C. Cattaneo (Ed.)

Vedute e problemi

 attuali in relatività generaleSestriere, Italy 1958
C. Cattaneo (Ed.)

Vedute e problemi attuali in relatività generale

Lectures given at the
Centro Internazionale Matematico Estivo (C.I.M.E.), held in Sestriere (Torino), Italy, July 20-30, 1958

FONDAZIONE

C.I.M.E. Foundation
c/o Dipartimento di Matematica "U. Dini"
Viale Morgagni n. 67/a
50134 Firenze
Italy
cime@math.unifi.it

ISBN 978-3-642-10900-3
e-ISBN: 978-3-642-10903-4
DOI:10.1007/978-3-642-10903-4
Springer Heidelberg Dordrecht London New York
©Springer-Verlag Berlin Heidelberg 2011
Reprint of the $1^{\text {st }}$ Ed. C.I.M.E., Florence, 1958
With kind permission of C.I.M.E.

Printed on acid-free paper

Springer.com

CENTRO INTERNATIONALE MATEMATICO ESTIVO (C.I.M.E)

$1{ }^{\circ}$ Ciclo - Sestriere - 20-30 luglio 1958

VEDUTE E PROBLEMI ATTUALI IN RELATIVITA’ GENERALE

P. G. Bergmann: Problems of quantization 1
A. Lichnerowicz: Radiations gravitationnelles et éléctromagnetiques en relativité generale 33
J. L. Synge: The geometry of space-time 131
C. Cattaneo: Grandezze relative standard in relatività generale 251
E. Clauser: \quad Moto di particelle nell'ultima teoria unitaria einsteiniana 271

CENTRO INTERNAZIONALE MATEMATICO ESTIVO
 (C.I.M.E.)

P.G.BERGMANN

PROBLEMS OF QUANTIZATION

ROMA - Istituto Matematico dell'Università - 1958

GENERAL REMARKS. The principal subject of these lectures is te be the present status of the program of quantization of general relativity and of general-relativistic theories. Because of the unfamiliarity of many mathematioians with the physical ideas in ourrent quantum theory, I shall attempt te give a brief summary of the pertinent ideas later on. I shall also emphasize in my lootures the classical (i.e. non-quantum) aspects of the program, in particular the concopt of observables. I shall also, if time permits, give a brief account of the present status of the theo_ ry of motion. Perhaps it will be nocessary to relegate this topio to a seminar.

REFERENCES, For relativity I suggest any standard toxtbook as background. A thorough grounding in Riemannian and related geometrios is dosirable for any study in general relativity. For the fundamental ideas in quantum thoory probably Dirac's book (Oxford, 1947) is a good contomporary introduction for mathematioians, theugh J. v.Noumann's old book is still oxcollent. For a more physical slant Bohm's recent book oan be recommended. For quantum field thoory thore are new available, in addition to G. Wentzel's old book (Vienna, 1943), a book by S.S. Schwober and a series of artioles by Sohwingor, Tomonaga, Feynman, and Dyson, tomention but the most important.

Turning to the program of quantization of general relativity, I mention a series of old artioles by LeResenfeld (Annalen d. Physik, 1930, Inst, H. Poincaré, 1932), my own articles in the Physical Reviow (1949 to date), and various status reports in Helvetica Physica Acta (Suppl, IV, 1956, which is the report of the 1955 conforence at Berne), Reviews of Modern Physios (July, 1957)
and the soparately issued proceedings of the Chapel Hill conforenco of January, 1957 One article by O.Kloin will be found in the No Bohr "Festschrift", which has beon publishod as a book. Additional references may suggest themselves in the course of our leotures and seminars.

OUTLINE OF LECTURES. The following preliminary outline is meant te be flexible, in acoerdance with the wishes of the partioipants.

1. Physical motivation of the program of quantization。
2. Formal properties of general-relativistic theories with an action principlo.
3. Summary of concopts of quantum theory.
4. Technical report on the status of the program of quantization。
5. Construction of observables in general relativity.
6. Theory of motion.
7. PHYSICAL MOTIVATION. At present we have twe major theoretical struotures in theoretical physics, which have not been fused together, quantum theory and relativity. Quantum theory represents the formal and complete codifioation of our rocognition that it is impessible to determine simultanoously with complete accuracy any twe dynamical variables of a system which are canonically conjugate (in the senge of Hamilton's meohanics). According to quantum theory there is a strong mutual interaction betweon a physical system and an observer that prevents the construction of a complote sot of Cauchy data and their integration in the course of time, as had beon envisaged by Laplaco. General rolativity, on the other hand, prebably represents the most perfect example
```
of a (non-quantum) field theory now availablo and cortainly ao-
oounts botter than any other thoory for all the known facts about
the gravitational field.
With twe such comprehongive theoretical structures availablo, it appears only reasonable that one should attempt to extend oach into the fiold covered by the other, so that the attempted integration should either result in an irreconcilable clash and contradiction, or in success. Either event would have the greatost houristic value for the development of physical theory as a whole. At present we have not yet reachod that stage.
```

2. GENERAL-RELATIVISTIC THEORIES WITH AN ACTION PRINCIFLE.

We shall call a theory general-relativistic or generally covariart if its laws take the same form in every reasonable ourvilinear coordinate systom. For this definition it is not ossential that this form be that of tensor equations, though tensor laws are an impertant example. If we considor a set of dynamical laws that may be interpreted as the Euler-Lagrange equations of a variational principle - and all proposed theories in physios pessess this property - , then it is necessary and sufficient for the relativistic invariance of these laws that for any two coordinate systems chesen the action integrals of the same form are equivalent, in that they differ at mest by a surface integral,

$$
\begin{equation*}
\int L\left[y_{A}\left(x^{\rho}\right)\right] d^{4} \boldsymbol{x} \geq \int L\left[y_{B}^{\prime}\left(x^{\sigma^{\prime}}\right) d^{4} x^{\prime}+\oint \Gamma^{\rho} d \Sigma\right. \tag{2.1}
\end{equation*}
$$

where the y^{\prime} are the transforms of the y. This general principle makes no reforence to the Riemannian nature of space-time, or any other assumed geometric structure.

If wo consider in partioular an infinitesimal coordinate transformation, and if we restrict ourselves to an action princi-
pio in which L is a function only of the $y^{\prime} s$ and their first partial derivatives $y_{A, \rho}$, then we have the principlo:

$$
\partial^{A_{L}} \bar{\delta}_{y_{A}}+\partial^{A} \rho L \bar{\delta}_{y_{A}, \rho}+\Gamma^{\rho}, \rho \geqslant 0
$$

or

$$
\begin{equation*}
\delta^{A_{L}} \delta_{\delta y_{A}}+\mathbb{C}^{\rho}, \rho \geq 0 \tag{2.2}
\end{equation*}
$$

Where the symbel δA_{L} stands for $\partial^{A} L-\left(\partial^{A} \rho_{L}\right), \rho$, the se-called variational dorivative of L, and the fiold C^{ρ}, which I shall call the "gonerating density", is dotormined by the structure of the Lagrangian. $\bar{\delta}$ is the symbol for the infinitesimal trangformation law, in thia case of the field variables, representing the (infinitesimal) ohange of the field as a function of the coordinates.

Because we assume general-relativistic covariance, $\bar{\delta} y A_{A}$ involvos a sot of four arbitrary functions, the descriptorg of the infinitesimal coordinate transformation $\xi^{\alpha} \equiv \delta x^{\alpha}$. It follows that Eq. (2.2) involves differential identities betweon the fiold equations, whose structure depends on the assumed transformation law of the field variables. Because the (contracted) Bianchi identities are an example of such identities, we shall call the identities betweon the field equations that are related to their covariance Bianchi identities. Let, for instance, the transformation law be of the form

$$
\begin{equation*}
\xi_{A}=c_{A \rho}{ }^{\sigma}\left(y_{B}, y_{B, \sigma}\right) \xi^{\rho}, \sigma+d_{A \rho} \xi^{\rho}, \tag{2.3}
\end{equation*}
$$

then we have

$$
\delta^{A} L\left(C_{A \rho} \sigma_{\xi} \xi^{\rho}, d_{A \rho} \xi^{\rho}\right)+C^{\rho}, \rho \equiv 0
$$

and thus

$$
\left(\delta^{A} L C_{A \rho}{ }^{\sigma} \xi^{\rho}+C^{\sigma}\right), \sigma^{+}\left[\delta^{A} L d_{A \rho}-\left(C_{A \rho} \sigma \delta^{A} L\right), \sigma \xi^{\rho}=0\right.
$$

```
Beoause the functions \(\xi^{\rho}\) are arbitrary, we can, by integrating
thia equation ovor a four-dimenaional domain and converting the
first term inte a surface integral, conclude that
\[
\begin{equation*}
\left(C_{A \rho}^{\sigma} \delta^{A_{L}}\right), \sigma-d_{A \rho} \delta^{A_{L}} \equiv 0 \tag{2.4}
\end{equation*}
\]
```

a set ef four differential identities botween the field equations

$$
\begin{equation*}
\delta^{A_{L}}=0 \tag{2.5}
\end{equation*}
$$

From the precedure that we have used in the derivation of these identities it is clear that the order of the differential identities equals the highest difforential order of the ξ^{ρ} that occurs in the transformation law of the type (2.3), whereas the differential order of the field variables y_{A}, which are arguments of the coofficients $0, d, \ldots, i s$ immaterial.

Even if the fiold equations cannet be interpreted as a set of Euler-Lagrange equations, they will not lend themselves to an ordinary Cauchy-type initial-value problom, provided the variables ocourring in thom are not all individually invariant, $\delta y_{A}=0$. Even with given initial values on given three-dimensional hypersurface of the fiold variables and $\frac{f}{a}$ given (finite) number t their derivatives, it is always possible to change the values or the field variables olsewhere by a coordinate trangformation, Whioh is restrioted to be the idontity transformation on the initial hypersurface, honce the values of the field variables off the hypersurface cannot be determined by the initial values on the hypersurface.

With differential identities of the type (2.4), wo can provo in detail just how the equations differ from an ordinary sot. Consider the one term in Eqs. (2.4) which contains third-arder de-
rivatives of the field variables. This torm is:

$$
\begin{equation*}
C_{A \mu}^{\sigma}\left(\partial^{A \tau} L\right), \tau \sigma=C_{A \mu}^{\sigma} \partial^{A \tau} \partial^{B \rho} L y_{B, \rho \tau \sigma}{ }^{+\ldots} \equiv 0 \tag{2.6}
\end{equation*}
$$

Suppose, for the sake of simplicity we oheose as an initial hypersurface one on which $x^{0}=0$. Then it follows that

$$
\begin{array}{rl}
C_{A \mu} \cdot \Lambda^{A B} & \equiv 0 \tag{2.7}\\
\Lambda^{A B} & ⿻ a^{A O} \partial^{B O} L
\end{array}
$$

But this matrix $A^{A B}$ alse represents the sot of coificionts of the secend-order "time" derivatives in the field equations themsolves,

$$
\begin{equation*}
\delta^{A_{I}}=-\Lambda^{A B} y_{B, O D}+\ldots \tag{2.8}
\end{equation*}
$$

It follows from Eq. (2.8) that the matrix $\Lambda^{A B}$ is singular and that it pessesses (at least) four oigenvoctors that bolong to the eigenvalue J

We arrive at two conclusions :
(1) (At least) four of the highest "time" derivatives of the field variables are not determined by the field equations.
(2) (At least) four linear combinations of the fiold equations are free of second-order time derivatives and thus represent restriotions on the choice of the fiold variables and their firstordor dorivatives on an initial hyporsurface such relationshipe are often callod constraints, an oxpression that was originally used in conneotion with the Hamiltonian formulation ef the theory.

In passing, I should like to nete that relationships of the form (2.2) play a role in tho thoory of motion, a topic to whioh I hope to come back toward the end of these leoturos.

The differential identities, and in particular the relations (2.7), lead to complications if we attompt to pass over from the

Lagrangian to the Hamiltonian form of the thoory, a step that is often considered preliminary te quantization. Ordinarily, in a field theory, one introduces the so-called canonical momentum densities by the definition

$$
\begin{equation*}
\pi^{A}=\partial^{A O} L \tag{2.9}
\end{equation*}
$$

With their help, one then defines the Hamiltenian density

$$
\begin{equation*}
\mathrm{H}=\mathrm{y}_{\mathrm{A}, 0} \pi^{\mathrm{A}}-\mathrm{L} \tag{2.10}
\end{equation*}
$$

Where all "time" derivatives have been exprossed in terms of the not canonical field variables, the y_{A} (and possibly their "spatial" derivatives, $y_{A, m}$) and the π^{A}. The comploto set of canonioal field equations is

$$
y_{A, O}=\partial_{A} H, \pi^{A}, 0=-\delta^{A} H,
$$

$$
\begin{equation*}
\partial_{A} \equiv \frac{\partial}{\delta \pi^{A}}, \quad \delta^{A_{H}}=\partial^{A_{H}}-\left(\partial^{A n_{H}}\right),_{m} \tag{2.11}
\end{equation*}
$$

Moreover, given some functional of the canonical field variables on an initial hypersurface $x^{0}=$ constant and of the coordinates x^{a}, say Γ, we have the general dynamical law

$$
\begin{equation*}
\frac{d \Gamma}{d \boldsymbol{x}^{0}}=(\Gamma, H)+\frac{\partial \Gamma}{\partial x^{0}} \tag{2.12}
\end{equation*}
$$

where the symbol H represents the Hamiltonian, i.e. the integral $\int H^{3} X$, and the symbol (,) is a Poisson bracket, defined with the holp of the "functional derivatives"

$$
(2.13)(x)(A, B)=\int\left[\frac{\partial A}{\partial y_{A}}\left(x^{m}\right) \frac{\partial B}{\partial \pi^{A}\left(x^{m}\right)}-\frac{\partial A}{\partial \pi^{H}(x)} \frac{\partial B}{\partial y_{A}}(x) \quad\right] d^{3} x .
$$

The funotional derivatives of a functional are definod (if they exist) by the relationship

$$
\begin{equation*}
\delta A=\int\left[\frac{\partial A}{\partial y_{A}}(x) \quad \delta y_{A}(x) \quad \frac{\partial A}{\partial \pi^{A}(x)} \delta \pi^{A}(x)\right] d^{3} x \tag{2.14}
\end{equation*}
$$

where $\delta y_{A}(x), \delta \pi^{A}(x)$ are arbritary infinitesimal variations of the arguments of the functional. The definitions (2.10) through (2.14) are the natural anal@g of the corresponding definitions in classioal mechanics. The Hamiltonian formalism, whon it works, enables us te replace the Euler-Lagrange field oquations (2:5) by a set of first-ordor equations, solvod with respoot to their "time" derivatives. The Hamiltonian formalism is thus ideally suited to the formulation of initial-value problems in field theo$r y$

The success of the precedure just skotched depends on our ability to express the quantities $y_{A,} 0$ wholly in terms of the canenical variables, and this is possible only if the Jacobian of the transformation $y_{A, O} \rightarrow \pi^{A}$ is non-zered However, we see immediately that the matrix of the partial derivatives,

$$
\begin{equation*}
\frac{\delta \pi^{\mathrm{A}}}{\delta \mathrm{y}_{\mathrm{A}, 0}}=\Lambda^{\mathrm{AB}} \tag{2.15}
\end{equation*}
$$

is singular. Honce, though the "volecitios $y_{A, 0}$ determine the momentum densities π^{A} uniquely, the reverse dees not hold. Furthermore, the π^{A} as functiens of the "velooities" are not algobraically independent of each othor, but satisfy (at least) four relations not invelving any "time" derivatives. These relations are called primary constraints. They are satisfied selely as the result of the dofining equations (2.9) and bear no relation te the field equations.

The furthor dovolopment of the Hamiltonian theory has shown that it is possible to construct a Hamiltonian donsity of the typo (2.10), which however is not unique but involves four arbi-
trary functions, multipliod by the four primary constraints. Fixivg these arbitrary functions is oquivalont to introducing coordinato conditions. Without such conditions, the formal Cauchy problom cannot be uniquely dofinod, honco the arbitrary functions in the Hamiltenian density.

If the primary constraints are satisfied on one hypersurface $x^{0}=$ const., we must require that they remain satisfied, i.e. that their Poisson brackets with the Hamiltonian vanish. This requiremont loads to four additional conditions on the canonioal fiold variablos, the so-called secondary constraints. Iteration, 1.e. tho congtruction of higher time derivatives of the primary constraints, does not lead to additional conditions. The total number of constraints in general relativity and in similar theories is oight at oach point of the initial hyporsurface. These constraints and the Hamiltonian form a function group.
3. CONCEPTS OF QUANTUM THEORY. Historically, quantum theory began with Schrödinger's celebrated equation. Subsequent developmonts have shown, howover, that thore oxist many oquivalent formulations, of which the "Schrödinger representation" is but one, and I shall attempt to give a fairly general description.

In classical mechanios the "state" of a physical system is determined uniquely by the location of its representative point in phase space, i.e. by the numerical values of all its canonical coordinates q^{k}, p_{k}. In quantum mechanics the state is a unit vecter in a Hilbort space. Whereas the appropriate group of tran.sformations in classical mechanics is the group of canonical transformations, the analogous group in quantum theory is the group of all unitary transxormations. In classical mechanics every phy-
sical variable is capable of genorating an infinitosimal transformation. In quantum theory overy "observable" A gonorates an infinitesimal unitary transformation in Hilbert space,

$$
\begin{equation*}
\delta U=-\frac{i}{t} A \tag{3.1}
\end{equation*}
$$

All physioally meaningful quantities are, thorefore, represented as Hermitian linear operaters in Hilbert space. The symbel th stands for Planck's original quantum of aotion, h, divided by 2π and equals $1,05444 \times 10^{-27}$ erg sec. We can construot a complete set of base vectors in Hilbert apace, se-te-speak a coordinate system, if we construct the joint oigen vecters of a complete set of commuting operators. By this expression we mean the following. One operator, say q_{1}, may be highly degenerate. Te identify its oigenfunotions uniquely, we take a set of commuting operators q_{1}, \ldots, q_{n}, se that a sot of oigenvalues $q_{k}^{\prime}(k=1, \ldots, n)$ identifies exactly one jeint eigenvecter. The oomplete get ef cemmuting operaters correspends approximately to the aet of configuration variables in classical meohanics, whioh alse generate a set of commuting infinitosimal canonical transformations.

All ether eperators will either commute with all q_{k} (in which case they may be considered functions of the q_{k}, or they will have nonmennishing commutatora. In particular thore will be operatora p_{k} suoh that thoir oommutators with the q_{k} are

$$
\begin{equation*}
\left[p_{k}, q_{e}\right]=\frac{\hbar}{£} \delta_{k l} \tag{3.2}
\end{equation*}
$$

These will be assumed te be the quantum analogs of the canonical momentum components. Commutaters of the type (3.2) ere generally the analogs of the correspeding Poisson brackets of classical mechanics, which alse are representatives of the oommutators of infinitesimal aanonical transformations.

The formal scheme of quantum theory is related to physics by two sets of rules. One refers to the outcome of observations, the other sets forth a dynamical law. If an experiment is performmed to measure the value of a physical quantity A, then the only possible outcomes of the measurement can be the eigenvalues of the operator A. If the system is in a state described by the Hilbert voter>, then the average of many measurements of A will be given by the "bracket" (io. scalar product)

If 1\rangle happens to be an eigen vector of A, belonging to the oigenvalue a', then the "expectation value" of the measurement will be a^{\prime}, and moreover the expectation value of A^{2} will be $a^{\prime}{ }^{2}$, hence the scatter of observations will be zero, the outcome of the measurement will invariably be al In all other cases the resuits of a measurement, repeated many times, will scatter.

The other rule introduces a dynamical law. Let $|1\rangle$ and $|2\rangle$ be two different states of which the physical system is capable. Then for an observable A we have the general rule

$$
\begin{equation*}
\frac{d}{d t}\langle 1| A|2\rangle=\frac{i}{t}\langle 1|[H, A]|2\rangle+\langle 1| \frac{\delta A}{\delta t}|2\rangle . \tag{3.4}
\end{equation*}
$$

This dynamical law is the precise analog to the law of motion in Hamiltonian classical mechanics.

The formulation of these two rules is "representation-invariant", that is to say, if we perform tho following unitary (and possibly time-dopendent) transformations

$$
\begin{align*}
& \left.\left\rangle^{\prime}=U\right|\right\rangle,\langle |,=\langle | U^{+}, \tag{3.5}\\
& A^{\prime}=U A U^{+}, \quad U U^{+}=1,
\end{align*}
$$

nothing will change. By means of such unitary tranaformations wo may distribute the time-dependence in any desired manner between the Hilbert vocters and the Hermitian porators, the obsorvables. In particular we spoak of a "Schredingor reprosentation" if

$$
\begin{equation*}
\left.\frac{d}{d t}\left\rangle=-\frac{i}{t} H\right|\right\rangle,| \rangle=e^{-\frac{i}{i} H t}| \rangle_{0}, \frac{d q}{d t} k=0 \tag{3,6}
\end{equation*}
$$

and of a "Heisenberg representation" if

$$
\begin{equation*}
\frac{d}{d t}\left\rangle=0, \quad \frac{d q_{k}}{d t}=\frac{i}{\hbar}\left[H, q_{k}\right], \frac{d A}{d t}=\frac{\partial A}{\partial t}+\frac{i}{t}[H, A] .\right. \tag{3.7}
\end{equation*}
$$

It is remarkable how muoh can bo accomplishod with this bare skeleton of rulos. For instanoe it is a fairly oasy task te show that if twe eperaters p and x satisfy ommutation relations of the kind (3.2) and if we assume for the Hamiltonian H the form

$$
\begin{equation*}
H=\frac{1}{2}\left(x^{2}+p^{2}\right), \tag{3.8}
\end{equation*}
$$

(the ene-dimensional harmenic escillater), then the only oigenvalues of H are

$$
\begin{equation*}
\epsilon_{n}=\left(n+\frac{1}{2}\right) t \quad, \quad n=0,1,2, \ldots \tag{3.9}
\end{equation*}
$$

Anethor simple example, which bears a clese relatienship te the pessible representations of the three-dimensional orthogonal greup, is the following. Let L_{x}, L_{y}, and L_{z} be three oporators which satiafy the oyclic commutation relatiens

$$
\begin{equation*}
\left[L_{x}, L_{y}\right]=\frac{t}{i} I_{z}, \text { otc. } \tag{3.10}
\end{equation*}
$$

and let the Hamiltonian be

$$
H=\frac{1}{2}\left(L_{x}^{2}, L_{y}^{2}+L_{z}^{2}\right)
$$

Thon the oigenvalues of H are

$$
\begin{equation*}
E_{j} \equiv \frac{1}{2} \hbar^{2} j(j+1) \quad, \quad j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots, \tag{3.11}
\end{equation*}
$$

and the individual operators L_{x},... have the following oigenvalues:

$$
\begin{equation*}
L_{x}^{m}=m \hbar, \quad m=-j,-j+1, \ldots,+j . \tag{3.12}
\end{equation*}
$$

In this system (the threo-dimensional retator) H and L_{x} form a oomplote set of commuting eporaters.

I have said that the unitary transformations in Hilbort spaco are the analeg of the canonical transformations in classical physios. This analegy is net perfoct, insefar as for a given classical system and its quantum analeg it cannet be said that the group of canenical transformations and the group of unitary tranaformations are isemerphio; they are net. However, these transformatiens that determine the invariance preperties and the symmetry oharactor of the physical system, and their commutater algebra, are generally the same. And these invariant transformatiens are generated by correspending constants of the motion. Thus the Hamiltenian eperater genorates the evelution of the system in the course of time, the compenents of the linear momentum generate dieplacements of the coerdinate erigin; the compenents of the angular momentum generato erthogonal transformations, otc. Beaause the trangermations of quantum theory are linear transfermations it is preper te speak of representations of certain groups. For instance, in the example of a quantum system given in Eqs. (3.10), (3.11), the eporators L_{x}, \ldots ferm all the ropresentations of the (preper) erthegenal greup. The irreducibile representatiens are characterized by the quantum nughor j, whicin takes all integral and half-edd values. The rank of each irreducibile representation equals $(2 j+1)$.

Abstract

Ir the modern dovelopmont of quantum thoory, the procoss of quantization has boon oxtonded from mechanics tefield theorios. The axiomatios of quantum field thoory has been dovelopod muen loss woll than that of quantum mechanics. Roughly speaking one may concoive of a field theory as of a mechanical syatem with an infinite number of degrees of freedom. For instance, if we assign to each degree of freodom ofaphysical system a Hilbort space and if we form the Hilbert space of the whelo systom as the Kronocker product of tho partial Hilbort spaces, thon wo obtain a space with a non-denumerable number of dimensions, ioo. no Hilbert space at all. This difficulty has boen met, in part, by the specification that only these states of a systom are to be admittod which differ frem the state of lowest energy, the ground state, only with respect to a finite number of degrees of froedom (which ones is not spocifiod). This restriction is, howevor, not invariant with respoct to some very important canonical transformations; thore are many other probloms of this type that have been met only partialIy. Although apparently "formal", many of theso difficulties have thoir physical implications. Physicists have worked out a number © $\begin{gathered}\text {. } 0 \text { ring rules that onablo them to perform the quantization of }\end{gathered}$ some very simple field theeries successfully, the only realistic theory with which we are well satisfied is quantum olectrodynamios, that is the theory of the oloctremagnotic field coupled to the field of olectrons and positrons according to Dirac's theory. The extonsion to nuclear forces and meson fields has boen only partially successful; we do not knew whether we de not understand the dynamical laws imperfeotly, whether our procedire of quantization is defective, or whether the principal blame attaches to our methods -f approximation。

4. QUANTIZATION PROCEDURES IN GENERAL RELATIVITY. It might appear that with the Hamiltonian formulation of general relatecity the groundwork has bon laid for a successful quantization. One would hope to replace the classical dynamical variables (the canonical field variables) by quantum operators obeying tho canenioal commutation relations, and to admit as physical only states Which permit the constraints to be satisfied. One obvious diffoulty is that there are dynamical variables that are canonically conjugate to the constraints. Now it is very easy to show that if two operators A, B satisfy a commutation relation of the form

$$
\begin{equation*}
[A, B]=i<I, \tag{4,1}
\end{equation*}
$$

where c is an ordinary number and I stands for the identity operator, then neither A nor B possesses proper eigen vectors. For if, o.g.|a| were an eigenvector of A, se that

$$
\begin{equation*}
A|a\rangle=a \cdot|a\rangle,\langle a \cdot| A=a \cdot\langle a \cdot|, \tag{4.2}
\end{equation*}
$$

then

an obvious contradiction. The only other possibility is that the operation $B|a\rangle$ does not lead to a Hilbert vector.

Consider now a constraint of the theory, O. Then the only admissible Hilbert vectors are those for which $C \mid>=0$, ide. eigenvectors of C. It follows that for this whole set of guantum states an operator D which is canonically conjugate to loads outside Hilbert space and thus can have no expectation value or other sensible physical property. In fact, because the eigenvalue $c^{\prime}=0$, the same holds true for any operator which does not sommute with all the constraints. Hence, bo cause general relativity
in the Hamiltonian formulation has twenty canonioal fiold variabloe, $B_{\mu \nu}, \pi^{\mu \nu}$, there are only four algebraically indepondent observables per space peint. There are oight constraints, i.o. combinations of variables required te have the value o, and eight additional variables conjugate te the constraints. This result would not be unsatisfactery in itself; the oloctromagnetio fiold has the same number of independent variables. But unfortunately the structure of the constraints in general relativity in so complioated that se far no one has succoded in ascortaining these combinations of canonical variables that commute with all the constraints. Formally, we can define the observables as the selutions of a set of partial difforontial oquations, but that is not much help. Dirac has made some progress in soparating the constraints frem the remainder of the variables through a canonical transformation. But he has se far succoded only with the primary constrainta. The insulation of the secondary constraints is much more fermidable, and as yet quite unselved problem.

The discussion sketched ut in the preceding paragraphs leads us te a nem definition of observables" both in classical and in quantum theory : Instead of considering every dynamioal variable as observable, wo define as observables those variables that commuto (or have vanishing Poigson brackets). With all the congtraints Clasaically, one can show that the constraints are the generaters of coordinate transformations, so that the observables as defined here are coordinate-invariant quantities (not scalars). They are also the only quantities that can be aubjeot to prodiction from initial data, that is to say, any formulation of a Cauchy problom in general rolativity must be in terms of the observables. The disoovery of the observables of general relativity would also ha-

```
ve physical interest quite aside frem the program of quantization:
this discovery (or construction) would also permit us to cast all
statemonts of the theory inte manifestly coordinate-invariant form.
In the following section I shall report on the construction of
observables without reference te the Hamiltonian theory. But first,
I shall roport briefly on twe other approaches te the problem of
quantization, through tho Lagrangian formalism and with the help
0f coordinate conditions.
    The Hamiltonian formulation of a field thoory is well suited
to the formulation ef continuation but tends to disguise its es-
gortially four-dimensional, covariant nature. For the invariant-
thooretioal oxamination the original Lagrangian formulation is pro-
ferable. I shall now discuss how one can construct, within the
Lagrangian formalism, a group of transformations that pormits us
to construct commutators between observables. We begin again with
an action integral of the form
```

$$
\begin{equation*}
S=\int L\left[y_{A}(x), y_{A, \rho}(x)\right] d^{4} x \tag{4.4}
\end{equation*}
$$

which transforms in accordance with Eq. (2.1); tho covariance of the theory is thoroby assured. We shall now consider transformations of the variables of the form

$$
\begin{equation*}
\delta y_{A}=f_{A}\left(y_{B}, y_{B, p}, x^{a}\right) \tag{4.5}
\end{equation*}
$$

$$
\delta y_{A, \rho}=f_{A, \rho}=\partial^{B_{f}} \cdot y_{B, \rho}+\partial^{B \sigma_{f}}{ }_{A} \cdot y_{B, \sigma \rho}+\partial_{\rho} f_{A}
$$

In other words, the new variables are to dopend on the values of the old variables at the same world point acd on the values of their first partial derivatives. The resulting change in the Lagrangian donsity as a function or its arguments will be the fol-

10wing:

$$
\begin{equation*}
\delta^{\prime} L=D_{, \rho}^{\rho}-\partial^{A} f_{A}-\partial^{\mathbb{A} \rho} \mathrm{I}_{A, \rho} \tag{4.6}
\end{equation*}
$$

$$
=-f_{A} \delta^{A} L-C_{, \rho}^{\rho}, C^{\rho}=f_{A} \partial^{A \rho}-D_{D}^{\rho}
$$

For the time boing, the field D^{ρ}, and hence the field c^{ρ}, is arbitrary. Unless we restrict semehow the functions f_{A}, the infinitesimal transformation (4.5) will load to the appareance of se-oond-ordor dorivatives in the (originally first-order) Lagrangian density, We shall oall the transformation (4.5) canonical if one can find a fiold C^{ρ} which prevents the appoarance of such secondordon derivativea of the variablos, and wo shall call the transformation invariant (canonical) if a $C^{\rho}-f i e l d$ can bo found se that ס'L vanishes altogether. In what follows we ahall be concerned with invariant transformations. We shall call C^{ρ} the generating donsity, and an integral of the form $\iint_{d}{ }^{d} \Sigma_{\rho}$ the generator of the canonical (or invariant) transformation. Generators of invariant transformations are defined by the identity

$$
\begin{equation*}
f_{A} \delta_{L}^{A_{L}}+{ }_{c^{\rho}}^{\rho} \equiv 0 \tag{4.7}
\end{equation*}
$$

only up to a curl,

$$
\begin{equation*}
\mathrm{C}^{\rho^{\prime}}=\mathrm{C}^{\rho}+\AA^{[\rho \nu]}, \tag{4.8}
\end{equation*}
$$

However, with suitable boundary conditions the addition of such a curl does not change tho value of tho genorating integral over a threo-dimonsional hypersurface, or ohanges it, at any rato, only by a two-dimensional surface integral,

$$
\begin{equation*}
\Gamma^{\prime} \equiv \int c^{\rho} \rho_{\rho}^{\prime}=\Gamma+\oint_{A} \rho \sigma d \Sigma_{\rho \sigma} \tag{4.9}
\end{equation*}
$$

Furthormore, the Bianchi identities (2.4) show that thore are chotoos of f_{A},

$$
\begin{equation*}
f_{A}=d_{A \rho} \xi^{\rho} \tag{4.10}
\end{equation*}
$$

With arbitrary ξ^{ρ}, whose generating density,

$$
\begin{equation*}
C^{\rho}=-C_{A \sigma}^{\rho} \xi^{\sigma} \delta^{A} L, \tag{4.11}
\end{equation*}
$$

```
vanishes. In general relativity the transformations (4.10) are
the infinitesimal coordinate transformations, which are certainly
invariant, and whose generating density, we see, vanishos.
    Without proof we shall state the following :
```

 (a) The invariant transformations form a group (this is ob-
 vious).
(b) The transformations (4.10) form an invariant subgroup.
(c) There is a onete-one relation betweon the members of the factor group (with respect to the invariant subgroup) and the nertrivial generators. By defining as the (modified) Poisson braokets of the generators those generators corresponding to the commutators of the factor group, we obtain a commutator algebra of the possible generators Γ. It remains to establish the nature of the possible generators.

It follows from the dofining equation (4.7) that the generaw ting densities of the invariant transformations satisfy equations of continuity if the field equations are satisfied. With suitable boundary conditions the integrals, the generators, are therefore constants of the motion. We have constructed a commutator algebra between the constants of the motion. Because we inolude all constants of the motion, including those that depend explicitly on the coordinates (cf.Eq. (4.5)), we have obtained a set that is o..

```
quivalent to tho quantitios that we have proviously oalled ob-
servables. To any observable quantity it is possible to con-
struct that constant of the motion which equals the obsorvable
at a chosen coordinate time. Conversely, no constants of the mo-
tion can be correlated to quantities that are not observables,
because only of the observables can one prodict the values at one
time from initial data given at a different time.
    A oareful analysis has shown two furthor statements to bo
```

true :
(d) The genorator Γ is related to the transformation law of another observable $\boldsymbol{\Delta}$ under the transformation lam (4.5) by the rolationship

$$
\begin{equation*}
\delta \Delta=(\Delta, \Gamma), \tag{4.12}
\end{equation*}
$$

where the symbel (,) denotes the commutator bracket defined by (c).
(o) Whenever a Hamiltonian formalism ia available, then the commutator brackets dofinod by (c) ara analogous to the commutator brackets introduced by Dirac. In the case of general relativity the Dirac brackets are Poisson brackets, restricted to observables.

Finally, I shall considor a theory which is rolativiatically invariant but which has beon cast into a restricted coordinate frame. We assume that the coordinate frame has been restricted by four conditions of the form

$$
\begin{equation*}
a_{\rho}^{\mathrm{A} \sigma} \mathrm{y}_{\mathrm{A}, \sigma}+\beta_{\rho}=0 \tag{4.13}
\end{equation*}
$$

whore the coofficionts a and β are funotions of the undifferontiated fiold variables y_{A}. For the coordinate conditions to be effective, it is also necessary that the coefficients $a_{\rho}^{A O}$
be linoarly indopendent of each other and of the rows (or columns) of the matrix $\bigwedge^{A B}$, so that the determinant of the $4 x 4$ matrix

$$
\begin{equation*}
\gamma_{\mu \nu}=a_{\mu}^{\mathrm{A}} \mathrm{C}_{\mathrm{A} \nu}{ }^{\circ} \tag{4.14}
\end{equation*}
$$

does not vanish. In that case it is possible to produce either Lagrangian or Hamiltonian equations by adding a quadratic form of the coordinate conditions (4.13) with non-singular coofficients te the original Lagrangian. The resulting differential equations of the modified theory will be equivalent to those of the original theory if we require that on an initial hypersurface the conditions (4.13) themselves are satisfied and their first time derivatives vanish. This scheme is the natural extonsion of one first proposed by E.Fermi in eleotrodynamics. However, if we proceed to dovelop the Hamiltonian formalism of the modified theory, ther we find that again we have a theory with (eight) constraints. Those variables whose Poisson brackets with the constraints (i.e. with the coordinate conditions and their first time derivatives) vanish are the obsorvables of the unmodified theory.

It is also possible to construct an equivalent oommutator within the Lagrangian formalism. We consider the set of all those transformations which do not change the Lagrangian and which chango the coordinate conditions at most by a linear combination of themseqves. Again thore will be an invariant subgroup consisting of the transformations generated by coordinate conditions themselves, and the factor group will be represented by the nontrivial observables and their commutator algebra.

The introduotion of the coordinate coditions has apparently modified the situation insofar as all the original field variables can be made the subyect of a Cauchy problem, with the ini-

Abstract

tial data boing restricted by tho coordinato oonditions, and the field equations augmented by the time derivatives of the coordinate conditions. Hewovor, even with ooordinate conditions addod, the problem of finding the observables of the original theory is not facilited, and the romaining variables, though their time-depondance is now fixed by the ooordinate conditions, cannot be inoluded naturally in the commutator algobra that we oan hope will lead to quantum thoory.

5. OBSERVABLES IN GENERAL RELATIVITY. As I have montioned before, the construction of truo obsorvables in general relativity by means of the dofining oquations in any of the formalism described in Section 4 is extremely difficult, if at all possible. Nowman has proposed a sohome that pormits the construction of observables by means of a power series expansion, which starts with the so-called linoarized theory of gravitation and thon improves systematioally. The lowest non-trivial order begins with plane gravitational waves and worke with these normal modes, thoir amplitudes and phases. The resulting observables are highly non-local, and it is not known whother the mothod converges.

Arnowitt, Deser, and Misner have proposed a scheme for the construotion of a special coordinate system on the assumption that the motric of a Riemannian manifold satisfies reasonable boundary conditions at spatial infinity. By means of a sot of non-linear partial difforontial equations thoy want to construct a special coerdinate systom that is uniquely detormined excopt for Lorentz transformations (or a sot of transformations isomorphic to the Lorente group). In that spooial coordinate system the components of the metric tensor would all become observables. They propose to
completo the program of quantization by using methods due to J. Sohwinger. Their papers will be submitted to the Physical Roview in the course of this summer and fall.

Komar also oonstruots a spocial coordinate systom, but by moans of local conditions and without reforonce to boundary conditions. Gèhèniau and Dobevers, and indopondently Komar, discoverod about 1955 that if Einstein's field equations are satisfied then thore oxist four algobraically indepondont scalars of the Riemann-Christoffel curvature tensor, which may, for ingtance, be obtained as the solutions of a characteristic-value problem. This problem may be posed most simply in the form

$$
\begin{equation*}
\left[R_{t k \lambda \mu}-\Lambda\left(\varepsilon_{t \lambda} \tilde{g}_{k \mu}-g_{\iota \mu} \varepsilon_{k \lambda}\right)\right] V^{[\lambda \mu]}=0 \tag{5.1}
\end{equation*}
$$

The skow-symmetric characteristic tensor V is of no further interest in this connection. Thore are, however, two independent pairs of conjugate complex oigen-valuos Λ in general, correspording to four real numbers at each world point. We shall denote those four numbers by the symbols $A^{\mu}(\mu=1, \ldots, 4)$. Except for cases pessessing special symmetry, the four functions $A \mu\left(x^{\rho}\right)$ are algebraically indopendent of oach othor, that is to say, the determinant

$$
\begin{equation*}
J \equiv \operatorname{det}\left|A^{\mu}, \rho\right| \geqslant 0 . \tag{5.2}
\end{equation*}
$$

does not vanish identically.
We shall now define a set of ten new functions $\gamma^{\mu \nu}$,

$$
\begin{equation*}
\gamma^{\mu \nu}=g^{\rho \sigma}{ }_{A}^{\mu}{ }_{, \rho} A^{\nu}, \sigma . \tag{5.3}
\end{equation*}
$$

These ton functions may be interpreted as the soalar products of the gradient fields of the four soalars A^{μ}, but also as the components of the contravariant metric tensor in the spocial coordi-
nato syatom of the "intrinaic coordinatos $A \mu^{\prime \prime}$.
Wo now olaim that tho ton functions $\gamma^{\mu \nu}(A \rho)$ are observables in tho sonso that for any choson values of tho four argumenta A and for any ohoico of tho supersoripts μ, ν tho valuo of that quantity is complotoly detormined by tho intrinsic properties of the Riemann-Einatoinian manifold and indepondent of the choico of the original coordinate syatom in which tho calculation was oarried out.

Because these observables may bo considered as the components of the motric in a particular coordinate system, the set of the obaervables $y^{\mu \nu}\left(A^{\rho}\right)$ is contete: Knowlodge of all those quantities gives us total information about the propertioa of the manifold. Howevor, these obsorvables are redundant: Thoy aro connocted by a system of differontial equations that reduces tho actual numbor of degroes of freodom. Let us consider the now observablos in torms of the intrinsic coordinate systom A^{ρ}, whioh in their copaoity of coordinates wo shall donoto by ξ^{ρ}, roserving the designation A^{ρ} for the set of quantities that are detormined as tho ofgonvalues of the Riomann tonsor, Eq. (5.1). Thon we have two sets of oquations that must bo satisfiod, Einstein's field oquations,

$$
\begin{equation*}
\mathrm{G}^{\mathrm{k} \lambda}\left[\gamma^{\mu \nu}\left(\xi^{\rho}\right)\right]=0 \tag{5.4}
\end{equation*}
$$

and the coordinate conditions

$$
\begin{equation*}
A^{\rho}\left(\xi^{\sigma}\right)=\xi^{\rho} \tag{5.5}
\end{equation*}
$$

Komar has shown that the totality of these oonditions roduces the number of initial data that may be chosen on a hypersurface $\Sigma\left(A^{\rho}\right)=0$ to four data per point. Then the Riemann-Einstoin manifold (i.e. a Riemannian manifold that satisfies tho fieldequations) is com-

