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“. . . In the late 1980s Feng Kang pro-

posed and developed so-called symplec-

tic algorithms for solving equations in

Hamiltonian form. Combining theoreti-

cal analysis and computer experimenta-

tion, he showed that such methods, over

long times, are much superior to standard

methods. At the time of his death, he was

at work on extensions of this idea to other

structures . . . ”

Peter Lax

Cited from SIAMNews November 1993



Kang Feng giving a talk at an international conference

“ A basic idea behind the design of nu-
merical schemes is that they can preserve
the properties of the original problems as
much as possible . . . Different represen-
tations for the same physical law can lead
to different computational techniques in
solving the same problem, which can pro-
duce different numerical results . . .”

Kang Feng (1920 – 1993)

Cited from a paper entitled “How to compute property Newton’s equation of motion”
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Foreword

Kang Feng (1920–1993), Member of the Chinese Academy of Sciences, Professor and

Honorary Director of the Computing Center of the Chinese Academy of Sciences,

famous applied mathematician, founder and pioneer of computational mathematics

and scientific computing in China.

It has been 16 years since my brother Kang Feng passed away. His scientific

achievements have been recognized more and more clearly over time, and his contri-

butions to various fields have become increasingly outstanding. In the spring of 1997,

Professor Shing-Tung Yau, a winner of the Fields Medal and a foreign member of the

Chinese Academy of Sciences, mentioned in a presentation at Tsinghua University,

entitled “The development of mathematics in China in my view”, that “there are three

main reasons for Chinese modern mathematics to go beyond or hand in hand with

the West. Of course, I am not saying that there are no other works, but I mainly talk

about the mathematics that is well known historically: Professor Shiingshen Chern’s

work on characteristic class, Luogeng Hua’s work on the theory of functions of several

complex variables, and Kang Feng’s work on finite elements.” This high evaluation of

Kang Feng as a mathematician (not just a computational mathematician) sounds so

refreshing that many people talked about it and strongly agreed with it. At the end

of 1997, the Chinese National Natural Science Foundation presented Kang Feng et

al. with the first class prize for his other work on a symplectic algorithm for Hamil-

tonian systems, which is a further recognition of his scientific achievements (see the

certificate on the previous page). As his brother, I am very pleased.

Achieving a major scientific breakthrough is a rare event. It requires vision, ability

and opportunity, all of which are indispensable. Kang Feng has achieved two major

scientific breakthroughs in his life, both of which are very valuable and worthy of

mention. Firstly, from 1964 to 1965, he proposed independently the finite element

method and laid the foundation for the mathematical theory. Secondly, in 1984, he

proposed a symplectic algorithm for Hamiltonian systems. At present, scientific inno-

vation has become the focus of discussion. Kang Feng’s two scientific breakthroughs

may be treated as case studies in scientific innovation. It is worth emphasizing that

these breakthroughs were achieved in China by Chinese scientists. Careful study of

these has yet to be carried out by experts. Here I just describe some of my personal

feelings.

It should be noted that these breakthroughs resulted not only from the profound

mathematical knowledge of Kang Feng, but also from his expertise in classical physics

and engineering technology that were closely related to the projects. Scientific break-

throughs are often cross-disciplinary. In addition, there is often a long period of time

before a breakthrough is made-not unlike a long time it takes for a baby to be born,

which requires the accumulation of results in small steps.
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The opportunity for inventing the finite element method came from a national re-

search project, a computational problem in the design of the Liu Jia Xia dam. For

such a concrete problem, Kang Feng found a basis for solving of the problem using

his sharp insight. In his view, a discrete computing method for a mathematical and

physical problem is usually carried out in four steps. Firstly, one needs to know and

define the physical mechanism. Secondly, one writes the appropriate differential equa-

tions accordingly. In the third step, design a discrete model. Finally, one develops the

numerical algorithm. However, due to the complexity of the geometry and physical

conditions, conventional methods cannot always be effective. Nonetheless, starting

from the physical law of conservation or variational principle of the matter, we can

directly relate to the appropriate discrete model. Combining the variational principle

with the spline approximation leads to the finite element method, which has a wide

range of adaptability and is particularly suited to deal with the complex geometry of

the physical conditions of computational engineering problems. In 1965, Kang Feng

published his paper entitled “Difference schemes based on the variational principle”,

which solved the basic theoretical issues of the finite element method, such as conver-

gence, error estimation, and stability. It laid the mathematical foundation for the finite

element method. This paper is the main evidence for recognition by the international

academic community of our independent development of the finite element method.

After the Chinese Cultural Revolution, he continued his research in finite element

and related areas. During this period, he made several great achievements. I remem-

ber that he talked with me about other issues, such as Thom’s catastrophe theory,

Prigogine’s theory of dissipative structures, solitons in water waves, the Radon trans-

form, and so on. These problems are related to physics and engineering technology.

Clearly he was exploring for new areas and seeking a breakthrough. In the 1970s,

Arnold’s “Mathematical Method of Classical Mechanics” came out. It described the

symplectic structure for Hamiltonian equations, which proved to be a great inspira-

tion to him and led to a breakthrough. Through his long-term experience in mathe-

matical computation, he fully realized that different mathematical expressions for the

same physical law, which are physically equivalent, can perform different functions

in scientific computing (his students later called this the “Feng’s major theorem”).

In this way, for classical mechanics, Newton’s equations, Lagrangian equations and

Hamiltonian equations will show a different pattern of calculations after discretiza-

tion. Because the Hamiltonian formulation has a symplectic structure, he was keenly

aware that, if the algorithm can maintain the geometric symmetry of symplecticity, it

will be possible to avoid the flaw of artificial dissipation of this type of algorithm and

design a high-fidelity algorithm. Thus, he opened up a broad way for the computa-

tional method of the Hamiltonian system. He called this way the “Hamiltonian way”.

This computational method has been used in the calculation of the orbit in celestial

mechanics, in calculations for the particle path in accelerator, as well as in molecular

dynamics. Later, the scope of its application was expanded. For example, it has also

been widely used in studies of the atmosphere and earth sciences and elsewhere. It
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has been effectively applied in solving the GPS observation operator, indicating that

Global Positioning System data can be dealt with in a timely manner. This algorithm

is 400 times more efficient than the traditional method. In addition, a symplectic al-

gorithm has been successfully used in the oil and gas exploration fields. Under the

influence of Kang Feng, international research on symplectic algorithm has become

popular and flourishing, nearly 300 papers have been published in this field to date.

Kang Feng’s research work on the symplectic algorithm has been well-known and

recognized internationally for its unique, innovative, systematic and widespread prop-

erties, for its theoretical integrity and fruitful results.

J. Lions, the former President of the International Mathematics Union, spoke at

a workshop when celebrating his 60th birthday: “This is another major innovation

made by Kang Feng, independent of the West, after the finite element method.” In

1993 one of the world’s leading mathematicians, P.D. Lax, a member of the Ameri-

can Academy of Sciences, wrote a memorial article dedicated to Kang Feng in SIAM

News, stating that “In the late 1980s, Kang Feng proposed and developed so-called

symplectic algorithms for solving evolution equations . . .. Such methods, over a long

period, are much superior to standard methods.” E. J. Marsden, an internationlly well-

known applied mathematician, visited the computing institute in the late 1980s and

had a long conversation with Kang Feng. Soon after the death of Kang Feng, he pro-

posed the multi-symplectic algorithm and extended the characteristics of stability of

the symplectic algorithm for long time calculation of Hamiltonian systems with infi-

nite dimensions.

On the occasion of the commemoration of the 16th anniversary of Kang Feng’s

death and the 89th anniversary of his birth, I think it is especially worthwhile to praise

and promote what was embodied in the lifetime’s work of Kang Feng — “ indepen-

dence in spirit, freedom in thinking”. 1 Now everyone is talking about scientific inno-

vation, which needs a talented person to accomplish. What type of person is needed

most? A person who is just a parrot or who has an “independent spirit, freely think-

ing”? The conclusion is self-evident. Scientific innovation requires strong academic

atmosphere. Is it determined by only one person or by all of the team members? This

is also self-evident. From Kang Feng’s scientific career, we can easily find that the key

to the problem of scientific innovation is “independence in spirit, freedom in thinking”,

and that needs to be allowed to develop and expand.

Kang Feng had planned to write a monograph about a symplectic algorithm for

Hamiltonian systems. He had accumulated some manuscripts, but failed to complete

it because he died too early due to sickness. Fortunately, his students and Professor

Mengzhao Qin (see the photo on the previous page), one of the early collaborators,

spent 15 years and finally completed this book based on Kang Feng’s plan, realizing

his wish. It is not only an authoritative exposition of this research field, but also an

1 Yinke Chen engraved on a stele in 1929 in memory of Guowei Wang in campus of Tsinghua

University.
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exposure of the academic thought of a master of science, which gives an example of

how an original and innovative scientific discovery is initiated and developed from

beginning to end in China.

We would also like to thank Zhejiang Science and Technology Publishing House,

which made a great contribution to the Chinese scientific cause through the publication

of this manuscript.

Although Kang Feng died 16 years ago, his scientific legacy has been inherited and

developed by the younger generation of scientists. His scientific spirit and thought still

elicit care, thinking and resonance in us. He is still living in the hearts of us.

Duan, Feng

Member of Chinese

Academy of Sciences

Nanjing University

Nanjing

September 20, 2009



Preface

It has been 16 years since Kang Feng passed away. It is our honor to publish the En-

glish version of Symplectic Algorithm for Hamiltonian Systems, so that more readers

can see the history of the development of symplectic algorithms. In particular, after

the death of Kang Feng, the development of symplectic algorithms became more so-

phisticated and there have been a series of monographs published in this area, e.g.,

Sanz-Serna & M.P. Calvo’s Numerical Hamiltonian Problems published in 1994 by

Chapman and Hall Publishing House; E. Hairer, C. Lubich and G. Wanner’s Geo-
metrical Numerical Integration published in 2001 by Springer Verlag; B. Leimkuhler

and S. Reich’s Simulating Hamiltonian Dynamics published in 2004 by Cambridge

University Press. The symplectic algorithm has been developed from ordinary dif-

ferential equations to partial differential equations, from a symplectic structure to a

multi-symplectic structure. This is largely due to the promotion of this work by J.

Marsden of the USA and T. Bridge and others in Britain. Starting with a symplectic

structure, J. Marsden first developed the Lagrange symplectic structure, and then to

the multi-symplectic structure. He finally proposed a symplectic structure that meets

the requirement of the Lagrangian form from the variational principle by giving up

the boundary conditions. On the other hand, T. Bridge and others used the multi-

symplectic structure to derive directly the multi-symplectic Hamilton equations, and

then constructed the difference schemes that preserve the symplectic structure in both

time and space. Both methods can be regarded as equivalent in the algorithmic sense.
Now, in this monograph, most of the content refers only to ordinary differential

equations. Kang Feng and his algorithms research group working on the symplectic

algorithm did some foundation work. In particular, I would like to point out three nega-

tive theorems: “ non-existence of energy preserving scheme”, “ non-existence of mul-

tistep linear symplectic scheme”, and “ non-existence of volume-preserving scheme

form rational fraction expression”. In addition, generating function theory is not only

rich in analytical mechanics and Hamilton–Jacobi equations. At the same time, the

construction of symplectic schemes provides a tool for any order accuracy difference

scheme. The formal power series proposed by Kang Feng had a profound impact on

the later developed “ backward error series” work ,“ modified equation” and “ modified
integrator”.

The symplectic algorithm developed very quickly, soon to be extended to the ge-

ometric method. The structure preserving algorithm (not only preserving the geomet-

rical structure, but also the physical structure, etc.) preserves the algebraic structure

to present the Lie group algorithm, and preserves the differential complex algorithm.

Many other prominent people have contributed to the symplectic method in addition

to those mentioned above. There are various methods related to structure preserving

algorithms and for important contributions the readers are referred to R. McLach-

lan & GRW Quispel “ Geometric integration for ODEs” and T. Bridges & S. Reich

“Numerical methods for Hamiltonian PDEs”.

The book describes the symplectic geometric algorithms and theoretical basis for

a number of related algorithms. Most of the contents are a collection of lectures given



xiv Preface

by Kang Feng at Beijing University. Most of other sections are a collection of papers

which were written by group members.

Compared to the previous Chinese version, the present English one has been im-

proved in the following respects. First of all, to correct a number of errors and mis-

takes contained in the Chinese version. Besides, parts of Chapter 1 and Chapter 2

were removed, while some new content was added to Chapter 4, Chapter 7, Chapter

8, Chapter 9 and Chapter 10. More importantly, four new chapters — Chapter 13 to

Chapter 16 were added. Chapter 13 is devoted to the KAM theorem for the symplectic

algorithm. We invited Professor Zaijiu Shang , a former PhD student of Kang Feng

to compose this chapter. Chapter 14 is called Variational Integrator. This chapter re-

flects the work of the Nobel Prize winner Professor Zhengdao Li who proposed in

the 1980s to preserve the energy variational integrator, but had not explained at that

time that it had a Lagrange symplectic type, which satisfied the Lagrange symplectic

structure. Together with J. Marsden he proposed the variational integrator trail con-

nection, which leads from the variational integrator. Just like J. Marsden, he hoped

this can link up with the finite element method. Chapter 15 is about Birkhoffian Sys-

tems, describing a class of dissipative structures for Birkohoffian systems to preserve

the dissipation of the Birkhoff structure. Chapter 16 is devoted to Multisymplectic

and Variational Integrators, providing a summary of the widespread applications of

multisymplectic integrators in the infinitely dimensional Hamiltonian systems.

We would also like to thank every member of the Kang Feng’s research group

for symplectic algorithms: Huamo Wu, Daoliu Wang, Zaijiu Shang, Yifa Tang, Jialin

Hong, Wangyao Li, Min Chen, Shuanghu Wang, Pingfu Zhao, Jingbo Chen, Yushun

Wang, Yajuan Sun, Hongwei Li, Jianqiang Sun, Tingting Liu, Hongling Su, Yimin

Tian; and those who have been to the USA: Zhong Ge, Chunwang Li, Yuhua Wu,

Meiqing Zhang, Wenjie Zhu, Shengtai Li, Lixin Jiang, and Haibin Shu. They made

contributions to the symplectic algorithm over different periods of time.

The authors would also like to thank the National Natural Science Foundation, the

National Climbing Program projects, and the State’s Key Basic Research Projects for

their financial support. Finally, the authors would also like to thank the Mathematics

and Systems Science Research Institute of the Chinese Academy of Sciences, the

Computational Mathematics and Computational Science and Engineering Institute,

and the State Key Laboratory of Computational Science and Engineering for their

support.

The editors of this book have received help from E. Hairer, who provided a tem-

plate from Springer publishing house. I would also like to thank F. Holzwarth at

Springer publishing house and Linbo Zhang of our institute, and others who helped

me successfully publish this book.

For the English translation, I thank Dr. Shengtai Li for comprehensive proof-

reading and polishing, and the editing of Miss Yi Jin. For the English version of the

publication I would also like to thank the help of the Chinese Academy of Sciences

Institute of Mathematics. Because Kang Feng has passed away, it may not be possible

to provide a comprehensive representation of his academic thought, and the book will

inevitably contain some errors. I accept the responsibility for any errors and welcome

criticism and corrections.
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We would also like to thank Springer Beijing Representation Office and Zhejiang

Science and Technology Publishing House, which made a great contribution to the

Chinese scientific cause through the publication of this manuscript. We are especially

grateful to thank Lisa Fan, W. Y. Zhou, L. L. Liu and X. M. Lu for carefully reading

and finding some misprints, wrong signs and other mistakes.

This book is supported by National Natural Science Foundation of China under

grant No.G10871099 ; supported by the Project of National 863 Plan of China (grant

No.2006AA09A102-08); and supported by the National Basic Research Program of

China (973 Program) (Grant No. 2007CB209603).

Mengzhao Qin

Institute of Computational

Mathematics and Scientific

Engineering Computing

Beijing

September 20, 2009
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Introduction

The main theme of modern scientific computing is the numerical solution of various

differential equations of mathematical physics bearing the names, such as Newton, Eu-

ler, Lagrange, Laplace, Navier–Stokes, Maxwell, Boltzmann, Einstein, Schrödinger,

Yang-Mills, etc. At the top of the list is the most celebrated Newton’s equation of mo-

tion. The historical, theoretical and practical importance of Newton’s equation hardly

needs any comment, so is the importance of the numerical solution of such equations.

On the other hand, starting from Euler, right down to the present computer age, a

great wealth of scientific literature on numerical methods for differential equations

has been accumulated, and a great variety of algorithms, software packages and even

expert systems has been developed. With the development of the modern mechanics,

physics, chemistry, and biology, it is undisputed that almost all physical processes,

whether they are classical, quantum, or relativistic, can be represented by an Hamilto-

nian system. Thus, it is important to solve the Hamiltonian system correctly.

1. Numerical Method for the Newton Equation of Mo-
tion

In the spring of 1991, the first author [Fen92b] presented a plenary talk on how to com-

pute the numerical solution of Newton classical equation accurately at the Annual

Physics Conference of China in Beijing.

It is well known that numerically solving so-called mathematics-physics equa-

tions has become a main topic in modern scientific computation. The Newton equation

of motion is one of the most popular equations among various mathematics-physics

equations. It can be formulated as a group of second-order ordinary differential equa-

tions, f = ma = mẍ. The computational methods of the differential equations ad-

vanced slowly in the past due to the restriction of the historical conditions. However, a

great progress was made since Euler, due to contributions from Adams, Runge, Kutta,

and Stömer, etc.. This is especially true since the introduction of the modern com-

puter for which many algorithms and software packages have been developed. It is

said that the three-body problem is no longer a challenging problem and can be easily

computed. Nevertheless, we propose the following two questions:

1◦ Are the current numerical algorithms suitable for solving the Newton equa-

tion of motion?

2◦ How can one calculate the Newton equation of motion more accurately?

It seems that nobody has ever thought about the first issue seriously, which may be

the reason why the second issue has never been studied systematically. In this book, we

will study mainly the fundamental but more difficult Newton equation of motion that

is in conservative form. First, the conservative Newton equation has two equivalent

mathematical representations: a Lagrange variation form and a Hamiltonian form. The
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latter transforms the second-order differential equations in physical space into a group

of the first-order canonical equations in phase space. Different representations for
the same physical law can lead to different computational techniques in solving
the same problem, which can produce different numerical results. Thus making a

wise and reasonable choice among various equivalent mathematical representations is

extremely important in solving the problem correctly.

We choose the Hamiltonian formulation as our basic form in practice based on the

fact that the Hamiltonian equations have symmetric and clean form, where the physical

laws of the motion can be easily represented. Secondly, the Hamiltonian formulation

is more general and universal than the Newton formulation. It can cover the classical,

relativistic, quantum, finite or infinite dimensional real physical processes where dis-

sipation effect can be neglected. Therefore, the success of the numerical methods for

Hamiltonian equations has broader development and application perspectives. Thus, it

is very surprising that the numerical algorithms for Hamiltonian equations are almost

nonexistent after we have searched various publications. This motivates us to study

the problem carefully to seek the answers to the previous two questions.

Our approach is to use the symplectic geometry, which is the geometry in phase

space. It is based on the anti-symmetric area metric, which is in contrast to the sym-

metric length metrics of Euclid and Riemann geometry. The basic theorem of the clas-

sic mechanics can be described as “the dynamic evolution of all Hamiltonian systems

preserves the symplectic metrics, which means it is a symplectic (canonical) transfor-

mation”. Hence the correct discretization algorithms to all the Hamiltonian systems

should be symplectic transformation. Such algorithms are called symplectic (canoni-

cal) algorithms or Hamiltonian algorithms. We have intentionally analyzed and eval-

uated the derivation of the Hamiltonian algorithm within the symplectic structures.

The fact proved that this approach is correct and fruitful. We have derived a series of

symplectic algorithms, found out their properties, laid out their theoretical foundation,

and tested them with extremely difficult numerical experiments.

In order to compare the symplectic and non-symplectic algorithm, we proposed

eight numerical experiments: harmonic oscillator, nonlinear Duffing oscillator, Huy-

gens oscillator, Cassini oscillator, two dimensional multi-crystal and semi-crystal lat-

tice steady flow, Lissajous image, geodesic flow on ellipsoidal surface, and Kepler

motion. The numerical experiments demonstrate the superiority of the symplectic al-

gorithm. All traditional non-symplectic algorithms fail without exception, especially

in preserving global property and structural property, and long-term tracking capabil-

ity, regardless of their accuracy. However, all the symplectic algorithms passed the

tests with long-term stable tracking capability. These tests clearly demonstrate the su-

periority of the symplectic algorithms.

Almost all of the traditional algorithms are non-symplectic with few exceptions.

They are designed for the asymptotic stable system which has dissipation mechanism

to maintain stability, whereas the Hamiltonian system does not have the asymptotic

stability. Hence all these algorithms inevitably contain artificial numerical dissipation,

fake attractors, and other parasitics effects of non-Hamiltonian system. All these ef-

fects lead to seriously twist and serious distortion in numerical results. They can be

used in short-term transient simulation, but are not suitable and can lead to wrong
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conclusions for long-term tracking and global structural property research. Since the

Newton equation is equivalent to Hamiltonian equation, the answer to the first ques-

tion is “No”, which is quite beyond expectation.

The symplectic algorithm does not have any artificial dissipation so that it can con-

genitally avoid all non-symplectic pollution and become a “clean” algorithm. Hamil-

tonian system has two types of conservation laws: one is the area invariance in phase

space, i.e., Liouville–Poincaré conservation law; the other is the motion invariance

which includes energy conservation, momentum and angular momentum conserva-

tion, etc. We have proved that all symplectic algorithms have their own invariance,

which has the same convergence to the original theoretical invariance as the conver-

gence order of the numerical algorithm. We have also proved that the majority of in-

variant tori of the near integrable system can be preserved, which is a new formulation

of the famous KAM (Kolmogorov–Arnorld–Moser) theorem[Kol54b,Kol54a,Arn63,Mos62].

All of these results demonstrate that the structure of the discrete Hamiltonian algo-

rithm is completely parallel to the conservation law, and is very close to the original

form of the Hamiltonian system. Moreover, theoretically speaking, it has infinite long-

term tracking capability. Hence, a correct numerical method to solve the Newton equa-

tion is to Hamiltonize the equation first and then use the Hamiltonian algorithm. This

is the answer to the second question. We will describe in more detail the KAM theory

of symplectic algorithms for Hamiltonian systems in Chapter 13. In the following we

present some examples to compare the symplectic algorithm and other non-symplectic

algorithms in solving Newton equation of motion.

(1) Calculation of the Harmonic oscillator’s elliptic orbit

Calculation of the Harmonic oscillator’s elliptic orbit (Fig. 0.1(a)) uses Runge–Kutta

method (R–K) with a step size 0.4. The output is at 3,000 steps. It shows artificial

dissipation, shrinking of the orbit. Fig. 0.1(b) shows the results using Adams method

with a step size 0.2. It is anti-dissipative and the orbit is scattered out. Fig. 0.1(c)

shows the results of two-step central difference (leap-frog scheme). This scheme is

symplectic to linear equations. The results are obtained with a step size 0.1. It shows

that the results of three stages for 10,000,000 steps: the initial 1,000 steps, the middle

1,000 steps, and the final 1,000 steps. They are completely in agreement.

(2) The elliptic orbit for the nonlinear oscillator

Fig. 0.2(a) shows the results of two-step central-difference. This scheme is non-

symplectic for nonlinear equations. The output is for step size 0.2 and 10,000 steps.

Fig. 0.2(a) shows the initial 1,000 steps and Fig. 0.2(b) shows the results between

9,000 to 10,000 steps. Both of them show the distortion of the orbit. Fig. 0.2(c) is for

the second-order symplectic algorithm with 0.1 step size, 1,000 steps.
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Fig. 0.1. Calculation of the Harmonic oscillator’s elliptic orbit

Fig. 0.2. Calculation of the nonlinear oscillator’s elliptic orbit
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Fig. 0.3. Calculation of the nonlinear Huygens oscillator

(3) The oval orbit of the Huygens oscillator

Using the R–K method, the two fixed points on the horizontal axes become two fake

attractors. The probability of the phase point close to the two attractors is the same.

The same initial point outside the separatrix is attracted randomly either to the left

or to the right. Fig. 0.3(a) shows the results with a step size 0.10000005 and 900,000

steps, which approach the left attractor. Fig. 0.3(b) shows the results with a step size

0.10000004 and 900,000 steps, which approach the right attractor. Fig. 0.3(c) shows

the results of the second-order symplectic algorithm with a step size 0.1. Four typical

orbits are plotted and each contains 100,000,000 steps: for every orbit first 500 steps,

the middle 500 steps, and the final 500 steps. They are in complete agreement.

(4) The dense orbit of the geodesic for the ellipsoidal surface

The dense orbit of the geodesic for the ellipsoidal surface with irrational frequency ra-
tio. The square of frequency ratio is 5/16, step size is 0.05658, 10,000 steps. Fig.0.4(a)

is for the R–K method which does not tend to dense. Fig. 0.4(b) is for the symplectic

algorithm which tends to dense.
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Fig. 0.4. Geodesics on ellipsoid, frequency ratio
√
5 : 4, non dense (a), dense orbit (b)

(5) The close orbit of the geodesic for the ellipsoidal surface

The close orbit of the geodesic for the ellipsoidal surface with rational frequency
ratio. The frequency ratio is 11/16, step size is 0.033427, 100,000 steps and 25 cycles.

Fig.0.5(a) is for the R–K method which does not lead to the close orbit. Fig. 0.5(b) is

for the symplectic algorithm which leads to the close orbit.

Fig. 0.5. Geodesics on ellipsoid, frequency ratio 11:16, non closed (a), closed orbit (b)

(6) The close orbit of the Keplerian motion

The close orbit of the Keplerian motion with rational frequency ratio. The frequency

ratio is 11/20, step size is 0.01605, 240,000 steps and 60 cycles. Fig. 0.6(a) is for the

R–K method which does not lead to the close orbit. Fig. 0.6(b)is for the symplectic

method which leads to the close orbit.
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Fig. 0.6. Geodesics on ellipsoid, frequency ratio 11:20, non closed (a), closed orbit (b)

2. History of the Hamiltonian Mechanics
We first consider the three formulations of the classical mechanics. Assume a motion

has n degrees of freedom. The position is denoted as q = (q1, · · · , qn). The potential

function is V = V (q). Then we have

m
d2 q

d t2
= − ∂

∂q
V,

which is the standard formulation of the motion. It is a group of second-order differen-

tial equations in space Rn. It is usually called the standard formulation of the classical

mechanics, or Newton formulation.

Euler and Lagrange introduced an action on the difference between the kinetic

energy and potential energy

L(q, q̇) = T (q̇)− V (q) =
1
2
(q̇,Mq̇)− V (q).

Using the variational principle the above equation can be written as

d

d t

∂ L

∂ q̇
− ∂ L

∂ q
= 0,

which is called the variational form of the classical mechanics, i.e., the Lagrange form.

In the 19th century, Hamilton proposed another formulation. He used the momen-

tum p = Mq̇ and the total energy H = T + V to formulate the equation of motion

as

ṗ = −∂ H

∂ q
, q̇ =

∂H

∂p
,

which is called Hamiltonian canonical equations. This is a group of the first-order

differential equations in 2n phase space (p1, · · · , pn, q1, · · · , qn). It has simple and

symmetric form.
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The three basic formulations of the classical mechanics have been described in

almost all text-books on theoretical physics or theoretical mechanics. These different
mathematical formulations describe the same physics law but provide different ap-
proaches in problem solving. Thus equivalent mathematical formulation can have
different effectiveness in computational methods. We have verified this in our own

simulations.

The first author did extensive research on Finite Element Method (FEM) in the

1960s [Fen65] which represents a systematic algorithm for solving equilibrium problem.

Physical problems of this type have two equivalent formulations: Newtonian, i.e., solv-

ing the second-order elliptic equations, and variational formulation, i.e., minimization

principle in energy functional. The key to the success of FEM in both theoretical and

computational methods lies in using a reasonable variational formulation as the basic

principle. After that, he had attempted to apply the FEM idea to the dynamic problem

of continuum media mechanics, but not yet achieved the corresponding success, which

appears to be difficult to accomplish even today. Therefore, the reasonable choice for

computational method of dynamic problem might be the Hamiltonian formulation.

Initially it is a conjecture and requires verification from the computational experi-

ments. We have investigated how others evaluated the Hamiltonian system in history.

First we should point out that Hamilton himself proposed his theory based on the ge-

ometric optics and then extended it to mechanics that appears to be a very different

field. In 1834 Hamilton said, “This set of idea and method has been applied to optics

and mechanics. It seems it can be applied to other areas and developed into an inde-

pendent knowledge by the mathematicians”[Ham34]. This is just his expectation, and

other peers in the same generation seemed indifferent to this set of theory, which was

“beautiful but useless”[Syn44] to them. Klein, a famous mathematician, while giving a

high appreciation to the mathematical elegance of the theory, suspected its applicabil-

ity, and said: “. . . a physicist, for his problems, can extract from these theories only

very little, and an engineer nothing”[Kle26]. This claim has been proved wrong at least

in physics aspect in the later history. The quantum mechanics developed in the 1920s

under the framework of the Hamiltonian formulation. One of the founders of the quan-

tum mechanics, Schrödinger said, “Hamiltonian principle has been the foundation for

modern physics . . . If you want to solve any physics problem using the modern theory,

you must represent it using the Hamiltonian formulation”[Sch44].

3. The Importance of the Hamiltonian System

The Hamiltonian system is one of the most important systems among all the dynam-

ics systems. All real physical processes where the dissipation can be neglected can be

formulated as Hamiltonian system. Hamiltonian system has broad applications, which

include but are not limited to the structural biology, pharmacology, semiconductivity,

superconductivity, plasma physics, celestial mechanics, material mechanics, and par-

tial differential equations. The first five topics have been listed as “Grand Challenges”

in Research Project of American government.
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The development of the physics verifies the importance of the Hamiltonian sys-

tems. Up to date, it is undisputed that all real physical processes where the dissipation

can be neglected can be written as Hamiltonian formulation, whether they have finite

or infinite degrees of freedom.

The problem with finite degrees of freedom includes celestial and man-made

satellite mechanics, rigid body, and multi-body (including the robots), geometric op-

tics, and geometric asymptotic method (including ray-tracing approximation method

in wave-equation, and WKB equation of quantum mechanics), confinement of the

plasma, the design of the high speed accelerator, automatic control, etc.

The problem with infinite degrees of freedom includes ideal fluid dynamics, elas-

tic mechanics, electrical mechanics, quantum mechanics and field theory, general rel-

ativistic theory, solitons and nonlinear waves, etc.

All the above examples show the ubiquitous and nature of the Hamiltonian sys-

tems. It has the advantage that different physics laws can be represented by the same

mathematical formulation. Thus we have confidence to say that successful develop-

ment of the numerical methods for Hamiltonian system will have extremely broad

applications.

We now discuss the status of the numerical method for Hamiltonian systems.

Hamiltonian systems, including finite and infinite dimensions, are Ordinary Differ-

ential Equations (ODE) or Partial Differential Equations (PDE) with special form.

The research on the numerical method of the differential equations started in the 18th

century and produced abundant publications. However, we find that few of them dis-

cuss the numerical method specifically for Hamiltonian systems. This status is in sharp

contrast with the importance of the Hamiltonian system. Therefore, it is appealing and

worthy to investigate and develop numerical methods for this virgin field.

4. Technical Approach—Symplectic GeometryMethod

The foundation for the Hamiltonian system is symplectic geometry, which is increas-

ingly flourishing in both theory and practice. The history of symplectic geometry can

be traced back to Astronomer Hamilton in the 19th century. In order to study the New-

ton mechanics, he introduced generalized coordinates and generalized momentums to

represent the energy of the system, which is now called Hamiltonian function now. For

a system with n degrees of freedom, the n generalized coordinates and momentums

are spanned into a 2n phase space. Thus the Newton mechanics becomes the geometry

in phase space. In terms of the modern concept, this is a kind of symplectic geometry.

Later, Jacobi, Darboux, Poincaré, Cartan, and Weyl did a lot of research on this topic

from different points of view (algebra and geometry). However, the major develop-

ment of the modern symplectic geometry started with the discovery of KAM theorem

(1950s to the beginning of 1960s). In the 1970s, in order to research Fourier integral

operator, quantum representation of the geometry, group representation theory, classi-

fication of the critical points, Lie Algebra, etc., people did a lot of work on symplectic

geometry (e.g., Arnold[Arn89], Guillemin[GS84], Weinstein[Wei77], Marsden[AM78], etc.),

which promoted the development in these areas. In the 1980s, the research on total


