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Preface

Hydrogen has a huge potential as a safe and efficient energy carrier which 
can be used directly in the fuel cells to obtain electricity, or be used in 
the chemical industry, fossil fuel processing, or ammonia production. 
However, hydrogen is not freely available in nature and needs to be pro-
duced. Photoelectrochemical (PEC) solar cells produce hydrogen from 
water using sunlight and specialized semiconductors, which use solar 
energy to directly dissociate water molecules into hydrogen and oxygen. 
Hence, it is possible to store solar energy via photoelectrochemical conver-
sion. Besides, PEC systems reduce fossil fuels dependency and curb the 
exhaust of carbon dioxide. “Advances in Solar Cell Materials and Storage” 
series aims to provide information on new and cutting-edge materials, 
advanced solar cell designs and architecture, and new concepts in pho-
tovoltaic conversion and storage. Photoelectrochemical Solar Cells, which 
is the second volume of this series, compiles the objectives related to the 
new semiconductor materials and manufacturing techniques for solar 
hydrogen generation.

Discussing the underlying basics as well as the advanced details in PEC 
solar cell designs is highly beneficial for science and engineering students 
as well as experienced engineers. Additionally, the book has been written to 
provide a comprehensive approach in the area of the photoactive materials 
for solar hydrogen generation for the readers with a wide variety of back-
grounds. Therefore, the book has been written by distinguished authors 
with knowledge and expertise about solar hydrogen generation whose 
contributions can benefit readers from universities and industries. The 
editors wish to thank the authors for their efforts in writing their chapters.

This book is organized in three parts. Part I (Chapters 1–4) covers the 
general concepts such as economic targets for hydrogen generation, theory 
and classification of PEC systems, reactor designs, and the measurements 
and efficiency protocols in PEC solar cells. Part I also addresses the novel 
hybrid structures containing inorganic/organic composites, biosensitized 
semiconductors, and tandem configurations. Part II (Chapters 5–8) is 
devoted to photoactive materials used in PEC conversion of solar energy 
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into chemical energy. Hematite materials, design of bismuth vanadate-
based materials, copper-based chalcopyrite, and kesterite materials and 
eutectic composites for solar hydrogen generation are described in this 
part. Materials selection and photoactive electrode design are very crucial 
for the production of hydrogen in an efficient and economical route via 
PEC reaction. Therefore, the main focus of this part is to introduce the 
diverse range of photoactive materials especially the nanostructured semi-
conductors for PEC solar cells.

The book concludes with Part III (Chapters 9–11) covering photoelec-
trochemical-related systems. Implementation of multijunction solar cells 
in integrated devices for solar hydrogen generation, as well as the promis-
ing device design and the future prospects, are extensively summarized 
in this part. Photoelectrochemical energy and hydrogen production via 
dye-sensitized systems is also covered in Part III. Finally, photocatalytic 
formation of composite electrodes for solar cells is given in this book. 
Fundamentals of the photocatalytic deposition of metal sulfides on the 
nanostructured metal oxides, which are very promising materials for PEC 
systems, are summarized in the last section.

To conclude, we would like to emphasize that the second volume of the 
“Advances in Solar Cell Materials and Storage” series provides an overall 
view of the new and highly promising photoactive materials and system 
designs for solar hydrogen generation via photoelectrochemical conver-
sion. Therefore, readers from diverse fields such as chemistry, physics, 
materials science, and engineering, mechanical and chemical engineering 
will definitely take advantage of this book to comprehend the impacts of 
the PEC solar cells.

Series Editors
Nurdan Demirci Sankır, PhD., and Nurdan Mehmet Sankır, PhD.

Department of Materials Science and Nanotechnology Engineering,
TOBB University of Economics and Technology

August 2018
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Photoelectrochemical Reaction 
Engineering for Solar Fuels Production

Isaac Holmes-Gentle, Faye Alhersh, Franky Bedoya-Lora and Klaus Hellgardt*

Department of Chemical Engineering, Imperial College London

Abstract
In order for large scale photoelectrochemical (PEC) water splitting devices to be 

realised, a number of challenges specific to engineering must be studied, under-

stood and overcome. A logical approach requires the deconstruction of the PEC 

device into a classification framework comprising two parts: the fundamental con-

ceptual design and the engineering PEC device design. This framework was used 

to study common elements of photoelectrochemical reactor designs and identify 

the engineering challenges encountered when scaling up PEC devices. A criti-

cal review of relevant PEC reactor designs is presented, where the scalability of 

each is assessed and general trends are identified, indicating improvements made. 

Innovative reactor designs are discussed in detail and opportunities for future 

research directions are highlighted. Directions towards technologically and eco-

nomically feasible PEC water splitting devices are outlined.

Keywords: Photoelectrochemical, engineering, scale-up, water splitting, reactor 

design, H
2
 production

1.1  Introduction

Daily and seasonal intermittency of radiation received from the earth’s 
ultimate energy source, the sun, is driving the search for large capacity and 
long-term energy storage. Solar fuels are strong candidates that share most 
of the qualities of conventional fossil fuels, e.g., high energy density, easy 
distribution and storage, and high power output. In contrast, solar fuels 

*Corresponding author: k.hellgardt@imperial.ac.uk
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can also deliver neutral or negative carbon emissions, hydrogen being the 
most popular example for the former case. Splitting liquid water to pro-
duce hydrogen and oxygen using solar energy requires a minimum of 1.48 
V under thermoneutral conditions. Photoelectrochemical (PEC) reactors 
could produce hydrogen directly using solar energy, but photoelectrode 
materials are yet to be identified/synthesized that are adequately efficient, 
durable, and scalable. To date, there is no report of a photoelectrochemical 
cell with only one photoelectrode capable of achieving spontaneous water 
splitting satisfactorily with high efficiency [1] and using a wide range of 
visible light. Consequently, most of the reported systems require an electri-
cal or chemical bias to produce hydrogen at an acceptable rate. When an 
electrical bias is applied, the electricity can be obtained from the burning 
of fossil fuels or, preferably, from renewable sources such as hydro, wind, 
or solar energy, e.g., photovoltaic cells. In the latter case, a photovoltaic 
cell is integrated with a photoelectrochemical system, buried or external, 
to harvest the rest of the energy required [2]. Systems with more than one 
absorber (stacked semiconductors) could be used to supply enough energy 
to achieve spontaneous water splitting. These configurations are some-
times referred to as internally biased systems [1] or integrated photoelec-
trochemical devices [3, 4].

The engineering of photoelectrochemical devices is often overlooked, 
as research has been mainly focused on material development, record effi-
ciencies, and fundamental understanding of the phenomena involved in 
the photon absorption and charge transfer in semiconductors and cata-
lysts. Hence, the aim of the present work is to summarize recent develop-
ments in reactor engineering, focusing on scaled-up photoelectrochemical 
systems, exposing current gaps in the research literature and contrasting 
with technical and economic targets. The latter will be discussed briefly 
below with a short summary of material development, followed by a sur-
vey and description of reported designs for theoretical and fabricated pho-
toelectrochemical reactors. In its totality, this chapter aims to define the 
role of the photoelectrochemical engineering in creating feasible solar fuel 
devices and the future challenges it will face.

1.1.1  Undeveloped Power of Renewables

The total energy demand worldwide (thermal and electrical) was 18 TW 
in 2014 [5]. From all renewable energy sources, only solar and wind can 
provide enough energy for a fully decarbonized society, with techni-
cal capacities in the order of 103 and 10 TW, respectively [6]. Figure 1.1 
summarizes the technical power that can be harvested using current 
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technologies and updated supply of various renewable energy sources as 
previously reported by Tsao et al. [6] versus the extractable power from the 
source after chemical conversion. The present conversion and worldwide 
supply of solar to electricity and thermal is just above 0.02 TW, while solar 
to fuels dominates with a supply higher than 1 TW [7]. However, biomass 
is virtually the only source of solar fuels at present with arguable carbon 
neutrality [8]. The capacity of solar fuels, such as solar hydrogen, is still 
largely uncharted.

1.1.2  Comparison Solar Hydrogen from Different Sources

To date, only a few reports on the exergy efficiency and cost analysis of 
hydrogen production from renewable sources can be found. However, 
photoelectrolysis is usually not properly analyzed [9] or not analyzed at 
all [10, 11]. Exergy analysis is based on the second law of thermodynam-
ics and considers the quality of the energy and not only a net energy bal-
ance. This allows a better comparison of systems that are fundamentally 
different, e.g., photovoltaic cells and hydroelectric power. From these 
reports, it was concluded that electrolysis of water using electricity from 
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Figure 1.1 Extractable and technical potentials for several renewable sources (adapted 

from J. Tsao, Solar FAQs [6]).
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hydroelectric power has the highest exergy efficiency (5.6%) and systems 
using photovoltaic cells has the lowest (1.0%) [10]. Presently, there are no 
reports with a proper comparison in terms of the exergy efficiency of a 
photoelectrochemical cell for hydrogen production.

Table 1.1 shows the expected costs of hydrogen production using con-
ventional and already available technologies compared to those still in 
development [11–14]. Solar methane steam reforming is the most eco-
nomical process currently deployed. These values have also been summa-
rized by Pinaud et al. [14], where an estimated cost of hydrogen produced 
from steam methane reforming is approximately $1.25 (kg H

2
)−1, whereas 

the cost using photovoltaic technology is higher than $4.09 (kg H
2
)−1. In 

the same report, an estimated cost for hydrogen obtained from photoelec-
trolysis in particle-based systems was $1.60 (kg H

2
)−1, assuming 10% of 

solar-to-hydrogen (STH) efficiency, $4.10 (kg H
2
)−1 for concentrated panel 

systems with 15% STH efficiency, and as high as $10.40 (kg H
2
)−1 for an 

integrated PEC system with 10% STH efficiency. Recently, slightly higher 
costs were reported by Shaner et al. with PV + PEM (Proton Exchange 
Membrane) electrolyzer and updated costs for planar PEC devices [13]. 
It is obvious that the latter systems can barely compete with conventional 
methods and more development and research is required. The production 
cost of H

2 
using suspended particles is expected to be the lowest among 

the systems under development; however, low H
2 
yields, product (H

2 
and 

O
2
) crossover, and uncertain scalability are hindering further progress. 

Improvements in reactor design and efficiency must be made before these 
systems can be deployed commercially. Nevertheless, it has been stated that 
the production of hydrogen by photoelectrolysis is a viable option among 
carbon-free processes [14].

1.1.3  Economic Targets for Hydrogen 
Production and PEC Systems

The above prices for hydrogen contrast with the economic targets set by 
the US Department of Energy for solar hydrogen via photoelectrochemical 
water splitting as reported in Table 1.2 [16]. At present, the estimated price 
of hydrogen produced using integrated PEC systems is ca. $10 (kg H

2
)−1, 

the target by 2020 is half this value, and a fifth for the ultimate target, with 
a hydrogen production rate of 2 × 10−6 kg H

2
 m−2 s−1, which corresponds 

to a minimum current density of 193 A m−2 assuming a faradaic efficiency 
of unity. State-of-the-art photoelectrodes still perform below these values, 
with a record set at 85 A m−2 for an integrated PEC cell (GaAs/InGaP/
TiO2/Ni) [17] and 140 A m−2 for a PV+electrolyzer system [18].
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Table 1.1 Projected costs (long term) of hydrogen production.

Process Cost/$ (kg H
2
)−1

Steam reforming (Nov. 2017) (Lemus, 2010) [15]

Natural Gas (Market price) 1.2

Coal (Market price) 1.8

Designs at small-scale pilot 

plants

(Koumi, 2012) [11]

Solar hybrid sulfur cycle 2.3

Solar sulfur-iodine cycle 2.4

Solar metal/metal oxide cycle 4.2

Solar high temperature 

electrolysis

5.6

Solar methane cracking 2.1

Solar methane steam reforming 1.9

Conventional renewables 

(Projected)

(Koumi, 2012) 

[11]

(Acar, 2014) 

[12]

(Shaner, 2016) 

[13]

Electrolysis using solar thermal 

power

3.2 – –

Electrolysis using wind power 2.8 7.2 –

Electrolysis using photovoltaic 

power

7.9 9.1 12.1

Electrolysis using nuclear - 1.3–3.5 –

Biomass gasification 1.3 1.4 –

PEC devices (Projected) (Pinaud, 2013) [14] (Shaner, 2016) 

[13]

Single bed particle suspension 1.6 –

Dual bed particle suspension 3.2 –

Fixed panel array 10.4 11.4

Tracking concentration array 4.0 9.2
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Ultimate targets also set STH efficiencies at 25% and cost of the PEC 
electrode at $100 per meter square, and a lifetime of 10 years. These targets 
prohibit the use of expensive and unstable photoabsorbers. The most inex-
pensive silicon-based PV modules are currently at $0.35  W−1 [19], with 
an estimated cost of $50 m−2 [20]. Perovskites modules are expected to be 
$32 m−2 [21], while CIGS and CdTe are between $90 and $80 m−2 ($0.9 W−1) 
[20]. Multijunction, e.g., GaInP/GaAs/S, modules costs are between $4.85 
and $8.24 W−1 depending on the type of multijunction [22] with an esti-
mated cost between $1500 and $3000 m−2.

Studies on photoelectrodes are always constrained by the compromise 
between efficiency and stability, the former leads to the extensive study 
of inefficient but scalable and stable materials, e.g., Fe

2
O

3
 and TiO

2
, while 

record materials [18, 23, 24] are usually reported without considering in 
full the costs or scalability of such materials.

1.1.4  Goals of Using Hydrogen

As discussed previously, solar fuels have the advantage to be used for energy 
storage in a decentralized manner and when higher power output is required. 
Hence, its use in heavy transportation and heating is most appropriate.

The electrification of heating is constrained by the intense peaks for heat 
demand at well-defined times during the day, which can be 10 times higher 
compared to baseline in a typical UK winter day. In contrast, electrical 
energy peaks are generally observed at twice the baseload [25]. Hydrogen 

Table 1.2 Targets set by US Department of Energy (DoE) [16].

Parameter Units 2020 Target

Ultimate 

target

Photoelectrochemical hydrogen 

cost

$ (kg H
2
)−1 5.70 2.10

Capital cost of concentrator and 

PEC receiver (noninstalled, no 

electrode)

$ m−2 124 63

Annual electrode cost per tonne 

H
2
 per day

$ (t H
2
)−1 d−1 a−1 255 k 14 k

Solar to hydrogen (STH) energy 

conversion ratio

% 20 25

1-Sun hydrogen production rate kg H
2
 m−2 s−1 1.6 10−6 2.0 10−6
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could supply sufficient power for heating by combustion in a similar man-
ner as natural gas or using fuel cells.

A roadmap from the International Energy Agency on the use of hydro-
gen in the transport sector has set economical and technical targets for the 
use of fuel cell electric vehicles (FCEVs) for 2050 in order to meet the decar-
bonization targets to limit global temperature rise to below 2 °C above the 
preindustrial level. This involves 25% of passenger light-duty vehicle and 
10% of freight road transport running on hydrogen [26]. Studies on the 
energy supply to off-grid users report smaller footprint by using hydrogen-
based systems (electrolyzer, fuel cell, and metal-hydride storage) compared 
to traditional Li-ion batteries [27]. However, this depends on the consumer 
needs and time and scale of storage required. In a usually forgotten mar-
ket, the use of hydrogen-based energy systems for the increasing energy 
demands of developing countries is a plausible scenario and even regarded 
as the best option for these markets [28]. Besides the obvious environmen-
tal benefits of using renewable energy, solar hydrogen can also enhance the 
living standards of off-grid populations in developed countries.

In order to supply the hydrogen required to fulfill the demands in the 
aforementioned future scenarios, a durable, efficient, and inexpensive 
material has to be developed to be used in PEC systems. Solar-to-hydrogen 
efficiency is the most commonly used figure of merit, and it has been 
reported for a wide variety of materials. Figure  1.2 shows the updated 
learning curves (adapted from Ager et al., 2015 [29]) classified by material 
for photoelectrochemical cells for spontaneous water splitting. Buried and 
external PV + electrolyser, with a present record of 30% [18], has domi-
nated research in the last decades. Silicon-based systems have not seen any 
significant improvement in the last 10 years, mainly due to the stagnating 
efficiencies for this material. Efficiencies of oxide-based systems remain 
close to 1% values, while recent improvements on perovskites have allowed 
researchers at EPFL to reach efficiencies of 12.3% for a PV + electrolyser 
system [30]. From the materials perspective, it appears that there is less 
room for improvement in silicon-based PV+PEC devices, while oxides and 
hybrid systems are evolving fast with an extensive gap to be closed.

1.2  Theory and Classification of PEC Systems

In this section, we aim to formalize the classification of photoelectrochem-
ical designs and terminology. The first part of this section describes the 
abstract conceptual design (i.e., schematic) which defines the type of sys-
tem used, while the second part describes the physical structure and layout 
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of reactor designs (i.e., engineering drawing). The rationale for this parti-
tion is to reduce the complexity in classification and to allow for reactor 
design grouping. Furthermore, the maximum theoretical efficiency achiev-
able is defined by the conceptual configuration [31–33] and not the reactor 
design. In this work, we only discuss planar electrode systems as opposed 
to particulate systems due to the higher record efficiencies reported.

1.2.1  Classification Framework for PEC Cell  
Conceptual Design

The schematic/conceptual design of PEC systems is categorized in a hier-
archical framework. The order in which a PEC system should be classified 
is as follows:

1. Number of photoabsorbers
2. Electrical configuration of photoabsorbers
3. Optical connection of photoabsorbers and optics of system

Any design will be characterized by these three specifications which are 
outlined further below.
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Figure 1.2 Timeline of solar to hydrogen (STH) conversion efficiencies for different 

materials implemented in photoelectrochemical devices for spontaneous water splitting 

(adapted from Ager et al., 2015 [29]).
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Number of Photoabsorbers
The number of photoabsorbers used to drive photoelectrolysis has a great 
impact on the maximum efficiency of the system [31–33]. Unassisted water 
splitting with appreciable efficiencies has been achieved only by using mul-
tiple photoabsorbers [3] due to the “spectral mismatch” between the energy 
in the solar spectrum and the energy required to drive water splitting. 
Commonly, a two-photoabsorber approach is termed “a tandem cell” [34].

Photoabsorbers can be further classified by the conductive nature of the 
two materials that make up the electrical junction. The junction formed 
at two electronic conductors is commonly called a solid-state junction 
or photovoltaic junction, whereas the junction formed between an elec-
tronic and an ionic conductor is commonly referred to as a semiconduc-
tor–electrolyte junction. It is important to note that the electrolyte may also 
be a solid-state ionic conductor. An excellent taxonomy was produced by 
Nielander et al. [35], which classified the different architectures and defined 
a naming scheme which also differentiated between the type of the applied 
bias source (i.e., whether it was PV or PEC). However, for the conceptual 
PEC design outlined here, we only differentiate between semiconductor–
liquid junction (SCLJ) in contact with the electrolyte, from which the solar 
fuel is synthesized and self-contained solar cell. This is to group together 
all systems that can bias the cell, which could include both PEC solar cells, 
e.g., dye-sensitized solar cells, and PV cells, e.g., multijunction III-V cells. 
Figure 1.3 introduces the symbols used in the subsequent sections.

Electrical Configuration of Photoabsorbers
The photoabsorbers must be placed within the electrolytic cell electrical 
circuit. In a generic photoelectrochemical cell, as shown in Figure 1.4, pho-
toabsorbers can be placed at different points within the circuit. Commonly, 
multiple photoabsorbers are connected in series in order to generate a suf-
ficiently large potential to split water. There is also the possibility of mul-
tiple anodes or cathodes utilizing different light absorbers as demonstrated 
in the work by Kim et al. [36].

Self-contained

photoabsorber

+ + +–

(a) (b) (c)

Photoanode Anode (dark)

Figure 1.3 Electrical symbols where the polarity of the electrodes is in reference to an 

electrolytic cell.
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Optical Configuration of Photoabsorbers
For systems employing multiple photoabsorbers, there will be multiple 
optical configurations. Photoabsorbers can be placed in parallel or in 
series, which has significant ramifications for the obtainable efficiency and 
complexity [33]. The main advantage of optical operation in series is that 
a preceding absorber utilizes a portion of the spectrum and allows other 
wavelengths to pass through to the next absorber. Higher efficiencies can 
be obtained using this configuration due to a more complete capture of the 
spectrum of light while maintaining a more significant proportion of the 
captured energy of each photon. However, this approach can be complex as 
the spectrum must be matched to the current density and is often expensive, 
especially for multijunction solar cells. Optical operation in parallel is often 
used with photoabsorbers of the same bandgap as each solar cell can receive 
the portion of the spectrum needed for efficient individual operation. The 
photoabsorbers are then connected electrically in series in order to gener-
ate the required photovoltage for water splitting if one cell is not sufficient.

In order to simplify the classification, we introduced a schematic repre-
sentation of the optical pathway of light in Figure 1.5. It is important to note 
that at each junction where light splits (or merges), the diagram makes no 
assumptions about the fraction of the split and/or the spectral dependence 
of this. This means that complex optics such as spectral splitters (dichroic 
mirrors) could achieve high efficiencies through greater utilization of the 

Solar cell(s)

Anode

interface

Cathode

interface

+

+

–

–

+ –

Figure 1.4 Generic schematic of layout of photoelectrochemical cell.
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spectrum (similar to series configuration) while the photoabsorbers are 
optically in parallel.

Example Conceptual Designs
In order to demonstrate the versatility of the previously described concep-
tual schematic, a number of example systems from literature are presented. 
This methodology attempts to be a universal abstraction of the photoelec-
trolysis process and so can easily represent complex designs using one set 
of schematic rules.

The examples in Table 1.3 have been chosen to show the broad range 
of device architectures and the utility of the conceptual design framework 
outlined previously. As the number of photoabsorbers, electrical, and opti-
cal connection defines the maximum theoretical efficiency achievable, this 
allows for designs to be compared even though the physical implementa-
tion and materials used may differ significantly.

In this framework, photo-assisted electrolysis systems, which employ 
an electrical bias from an external power source (e.g., PV + transformer/
inverter, wind turbine, etc.), have not been included; however, they could 
be easily implemented. As the mode of the external power source is irrel-
evant from a PEC conceptual design viewpoint, it could simply be included 
as a power source symbol.

1.2.2  Classification Framework for Design of PEC Devices

For a conceptual PEC cell design to be engineered into a physical device, a 
number of considerations must be made as to the placement of components 
within the cell. The framework outlined below classifies each device design.

1. Conceptual design (see previous section)
2. Electrode construction

1 photo-system:

2 photo-systems:

3 photo-systems:

Figure 1.5 Optical configurations for 1, 2 and 3 photoabsorbers.



14 Photoelectrochemical Solar Cells
T

ab
le

 1
.3

 
E

xa
m

p
le

 c
o

n
ce

p
tu

al
 d

es
ig

n
s.

P
ap

er
N

o
. o

f 
p

h
o

to
ab

so
rb

er
s

E
le

ct
ri

ca
l c

o
n

fi
g

u
ra

ti
o

n
O

p
ti

ca
l c

o
n

fi
g

u
ra

ti
o

n
In

fo
rm

at
io

n
 a

b
o

u
t 

p
h

o
to

ab
so

rb
er

s

H
an

 e
t 

a
l.

 2
0

1
4

 

[3
7

]

3
2 1

3

– –

–
+ +

+

1
2

3
1

) 
W

:B
iV

O
4

2
) 

a-
Si

:H

3
) 

n
c-

Si
:H

K
h

as
el

ev
 a

n
d

 

T
u

rn
er

 1
9

9
8

 

[3
8

]

2
1

2

–

–

+

+

2
1

1
) 

G
aA

s

2
) 

G
aI

n
P

2

Ji
a 

et
 a

l.
 2

0
1

6
 

[1
8

]

3
1

2
3

–
+

–
+

–

–
–

+

+
+

1
2

3
1

) 
In

G
aP

2
) 

G
aA

s

3
) 

G
aI

n
N

A
s

Ja
co

b
ss

o
n

 e
t 

a
l.

 

2
0

1
3

 [
3

9
]

3
1

2
3

–
+

–
+

–

–

+

+

1 2 3

1
) 

C
IG

S

2
) 

C
IG

S

3
) 

C
IG

S

K
im

 e
t 

a
l.

 2
0

1
6

 

[3
6

]

2
2

+

1
+

–

2
1

1
) 

B
iV

O
4

2
) 

F
e 2

O
3


