, tracking of
evolutions, observability, identification and set-valued estimation, etc., can
be formulated in terms of viability and capturability concepts investigated
in this book.
Some technological systems such as robots of all types, from drones,
unmanned underwater vehicles, etc., to animats (artificial animals, a
contraction of anima-materials) need “embedded systems” implementa-
tions autonomous enough to regulate viability /capturability problems by
adequate regulation (feedback) control laws. Viability theory provides
algorithms for computing the feedback laws by modular and portable
software flexible enough for integrating new problems when they appear
(hybrid systems, dynamical games, etc.).

2. Systems observed by human brains, are more difficult to understand
since human beings did not design or construct them. Human beings live,
think, are involved in socio-economic interactions, but struggle for grasping
why and how they do it, at least, why. This happens for instance in the
following fields:

e economics, where the viability constraints are the scarcity constraints
among many other ones. We can replace the fundamental Walrasian
model of resource allocations by decentralized dynamical model in which
the role of the controls is played by the prices or other economic
decentralizing messages (as well as coalitions of consumers, interest
rates, and so forth). The regulation law can be interpreted as the
behavior of Adam Smith’s invisible hand choosing the prices as a
function of allocations of commodities,
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e finance, where shares of assets of a portfolio play the role of controls
for guaranteing that the values of the portfolio remains above a given
time/price dependent function at each instant until the exercise time
(horizon), whatever the prices and their growth rates taken above
evolving bounds,

e dynamical connectionnist networks and/or dynamical cooper-
ative games, where coalitions of players may play the role of controls:
each coalition acts on the environment by changing it through dynam-
ical systems. The viability constraints are given by the architecture of
the network allowed to evolve,

e Population genetics, where the viability constraints are the ecological
constraints, the state describes the phenotype and the controls are
genotypes or fitness matrices.

e sociological sciences, where a society can be interpreted as a set of
individuals subjected to viability constraints. Such constraints corre-
spond to what is necessary for the survival of the social organization.
Laws and other cultural codes are then devised to provide each
individual with psychological and economical means of survival as well
as guidelines for avoiding conflicts. Subsets of cultural codes (regarded
as cultures) play the role of regulation parameters.

e cognitive sciences, in which, at least at one level of investigation,
the variables describe the sensory-motor activities of the cognitive
system, while the controls translate into what could be called conceptual
controls (which are the synaptic matrices in neural networks.)

Theoretical results about the ways of thinking described above are useful
for the understanding of non teleological evolutions, of the inertia principle,
of the emergence of new regulons when viability is at stakes, of the role of
different types of uncertainties (contingent, tychastic or stochastic), of the
(re)designing of regulatory institutions (regulated markets when political
convention must exist for global purpose, mediation or metamediation
of all types, including law, social conflicts, institutions for sustainable
development, etc.). And progressively, when more data gathered by these
institutions will be available, qualitative (and sometimes quantitative)
prescriptions of viability theory may be useful.

1.1.3 Motivations of Viability Theory from Living
Systems

Are social and biological systems sufficiently similar to systems currently
studied in mathematics, physics, computer sciences or engineering? Eugene
Wigner’s considerations on the unreasonable effectiveness of mathematics in
the natural sciences [215, Wigner] are even more relevant in life sciences.
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For many centuries, human minds used their potential “mathematical
capabilities” to describe and share their “mathematical perceptions” of the
world. This mathematical capability of human brains is assumed to be
analogous to the language capability. Each child coming to this world uses
this specific capability in social interaction with other people to join at each
instant an (evolving) consensus on the perception of their world by learning
their mother tongue (and few others before this capability fades away with
age). We suggest the same phenomenon happens with mathematics. They
play the “mathematical role” of metaphors that language uses for allowing us
to understand a new phenomenon by metaphors comparing it with previously
“understood phenomena”. Before it exploded recently in a Babel skyscraper,
this “mathematical father tongue” was quite consensual and perceived
as universal. This is this very universality which makes mathematics so
fascinating, deriving mathematical theories or tools motivated by one field
to apply them to several other ones. However, apparently, because up to
now, the mathematical “father tongue” was mainly shaped by “simple”
physical problems of the inert part of the environment, letting aside, with
few exceptions, the living world. For good reasons. Fundamental simple
principles, such as the Pierre de Fermat’s “variational principle”, including
Isaac Newton’s law thanks to Maupertuis’s least action principle, derived
explanations of complex phenomena from simple principles, as Ockham’s
razor prescribes: This “law of parsimony” states that an explanation of any
phenomenon should make as few assumptions as possible, and to choose
among competing theories the one that postulates the fewest concepts. This
is the result of an “abstraction process”, which is the (poor) capability
of human brains that select among the perceptions of the world the few
ones from which they may derive logically or mathematically many other
ones. Simplifying complezity should be the purpose of an emerging science of
complexity, if such a science will emerge beyond its present fashionable status.

So physics, which could be defined as the part of the cultural and physical
environment which is understandable by mathematical metaphors, has not
yet, in our opinion, encapsulated the mathematical metaphors of living
systems, from organic molecules to social systems, made of human brains
controlling social activities. The reason seems to be that the adequate mathe-
matical tongue does not yet exist. And the challenge is that before creating it,
the present one has to be forgotten, de-constructed. This is quite impossible
because mathematicians have been educated in the same way all over
the world, depriving mathematics from the Darwinian evolution which has
operated on languages. This uniformity is the strength and the weakness of
present day mathematics: its universality is partial. The only possibility to
mathematically perceive living systems would remain a dream: to gather
in secluded convents young children with good mathematical capability,
but little training in the present mathematics, under the supervision or
guidance of economists or biologists without mathematical training. They
possibly could come up with new mathematical languages unknown to us



