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energy conversion and resources, heat transfer, manufacturing and
processing, systems and devices, renewable energy, robotics, and
biotechnology.





Preface

This book is a stand-alone treatment of the Monte Carlo ray-trace
(MCRT) method as it is currently practiced in the field of radiation heat
transfer. While intended primarily as a textbook for use by first-year
graduate students in curricula such as mechanical and aerospace engi-
neering, the suitability of the MCRT method as an optical modeling
tool makes the content equally well suited to the needs of students and
practitioners of applied optics.

Max Planck, in his seminal 1912 book The Theory of Heat Radia-
tion, writes that when undertaking radiation heat transfer analysis

… it will be assumed that the linear dimensions of all parts of space con-
sidered, as well as the radii of curvature of all surfaces under consider-
ation, are large compared with the wave lengths of the rays considered.
With this assumption we may, without appreciable error, entirely neglect
the influence of diffraction caused by the bounding surfaces, and every-
where apply the ordinary laws of reflection and refraction of light.

In other words, Planck is alerting the reader that radiation heat trans-
fer analysis is to be based on the principles of geometrical optics rather
than on the more complex principles of physical optics. The material
presented in the current book extends radiation heat transfer beyond this
limited view. By including principles from physical optics we are able to
attack problems inaccessible to geometrical optics alone.



xiv Preface

During most of the century following the publication of Planck’s book,
the version of geometrical optics used in radiation heat transfer analysis
has been based on its implications rather than on the literal application
of its principles. Until the emergence of the high-speed digital computer
after World War II, the ray-by-ray application of geometrical optics to
complex geometries was simply not practical. By the dawn of the new
millennium, however, rapid advances in computing power had made it
possible to emit and trace a statistically significant number of rays as
they were scattered, refracted, and eventually absorbed within complex
enclosures consisting of thousands of surface and optically participating
volume elements. In other words, accurate simulation began to displace
approximate analysis as a means of describing radiation heat transfer.
Today, virtually no serious radiation heat transfer calculations are per-
formed using the antiquated “net exchange” formulation, which is based
on the questionable assumptions of uniform surface heat flux and diffuse
gray surfaces, and is incapable by itself of treating radiation in partici-
pating media.

The mathematical basis of ray tracing and the fundamentals of thermal
radiation are presented in the first two chapters. This material prepares
the ground for Chapter 3, in which the MCRT method is introduced and
used to model radiant exchange among diffuse gray surfaces. After the
completion of the first three chapters, the reader is already armed with the
essential knowledge required to formulate realistic radiation heat transfer
models for the wide range of applications typically encountered in indus-
trial settings. The next three chapters extend the MCRT method to include
radiant exchange among non-diffuse non-gray surfaces (Chapter 4), radi-
ation in a participating medium (Chapter 5), and the treatment of polar-
ization, diffraction, and interference in applied optics (Chapter 6). The
additional theory required to support these latter topics is introduced as
the need arises. The ease of transition from the basic material of Chapter 3
to the more advanced material of Chapters 4, 5, and 6 is remarkable.
This is due to the inherent flexibility of the MCRT method itself, whose
basic principles apply equally well to directional wavelength-dependent
surface models as they do to diffuse gray surface models; and whose log-
ical structure applies equally well to radiant exchange among volume
elements as it does to radiant exchange among surface elements. The
treatment of polarization, diffraction, and interference using the MCRT
method follows naturally after the definition of a “ray” is augmented to
include its wavelength, phase, and polarization state. Finally, Chapter 7



Preface xv

presents a formal statistical method for assessing the uncertainty, to a
stated level of confidence, of results obtained using the MCRT method.

J. Robert Mahan
Blacksburg

March 2018
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1
Fundamentals of Ray
Tracing

A ray is defined as the collection of straight-line path seg-
ments followed by an energy bundle from its point of emission
to its point of absorption. The definition includes the pos-
sibility of intermediate reflection, scattering, refraction, and
even diffraction events. Ray tracing involves the application
of basic mathematics to the process of identifying the
intersection of ray segments with surfaces. Most engineering
and science students acquire the required mathematical
tools long before they enter university. The current chapter
provides a review of the mathematical principles governing
ray tracing and the related issues of meshing and indexing.

1.1 Rays and Ray Segments

A ray is defined here as the continuous sequence of straight-line paths
connecting a point on one surface, from which an energy bundle is
emitted, to a point on a second surface – or perhaps even on the same
surface – where it is ultimately absorbed. One or several reflections
from intervening surfaces may occur between emission and absorption
of the energy bundle. The path followed by the energy bundle between

The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics,
First Edition. J. Robert Mahan.
© 2019 John Wiley & Sons Ltd.
This Work is a co-publication between John Wiley & Sons Ltd and ASME Press.
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http://www.wiley.com/go/mahan/monte-carlo


2 The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics

reflections is referred to as a ray segment. Two situations are normally
considered: either (i) the power of the emitted energy bundle does not
change as it is reflected from one surface to the next until it reaches the
surface where all its power is ultimately absorbed; or (ii) a fraction of
the emitted power is left behind with each reflection until the remaining
power is deemed to have dropped below a threshold value, at which
point the ray trace is terminated. Both approaches have their adherents
and are in common use, and both are developed in detail in this book.

1.2 The Enclosure

The enclosure is an essential concept in all approaches to radiation heat
transfer analysis. We define the enclosure as an ensemble of surfaces,
both real and imaginary, arranged in such a manner that a ray emitted
into the interior of the enclosure cannot escape. Energy is conserved
within the enclosure under this definition. If a ray does leave the enclo-
sure through an opening, represented by an imaginary surface, the energy
it carries is deducted from the overall energy balance.

1.3 Mathematical Preliminaries

Consider two points, P0 and P1, in three-dimensional space, as illus-
trated in Figure 1.1. Let the Cartesian coordinates of points P0 and P1
be (x0, y0, z0) and (x1, y1, z1), respectively. Then the vector directed from
P0 to P1 is

V = (x1 − x0) i + (y1 − y0) j + (z1 − z0) k, (1.1)

x

y

z

i 
j 

k α 
β 

γ 

v 

P0(x0, y0, z0)

P1(x1, y1, z1)

V 

Figure 1.1 Relationships among the quantities introduced in Section 1.3.
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and its magnitude is

t ≡
√|V ⋅V| = √

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2. (1.2)

In Eq. (1.1) i, j, and k are the unit vectors directed along the x-, y-, and
z-axes, respectively. Note that the distance t from P0 to P1 must always
be real and positive.

The unit vector in the direction of V is

v ≡ V∕t = L i + M j + N k, (1.3)

where L, M, and N are the direction cosines illustrated in Figure 1.1. The
direction cosines are defined

L ≡ v ⋅ i = cos 𝛼,M ≡ v ⋅ j = cos 𝛽, and N ≡ v ⋅ k = cos 𝛾, (1.4)

where 𝛼, 𝛽, and 𝛾 are the angles between the unit vector v and the x-, y-,
and z-axes, respectively. Equations (1.1) and (1.3) can be combined to
define the equations for the line segment connecting point P0 to point P1

(x1 − x0)∕L = (y1 − y0)∕M = (z1 − z0)∕N = t. (1.5)

The three equations embodied in Eq. (1.5) are arguably the most impor-
tant relationships in geometrical optics, because they form the basis for
navigation of rays within an enclosure.

The general equation for a surface in Cartesian coordinates is

S(x, y, z) = 0. (1.6)

The simplest, and perhaps most common, surface used in fabricating an
enclosure is the plane, illustrated in Figure 1.2. In order to derive the
equation for a plane, we must know the unit normal vector n at a point

n 

V U 

(x0, y0, z0)

(x1, y1, z1)
(xʹ, yʹ, zʹ )

Figure 1.2 Definition of a plane surface.
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(x′, y′, z′) in the plane and the coordinates of a second point (x1, y1, z1) in
the plane. Then, because n and U are in quadrature, it must be true that

S(x1, y1, z1) = n ⋅ U

= n ⋅ [(x1 − x′) i + (y1 − y′) j + (z1 − z′) k]

= 0, (1.7)

or

S(x1, y1, z1) = nx (x1 − x′) + ny (y1 − y′) + nz (z1 − z′) = 0. (1.8)

To find the intersection of the ray segment V = (x1 − x0) i + (y1 – y0)
j + (z1 – z0) k with the plane, we introduce Eq. (1.5) into Eq. (1.8),
obtaining

nx (x0 + Lt − x′) + ny (y0 + Mt − y′) + nz (z0 + Nt − z′) = 0. (1.9)

Finally, solving Eq. (1.9) for t we obtain

t =
nx(x′ − x0) + ny(y′ − y0) + nz(z′ − z0)

nxL + nyM + nzN
, (1.10)

or
t = n ⋅ (V −U)

n ⋅ v
. (1.11)

Note that if n and v are in quadrature, n ⋅ v = 0, in which case t is
undefined. The interpretation is that the ray passes parallel to the plane
and so can never intersect it. We must anticipate this eventuality when
programming. This is perhaps an appropriate juncture to emphasize the
natural compatibility of Cartesian coordinates with the vector nature of
ray tracing.

A more instructive example is the intersection of a ray segment with a
sphere of radius R whose center is located at (xC, yC, zC); that is,

S(x1, y1, z1) = (x1 − xC)2 + (y1 − yC)2 + (z1 − zC)2–R2 = 0. (1.12)

Suppose a ray is emitted from point (x0, y0, z0) in the direction (L, M, N)
and we want to find its point of intersection (x1, y1, z1) with this sphere.
As in the previous example, this may be accomplished by finding the
point (x1, y1, z1) that simultaneously satisfies the three equations for the
straight line connecting the two points, Eq. (1.5), and the equation for the
sphere, Eq. (1.12); that is,

(x0 + Lt − xC)2 + (y0 + Mt − yC)2 + (z0 + Nt − zC)2 − R2 = 0. (1.13)
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Happily, the solution of Eq. (1.13) for the distance t is just about the most
challenging mathematical operation we encounter in ray tracing.

It is convenient to use the symbolic solver feature of Matlab to
solve quadratic equations (see Problems 1.2–1.7). However, solution of
Eq. (1.13) is relatively straightforward and provides an opportunity to
point out certain useful properties of the quadratic coefficients. Upon
carrying out the indicated operations and rearranging the result, we have

(L2 + M2 + N2) t2 + 2[L(x0 − xC) + M(y0 − yC) + N(z0 − zC)] t

+ (x0 − xC)2 + (y0 − yC)2 + (z0 − zC)2 − R2 = 0, (1.14)

or
A t2 + B t + C = 0, (1.15)

where

A = L2 + M2 + N2, (1.16)

B = 2[L(x0 − xC) + M(y0 − yC) + N(z0 − zC)], (1.17)

and
C = (x0 − xC)2 + (y0 − yC)2 + (z0 − zC)2 − R2. (1.18)

The coefficients A, B, and C are defined in terms of known quantities
and, thus, are themselves known. Equation (1.14) can now be solved for
t, yielding

t1 = (−B +
√

B2 − 4AC)∕2A and t2 = (−B −
√

B2 − 4AC)∕2A. (1.19)

We define a quadratic surface as any surface whose algebraic
equation S(x, y, z) = 0 is second-order. It turns out that, in addition to
plane surfaces, essentially all enclosures of practical engineering interest
include such surfaces or surfaces that can be subdivided into such sur-
faces. Listed in Table 1.1 are some of the quadratic surfaces commonly
encountered in radiation heat transfer and applied optics. Equation (1.19),
with generally different expressions for the coefficients A, B, and C,
yields the candidate values of the distance t for all quadratic surfaces.

Note that Eq. (1.19) has two roots, t1 and t2. The physical interpre-
tation of two roots is that a given ray “intersects” the spherical surface
at two points. However, the intersection may be degenerate (both roots
corresponding to the same point) or imaginary (the ray does not physi-
cally intersect the sphere). Only in the case of plane surfaces are single,



Table 1.1 Quadratic surfaces commonly encountered in radiation heat transfer and applied optics modeling.

Name S(x, y, z) = 0 Notes

Sphere (x− xC)2 + (y− yC)2 + (z− zC)2 −R2 = 0 R = radius, center at (xC, yC, zC)

Tri-axial ellipsoid (x − xC)2

a2
+

(y − yC)2

b2
+

(z − zC)2

c2
− 1 = 0

a, b, c = semi-axes, center
at (xC, yC, zC)

Spheroid (x − xC)2

a2
+

(y − yC)2

a2
+

(z − zC)2

c2
− 1 = 0

Prolate if c> a, oblate if
c< a, center at (xC, yC, zC)

Elliptic paraboloid (x − xC)2

a2
+

(y − yC)2

b2
− z = 0

Upward-opening, origin
at (xC, yC, zC)

Hyperbolic paraboloid
(“Potato chip”)

(x/a)2 − (y/b)2 − z = 0 Opens up along x-axis,
down along y-axis

Two-sheet hyperboloid (x/a)2 + (y/a)2 − (z/c)2 + 1 = 0 Rotationally symmetric
about z-axis

Right-circular cone (x− xv)
2 + (y− yv)

2

− tan2𝛼 (z− zv)
2 = 0

Vertex at (xv, yv, zv), 𝛼 = cone half-angle

Right-circular cylinder x2 + y2 −R2 = 0, 0≤ z≤ h Rotationally symmetric
about z-axis, h = height
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non-degenerate roots obtained. More than two roots arise in the case of
higher-order surfaces but, as has already been pointed out, most enclo-
sures of practical engineering interest are composed of either planes or
quadratic surfaces.

The physical significance of quadratic roots is illustrated in Figure 1.3.
If both roots are real (B2 > 4AC) in Eq. (1.19), the ray emitted from P0
intersects the surface at two points, P1 and P2, where one corresponds
to the plus (+) sign in Eq. (1.19) and the other corresponds to the minus
(−) sign. If B2 = 4AC, the roots are degenerate and the single solution,
t = −B/2A, is obtained. This signifies that the ray is tangent to the sphere
at a single point P3. Finally, if both roots are complex (B2 < 4AC), the
ray fails to intersect the surface.

At the most, only one real root is physically significant. How do we
choose between the two available real roots? This is a trivial choice for
someone provided with an image such as Figure 1.3; however, a computer
requires an algorithm based on the values of the quadratic coefficients A,
B, and C. In the special case of a sphere we recognize that A =

√
v ⋅ v = 1,

where the vector v is given by Eq. (1.3). While this simplifies the algebra
somewhat, it does not otherwise contribute to the process of identifying
the correct root. The coefficient B in the case of a sphere can be expressed

B∕2 = v ⋅V0, (1.20)

where V0 is the vector directed from the center of the sphere (xC, yC, zC)
to the source point (x0, y0, z0),

V0 = (x0 − xC) i + (y0 − yC) j + (z0 − zC) k. (1.21)

P3

P0 P1
P2

Figure 1.3 Possible disposition of three rays emitted from point P0.


