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Preface

In the early twentieth century, A. K. Erlang’s works on probability prob-
lems in telephone systems laid the groundwork for the development of queueing
theory. During the past 100 years, queueing theory has always been one of the
most important and active research areas in operations research and applied
probability. Classical queueing theory has been well developed and applied as a
fundamental performance evaluation tool in many fields such as computer and
telecommunication, manufacturing and service, and transportation systems.

Since the mid-20th century, due to the rapid advance of computer technology,
flexible manufacturing systems, telecommunication networks, and supply chain
systems have been becoming more and more popular in many organizations. To
evaluate and eventually improve the performance and efficiency, queueing mod-
els were developed to analyze the operations of these hi-tech systems. However,
due to the increasing complexity of these stochastic systems, classical queueing
theory, which was once quite successful in modeling telephone systems, became
inadequate. Vacation queueing theory was developed in the 1970’s as an ex-
tension of the classical queueing theory. In a queueing system with vacations,
other than serving randomly arriving customers, the server is allowed to take
vacations. The vacations may represent server’s working on some supplemen-
tary jobs, performing server maintenance inspection and repairs, or server’s
failures that interrupt the customer service. Furthermore, allowing servers to
take vacations makes queucing models more flexible in finding optimal service
policies. Therefore, queues with vacations or simply called vacation models at-
tracted great attentions of queueing researchers and became an active research
area. Many studies on vacation models were published from the 1970’s to the
mid 1980’s, and were summarized in two survey papers by Doshi and Teghem,
respectively, in 1986. Stochastic decomposition theorems were established as
the core of vacation queueing theory. In the early 1990’s, Takagi published a set
of three volume books entitled Queueing Analysis. One of Takagi’s books was
devoted to vacation models of both continuous and discrete time types and focus
mainly on M/G/1 type and Geo/G/1 type queues with vacations. Takagi’s book
certainly advanced further research and wide applications of vacation models.
In another book entitled Frontiers in Queueing edited by Dshalalow in 1997,
various M/G/1 type vacation models were discussed as a category of queueing
systems with state-dependent parameters.

The aim of this book is to provide an updated and comprehensive treatment
of various vacation queueing systems including not only single-server vacation
models of both M/G/1 and GI/M/1 types but also a variety of multiserver
vacation models. There are several features of this book. Firstly, unconditional
and conditional stochastic decomposition properties of stationary performance
measures for all types of vacation models are established as the core of vacation
queueing theory. Secondly, both performance evaluation and optimal control
issues are addressed. In particular, the static and dynamic optimizations in
vacation models are discussed. Finally, several practical systems are presented
as a sample of wide applications of vacation models. The authors hope that



this book will facilitate further research and applications of vacation queueing
models.

The book consists of eight chapters. Chapter 1 gives an introduction to vaca-
tion queueing models. The major components of a vacation model, the vacation
policies, and the stochastic decomposition structures are described in this chap-
ter. In Chapter 2, M/G/1 type vacation systems with exhaustive service are
treated. This type of vacation model has been studied by many researchers using
different methods. The system with multiple adaptive vacations is presented in
details as a general model of this category. Some well-studied vacation models
such as multiple vacation, single vacation, and setup time models are special
cases of this general model. Batch arrival and batch service vacation models are
discussed in this chapter. Other vacation models with finite buffer, threshold
policy, and Markov arrival process (MAP) are also considered. Chapter 3 focuses
on M/G/1 type vacation systems with non-exhaustive service including gated
service, limited service, decremental service, and Bernoulli service. This chapter
is mainly based on the materials from Takagi’s book Queueing Analysis, Volume
1. Chapter 4 is devoted to GI/M/1 type vacation models. Compared to M/G/1
type vacation models which are analyzed by mainly using embedded Markov
chain and supplementary variable methods, GI/M/1 type vacation models are
treated by using the matrix analytical method developed by Neuts (see Neuts
1981). Some recent results about finite buffer or batch service GI/M/1 type
vacation systems are also reported. In Chapter 5, Markovian multiserver va-
cation models are discussed. Multiserver vacation systems with various service
policies are modelled as quasi-birth-and-death (QBD) processes and analyzed
by using the matrix geometric solution method. Similar to unconditional sto-
chastic decomposition properties in single-server vacation models, conditional
stochastic decomposition properties when all servers are busy are established for
multiserver models. Chapter 6 studies multiserver vacation models with general
arrival process or of GI/M/c type. The stationary performance measures and
the conditional stochastic decomposition properties are presented. In Chapter
7, the optimal control issue in vacation systems is addressed. For single-server
vacation systems, both static optimization and dynamic control models under
certain cost and revenue structures are developed. Searching method and proof
of convexity for average cost function are presented in this chapter. Markov
decision process is used to solve the dynamic control problems in single-server
systems. For multiserver vacation systems with given cost and revenue struc-
tures, the optimal threshold policies are obtained by using the searching method.
Finally, Chapter 8 provides a few examples that illustrate the applications of
vacation models. A bibliographic notes is given at the end of each chapter.

Although the book contains a variety of vacation models that have been
studied over the past thirty years, there are still some excellent past works,
many successful applications, and open problems that are not included in this
book. The topics that need further research include (but are not limited to)
the diffusion approximation models, the queueing networks with vacations, the
simulation-based models, and the multiserver vacation models with Markov ar-
rival process.
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Chapter 1

INTRODUCTION

1.1 Queueing Systems with Server Vacations

In a classical queueing model, servers are always available. However,
in many practical queueing systems, servers may become unavailable for
a period of time due to a variety of reasons. This period of server absence
may represent the server’s working on some supplementary jobs, being
checked for maintenance, or simply taking a break. To analyze these sys-
tems, we introduce the server vacation in queueing models to represent
the period of temporary server absence. Allowing servers to take vaca-
tions makes queueing models more realistic and flexible in the study of
real-world waiting-line systems. Below are some practical systems that
can be modeled as queues with vacations.

Example 1.1 (call centers with multitask employees). The customer
service hotline of a long distance calling card company may not be very
busy all the time. The customer service representative’s (CSR) main
task is to answer customer calls for assistance. During the idle time,
the CSR can make phone calls to potential customers to promote the
company’s service and products. In this situation, the inbound calls are
queueing customers and the outbound calls are supplementary jobs that
can be modeled as server vacations. A call center with multitask CSRs
can be represented by a multiserver vacation model with “inbound calls”
as customers and “outbound calls” as vacations.

Example 1.2 (Border-crossing stations). In a U.S.and Canada border-
crossing station, the number of open lanes is determined by the level of
congestion or the length of the waiting line of cars. When the queue
length becomes zero, some of the open lanes are closed and the inspec-
tors leave for other jobs. When the waiting line builds up to a certain
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limit, these closed lanes are reopened to reduce the congestion level. In
this situation, time spent on working on other jobs is considered to be
a server vacation.

Example 1.3 (mixture of make-to-order and make-to-stock opera-
tions). A flexible manufacturing facility is mainly used for producing
customer-specified products. When there are no customer backorders,
the facility switches over to produce a variety of items in stock. Due to
the considerable switchover cost between “make-to-order” and “make-
to-stock” the facility is not switched back to process customer orders
until the number of orders is more than a critical level. Once the facility
switches back to serving customer orders, the service is exhaustive. In
this system, the “make-to-order” operation is a queue service process
and the “make-to-stock” operation can be modeled as a server vacation.

Example 1.4 (data transfer in computer/telecommunication net-
works). In an SVC (switched virtual connection)-based IP-over-ATM
(asynchronous transfer mode) network, the SVC manager or IP con-
troller can be considered to be as a server of a queueing model. The
setup time corresponds to the time period needed to set up a new SVC
by means of signaling protocols, and the shutdown time corresponds to
an inactive time period during which the SVC resources (e.g., routing
information and bandwidth) are reserved in anticipation of more cus-
tomers (packets) from the same IP flow. The vacation time may be
considered to be the time period required to release the SVC or the time
during which the server sets up other SVCs.

Example 1.5 (maintenance activities as server vacations). Another
example is the “repairman” problem in which the repairman’s main duty
is to repair broken machines. When no broken or malfunctioning ma-
chine exists, the repairman can do some maintenance or inspection jobs.
In this situation, the broken machines are the customers forming a queue
and the maintenance and inspection jobs are considered to be server va-
cations.

Many real-world systems can be modeled as queues with different va-
cation policies. Since the mid-twentieth century, due to the fast develop-
ment of computer and communication networks and flexible manufactur-
ing systems, the issue of performance evaluation and optimal control for
these systems has become more and more important to users. Queue-
ing models with vacations have been developed as useful performance
analysis tools for these high-tech systems. Classical queueing models
without vacations are not adequate for systems where servers may not
be always available. Although, in the classical literature, queueing re-
searchers have addressed some complex systems with polling service and
priority service, most vacation queueing models have been studied and
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reported only since the 1970s. Incorporating server vacations into queue-
ing models reflects the fact that server(s) may become unavailable while
working on secondary jobs in many practical queueing systems.

1.2 Vacation Policies

A classical queueing model consists of three parts: the arrival process,
the service process, and queue discipline (see Gross and Harris (1985)).
A vacation queueing model has an additional part: a vacation process
governed by a vacation policy. A vacation policy can be characterized
by three aspects:

(1) Vacation startup rule. This rule determines when the server starts
a vacation. There are two major types, namely, exhaustive and nonex-
haustive services. With an exhaustive service, the server cannot take a
vacation until the system becomes empty. On the other hand, the server
in a nonexhaustive service system can take a vacation even when the
system is not empty. In a multiserver system, a semiexhaustive service
rule may be used if some of the servers take vacations. Another vacation
start-up rule is the service interruption during the progress of customer
service. The service interruption may represent a machine failure during
the operation.

(2) Vacation termination rule. This rule determines when the server
resumes serving the queue. Two popular rules are the multiple vacation
policy and the single vacation policy. A multiple vacation policy requires
the server to keep taking vacations until it finds at least one customer
waiting in the system at a vacation completion instant. In contrast, un-
der a single vacation policy, the server takes only one vacation at the end
of each busy period. After this single vacation, the server either serves
the waiting customers, if any, or stays idle. More general rules, such
as the threshold policy (also called N-policy) and the adaptive multiple
vacation policy, will also be discussed in this book. In nonexhaustive
service systems, more vacation termination rules are possible.

In multiserver systems, in addition to start-up and termination rules,
there are other characteristics of a vacation policy. For example, all
servers may take vacations together (synchronous vacations), or servers
may take vacations individually and independently (asynchronous vaca-
tions). Another possible feature of a vacation policy is to allow some
(but not all) servers to take vacations to ensure that at least a minimum
number of servers are always available.

(3) Vacation duration distribution. Server vacations are often as-
sumed to be independent and identically distributed (i.i.d.) random
variables with a general distribution function, denoted by V(z). How-
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ever, some vacation models require different types of vacations and follow
different distributions.

The many variations on the vacation policy will be discussed in this
book.

1.3 Stochastic Decomposition in Vacation Models

The fundamental result of vacation models is the stochastic decompo-
sition theorem. In most queueing systems with vacations, the stationary
queue length or the stationary waiting time can be decomposed into the
sum of two independent random variables. One of these is the queue
length or waiting time of the corresponding classical queueing system
without vacations, and the other is the additional queue length or delay
due to vacations. These variables show clearly the effects of vacations on
system performance. For a classical single-server queueing system that
has reached the steady state, denote the number of customers in the sys-
tem, the queue length, and the waiting time by L, @, W, respectively,
and denote the same performance measures by L,, Q,, W,, respectively,
for the corresponding steady-state vacation system. Let X (z) and X*(s)
be the z-transform, or probability generating function (p.g.f.), and the
Laplace-Stieltjes transform (LST), respectively, of the stationary ran-
dom variable X. With these notations, the stochastic decomposition
properties can be written as

L, =L+ Lg, L,(z) = L(2)La(2),

L(
Qv = Q + Qda Qv( ) Q( )Qd( )
Wo=W4+Wa,  Wi(s) =W"(s)Wq(s),

where Ly, QQ4, and Wy are the additional number of customers in the sys-
tem, the additional queue length, and the additional delay, respectively,
due to vacations. For M/G/1 type vacation systems, the stochastic
decomposition properties have been proved by many researchers using
different methods. Doshi (1985) presented the stochastic decomposition
theorem for GI/G/1 type queues with vacations. Two excellent survey
papers by Doshi (1986) and Teghem (1986) primarily focused on the sto-
chastic decomposition properties in single server vacation models. Tian
et al. (1989, 1990, 1993) studied GI/M/1 type queues with vacations
and established the stochastic decomposition theorems. These stochas-
tic decomposition theorems laid the foundation of analyzing single server
vacation systems.

To expand the applications of vacation models, multiserver queues
with vacations were also studied after numerous achievements in single
server vacation models. However, it seems extremely difficult to estab-
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lish the unconditional stochastic decomposition properties in multiserver
models. When all servers in a multiserver system are busy, the condi-
tional stochastic decomposition properties can be obtained. Consider a
classical multiserver queue with ¢ servers, and let J be the number of
busy servers in a steady state. Define

QY ={Ly —clJ =c}, W = {Wo|Ly 2 ¢, J =c}.

QS,C) is the number of customers waiting in line given that all servers
are busy, and Q(© is the same random variable for the corresponding
queueing system without vacations. W1§C) is the customer waiting time,
given that all server are busy, and W) is the same random variable for
the corresponding queueing system without vacations. The conditional

stochastic decomposition properties are as follows:

QY =Q9W+Qu  QY(2)=Q(:2)Qul2),
WD =W 4wy, WO(s) = W)W (s),

where (g and W are the additional queue length and additional delay
due to server vacations, respectively.

These stochastic decomposition properties indicate the effects of va-
cations on system performance and play an important role in vacation
model theory. In this book, we discuss various stochastic decomposition
theorems as the fundamental theory of vacation models.

1.4 Bibliographic Notes

Since the early work by Erlang (1918) on modeling telephone traf-
fic systems, queueing theory has been developed over almost 100 years.
Due to its wide practical applications in many areas, queueing theory
has been one of the most active research topics in operations research
and management science over the past several decades. Some excellent
books on classical queueing theory have been published, including these
by Takacs (1962), Kleinrock (1975), Cooper (1981), Cohen (1982), Gross
and Harris (1985), Saaty (1983), Wolff (1989), Prabhu (1997), and oth-
ers. Some of the early work on queueing systems is relevant to queues
with vacations. White and Christie (1958) studied queueing system with
priority services and server breakdowns. Welch (1964) examined the
system with exceptional service to the first customer starting a busy pe-
riod. Jaiswal (1968) and Avi-Itzhak and Naor (1963) considered queues
with server interruptions and different service-resumption priority rules.
Cooper (1970) presented a study on queues served in a cyclic order, in
which the time period of serving other queues can be considered a ser-
vice interruption of the queue under consideration. However, significant
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research results on vacation systems were published in the late twen-
tieth century. Levy and Yechiali (1975) studied the issue of efficiently
utilizing server idle time and introduced the concept of a server’s tak-
ing vacations that represent the durations of the server’s work on some
supplementary project. Stochastic decomposition properties were dis-
covered by Levy and Yechiali (1975). Afterwards, many research results
on vacation models were published, including these by Courtois (1980),
Fuhrmann (1984), Fuhrmann and Cooper (1985), Doshi (1985), Levy
and Kleinrock (1986), Teghem (1985), Doshi (1990), Dshalalow (1997),
etc. In these works, detailed analysis and stochastic decomposition theo-
rems for M/G/1 type systems have been presented. Two excellent survey
papers (Taghem (1986) and Doshi (1986)) summarized the major devel-
opments in this area. There are also a few books that contain chapters or
sections on vacation models. Medhi (1991) discussed the M/G/1 queue
with vacations. Takagi (1991,1993) published a set of books that provide
a complete analysis of M/G/1 type and Geo/G/1 type vacation systems.

Stochastic decomposition properties were first observed in some early
queueing studies, such as those by Gaver (1962), Miller (1964), Cooper
(1970), and Levy and Yechiali (1975). After Levy and Yechiali’s work,
the stochastic decomposition theorems became the focus of most research
papers including those of Shanthikumar (1980), Scholl and Kleinrock
(1983), Ali and Neuts (1984), Neuts and Ramalhoto (1984), and Feder-
grune and Green (1986). Doshi (1985) extended the stochastic decom-
position property for stationary waiting time into a GI/G/1 queue with
vacations. Shanthikumar (1988, 1989) provided a proof for the stochastic
decomposition theorem in an M/G/1 queue with a class of more general
vacation policies. Takine and Hasegawa (1992) presented a stochastic
decomposition property for the joint distribution of number of customers
and elapsed service time. Rosberg and Gail (1991) studied the relation-
ship between stochastic decomposition properties and PASTA. Keilson
and Servi (1990) discussed the relationship between Little’s law and sto-
chastic decomposition in vacation models. Miyazawa (1994) used the
work-conservation law to provide a unified treatment of various M/G/1
vacation models and established the stochastic decomposition theorems.

Tian et al. (1989) studied the GI/M/1 queue with exponentially dis-
tributed vacations and established the stochastic decomposition proper-
ties for stationary queue length and waiting time. Recently, Tian and
Zhang (2003b) extended these properties to a GI/M/1 queue with PH-
type setup times or vacations.

For multiserver vacation models, it has been proved by Tian et al.
(1999), Zhang and Tian (2003a), and Tian and Zhang (2003a, 2003b)
that there exists a set of conditional stochastic decomposition properties
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for stationary queue length and waiting time, given that all servers are
busy in a variety of M/M/c and GI/M/c type systems with different
vacation policies.



Chapter 2

M/G/1 TYPE VACATION MODELS:
EXHAUSTIVE SERVICE

This chapter focuses on single server vacation systems where the server
follows an exhaustive-service policy: in other words, the server does not
take any vacations until the system becomes empty. The systems con-
sidered are the M/G/1 type, where interarrival times are exponentially
distributed i.i.d. random variables and service times are generally dis-
tributed i.i.d.random variables. The rules for resuming queue service at
a vacation completion instant are numerous. However, they can be gen-
erally classified into two categories. The rules in the first category are
mainly based on the number of vacations taken before the first customer
arrives at the empty system. These rules usually require the server to
serve the queue at a vacation completion instant if waiting customers
exist. The rules in the second category are based on the number of wait-
ing customers at a vacation completion instant. If the server returns
to serve the queue only when the number of waiting customers reaches
a critical value, the rule is called a threshold policy. In section 2.1, we
consider the multiple adaptive vacation (MAV) policy, a general rule
of the first category. In section 2.2, we demonstrate that several com-
mon vacation models are special cases of the MAV policy model. The
threshold policy models are presented in section 2.3. Other variations
of the M/G/1 type exhaustive-service models are also discussed in this
chapter. Specifically, the discrete-time vacation models are presented in
section 2.4. Vacation models with Markov arrival process (MAP) are
considered in section 2.5. Vacation models with batch arrivals or batch
services are discussed in section 2.6. Finally, the finite-buffer vacation
models are given in section 2.7.
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2.1 M/G/1 Queue with Multiple Adaptive
Vacations

2.1.1  Classical M/G/1 Queue

We first present briefly some well-known results for a classical M/G/1
queue without vacations. The details of developing these results can
be found in any queueing theory books (for example, see Gross and
Harris (1985)). In such a system, customers arrive according to a Poisson
process with rate A and service times are i.i.d random variables with a
general distribution function, denoted by B(t). Let

1 o0 o0 o
- = / tdB(t), b? = / t2dB(t), B*(s) = / e ' dB(t).
H 0 0 0
Assume that the service order is first-come-first-served (FCFS) and that
interarrival times and service times are independent.

Denote by L, the number of customers in the system at the nth
customer departure instant, {L,, n > 1} is an embedded Markov chain
of the queueing process, satisfying

19 _ Ln_1+An+1a anla
mHe Apti, Ly =0,

where A, ;1 is the number of arrivals during the (n + 1) service time.
Obviously these numbers are i.i.d. random variables and can be denoted
by A, with respective probability distribution and mean

aj=PA=j)= /000 ();!)] e MdB(t), j >0, E(A) = e p-

p is called the traffic intensity of the system and is the ratio of arrival
rate to service rate. The probability generating function (p.g.f.) of A
is A(z) = B*(A(1 — 2)), and the transition probability matrix of the
embedded Markov chain is

ap aip a2 as
ap ai az ag

P= ap ay az - | (2.1.1)
a/O a]_ e

It can be proved that {L,,, n > 1} is positive recurrent and the system
reaches the steady state if and only if p < 1. Therefore, when p < 1, the
p.g.f.s of the stationary number of customers in the system, L, and the
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stationary number of customers waiting in line, (), and the LST of the
stationary waiting time, W, are as follows:

(1 —p)(1 = 2)B*(A(1 - 2))

o) =—pna-o-2
Qz) = Bil(;(lp)_(lz)_)z_)z, (21.2)
W*(S) — (1 B p)S

s—A1—B*(s))

The means of these stationary random variables are, respectively,

A2p(2)
E(L)=p+ m»
27(2)
E(Q) = 2?11)_ P (2.1.3)
A2 1
“ap) @

These formulas are called Pollaczek-Khinthin formulas. Note that (2.1.2)
gives the p.g.f. of the queue length distribution at a customer depar-
ture instant, called the departure distribution. It can be shown that the
departure distribution is the same as the distribution seen by an arriv-
ing customer, called the arrival distribution. Furthermore, due to the
well-known Poisson Arrivals See Time Averages (PASTA) property (see
Wolff (1982)), the arrival distribution is the same as the distribution of
the queue length at any time ¢. Therefore, the departure distribution
obtained in (2.1.2) is the same as the distribution at any time. This im-
portant property holds in all M/G/1 vacation models discussed in this
chapter.

A busy period, denoted by D, is defined as the period from the arrival
instant of the first customer at an empty system to the departure instant
of a customer that leaves an empty system. It is well known that the
LST of D satisfies the functional relation

D*(s) = B*(s + A(1 — D*(s))).

Based on this relation, the mean of the busy period is obtained as

E(D) = u(ll—p) _ Aiﬂ. (2.1.4)
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2.1.2 Multiple Adaptive Vacation Model

In an M/G/1 queue, the server follows the following vacation policy.
When the server finishes serving all customers in the system, it starts to
take a vacation. The server will take vacations consecutively until either
a customer has arrived at a vacation completion instant or a maximum
number, denoted by H, of vacations have been taken. In the case of ar-
rivals occurred during a vacation, the server resumes serving the queue
immediately at that vacation completion instant. In the case of no ar-
rivals occuring after the server has completed H vacations, the server
stays idle and waits to serve the next arrival. H, called the stages of
vacations, is assumed to be a discrete random variable, with respective
distribution and p.g.f.

P{H=j}=hj, j>1; H(z)=>» h.
j=1

The consecutive vacations, denoted by Vi, k =1,2,..., H, are i.i.d. ran-
dom variables with the distribution function of V(x), the LST of v*(s),
and the finite first and second moments. The queueing system of this
policy is called a vacation model with exhaustive service, multiple adap-
tive vacations (MAV'), or simply an E-MAV model, denoted by M/G/1
(E, MAV). The E-MAV policy reflects the flexibility of allowing the
server to work on both the primary randoml-arrival jobs (the queue)
and a random number of secondary jobs (the vacations) during the idle
time. Assume that the interarrival times, the service times, the vacation
times, and the stages of vacations are mutually independent and the
service order is FCFS.
Define two events

A1 = {a busy period starts with the ending of an idle period},

A, = {a busy period starts with the ending of a vacation},

we have

P{Ar} ZiP{H=j}P{T> Vit +V5}

j=1
—y 00

=> b / e MdV ) ()
j=1 70

o0

= i (W = Hu*(V)],
j=1
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where VU)(t) is the jth convolution of V'(t). Obviously,
P{A,} =1— H[W*(\)].

Letting L,, be the number of customers left behind by the nth cus-
tomer, we have

I | Lp—1+4+A, forL,>1,
T Qy—1+A, for L, =0,

where @y is the number of customers in the system when a busy pe-
riod starts. Note that the case of @, = 1 is for M/G/1 queue without
vacations.

Lemma 2.1.1. The p.g.f. and the mean of (), are, respectively,

Qi) = HE () + LS = 2) = o)
B(Qw) = Hlo 0] + e s, (2.15)

Proof: The event {Qp = 1} occurs if either of two mutually exclusive
cases happens: (1) the busy period starts with a customer arriving at an
idle server; or (2) the busy period starts with the ending of a vacation
during which only one customer arrives. Hence, we have

1 — Hfp*(M)]
P =1} = H[v"(A _—

(@ =1} = H ]+ = 5o

(At)!
g
during a vacation time. For j > 2, {Qp = j} represents the case in
which the busy period starts with the ending of a vacation during which

J customers have arrived. Thus,
L 1= H[v (V)]
P = = "=
(@ =7} ===

Taking the p.g.f. of the distribution of @} yields Qp(z) and computing
Q4(1) gives B(Qp). T

Under the E-MAV policy, the transition probability matrix of the
embedded chain of {L,,n > 1} becomes

e~MdV (t) is the probability that j customers arrive

o
where v; = fO

vi, j =2

bo b1 b2 b3
ap a1 az2 ag
P= ap ap az - | (2.1.6)

ag ai
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where

bj =P{Qy— 1+ A=}

e(yy] 9L
= H[v*(\)]a; + 11__}1757’(;;‘)] > wiajii-i,  §=0. (2.1.7)
=1

Similar to the classical M/G/1 queue, from (2.1.6) it can be proved
that the embedded chain {L,,n > 1} is positive recurrent if and only
if p = Au~! < 1. When p < 1, let L, be the limiting (or stationary)
random variable of L,, as n — oo, with the stationary distribution

H:(ﬂ-Oaﬂ-la"' 77rna"'))

where m; = P{L, = j} = lim, oo P{L, = j}, for j > 0. We now give
the stochastic decomposition property for the stationary queue length.

Theorem 2.1.1. For p < 1, L, can be decomposed into the sum of
two independent random variables,

L,=L+ Ly,

where L is the queue length of a classical M/G/1 queue without vacations
with its p.g.f. given in (2.1.2). Ly is the additional queue length due to
the vacation effect, with the p.g.f.

La(z) = El — ulz)

@)1 -2 (2.18)

where Qp(2) is given in Lemma 2.1.1.
Proof: Based on the equilibrium equation of ITP = II and (2.1.6), we
have

k+1

T = Toby + Zﬂjak+1_j, k>0. (2.1.9)
j=1

From (2.1.7), we obtain the p.g.f of {by, k > 0}:

S 2k = %B*(A(l — )02,

k=0
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Multiplying both sides of (2.1.9) by z* and summing over k gives

oo
Ly(z) = Z 2y,
k=0

) k+1

=m0 B 1~ 2)Q(z) + DA D mi
k=0 j=1

]' * 1 *
= TF();B (A1 —2)Qu(2) + ;B (M1 = 2))[Ly(2) — m0].
Solving the equation above for L,(z), we get
moB*(A(1 — 2))[1 — Qu(2)]
B*(A1—2))—=z )
Using the normalization condition and the L’Hopital rule, we have
L—p
T = ,
" E@Q)
and substituting it into (2.1.10) gives
_(A=p)A-2)B"(A1=2)) 1-Qu)
Ly(z) =
BO(-2)-2  E@)01-2)
= L(z)Ly(2).
This completes the proof. [J

Note that Lg(z) in (2.1.8) is a p.g.f of a probability distribution. De-
fine a distribution as

Ly(2) = (2.1.10)

1 .
g = B n;ﬂ P{Qy=n}, j=0,1,..

Then the p.g.f. of {g;, 7 > 0} is

Qp(2) = ZQJZ]
=0
1 oo ; oo B
1 S n
1 —Qy(2)
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Based on Theorem 2.1.1, the following expected value formulas are
obtained:

2
BE(L,) =p+ X B(Q) (2.1.11)

2(1-p) " 2E@Q)
Using Qp(z) in (2.1.5), we have

1 — H[v*(V)]

o ) NE(WV?.

BE(Q}) =

For the stationary waiting time, there exists a similar stochastic de-
composition property.

Theorem 2.1.2. For p < 1, the stationary waiting time, denoted by
Wy, can be decomposed into the sum of the two independent random
variables,

Wy =W + Wy,

where W is the waiting time of a classical M/G/1 queue without vaca-
tions, with its LST given in (2.1.2). Wy is the additional delay due to
the vacation effect, with the LST

Hv*(A\)]  AE(V)1—H[p*(N)]1—v*(s)
E(Q)  B@Q) 1-v(\) E(V)s’
where E(Qp) is given in Lemma 2.1.1.
Proof: Based on the independent increment property of Poisson ar-
rivals and the fact that the number of customers left behind by a depart-

ing customer is the same as the number of arrivals during this customer’s
time (waiting and service) in the system, we have

Z / / “y AW, (2)dB(y)

/ / Nt (1=2)dW, (z)d B(y)

A1 = 2))B*(A\(1 - 2)).

Wi(s) =

(2.1.12)

Substituting L,(z) into the formula above gives

1-p)(A =2 1-@2)
B*(A(1 = 2)) =2 B(@Qp)(1 = 2)’

WAL — 2)) = (2.1.13)
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Letting A(1 — z) = s, we have

o (1—p)s Al = Qp(1 = %)
Wi(s) = s—A(1 = B*(s)) E(Qu)s
= W*(s)Wi(s).

Using (2.1.2), we find that the additional delay Wy has an LST of
AL — @1 —3)]
E(@Qy)s

Substituting Qy(z) from (2.1.5) into (2.1.14) and simplifying yields (2.1.12).
U

Wi(s) = (2.1.14)

Formula (2.1.12) indicates that the additional delay Wy is zero with
probability of p = H[v*(\)][E(Qy)]~! and is equal to the residual vaca-
tion time with probability of 1 — p. It is easy to verify that the number
of arrivals during Wy is the additional queue length due to the vacation
effect, Ly. The means of the additional delay and the waiting time can
be obtained as

* 2
B = 0 I QA
2(1— v (V) E(Qy)
2 * 2
E(W,) = N {1 H (WIAE(V?) (2.1.15)
2(1-p) 2(1 = v*(N)E(Qs)

Let us now provide the busy-period analysis of the M/G/1 (E,MAV)
model. Denote by D, the busy period of the vacation system and by
D the busy period of the classical M/G/1 system. Note that the only
difference between D, and D is the number of customers present in the
system when the busy period starts. Due to the memoryless property
of the exponential interarrival times, the busy period starting with k
customers in the system is equal to the sum of k independent M/G/1
queue busy periods D. It follows immediately that

Dj(s) = Qu[D*(s)],
where D*(s) is the LST of D. Thus

b
u(1 = p)

Let J be the number of consecutive vacations taken by the server.
Based on the MAV policy, we have

E(Dv) = E(Qb)

J=min{H, k:VFED <17 <yFEY
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It is easy to verify that
P{J >1} =1,

P{J>j}=P{H>j}P{VvU=D >T} = N 1th, j>2.

Therefore, we have

N A f))
B ZOO Z 1-— H[v*()\)z]
- j=1 Zj J 1 K O —v*(N)z

From this relation, we obtain

Ie) = 1= o {1 = W ()21
B() =T

Denote the total length of J consecutive vacations by Vg. Then

1 — H[v*(N)]

E(V). (2.1.16)

The idle period, denoted by I,, occurs only when event A; happens.
Hence,

(2.1.17)

Define the busy cycle B, as the time period between two consecutive
busy-period ending instants. Then we have

E(B;) = E(D,)+ E(Vg) + E(I,)

gy O
1

= 51— F@) (2.1.18)

*

1
y
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Let pp,py, and p; be the probabilities of the server’s being busy, on
vacation, and idle, respectively. We then have

_E(Dy) _
by = E(BC) =0
n= B~ TG PRV, @
Pi= 5((12)) - E(;b)(l T

2.2  Some Classical M/G/1 Vacation Models

In this section, we show that several classical vacation models are the
special cases of the E-MAV model presented in the previous section.

2.2.1 Multiple Vacation Model

Consider an M/G/1 queue where the server follows an exhaustive-
service and multiple vacation (E, MV) policy. This policy requires the
server to keep serving customers until the system is empty and then to
take vacations for as long as the system is empty. The server returns to
serve the queue when there are some customers waiting in the system at
a vacation completion instant. This type of system, denoted by M/G/1
(E, MV), has been extensively studied. The multiple vacation policy
allows the server to maximize the use of idle time for supplementary
work. However, the server does not have any idle time in such a system
(where idle time means either serving the queue or being on vacation),
if taking a vacation represents doing productive work. Obviously, this
situation is the H = oo case for the E-MAV model.

If H = o0, H(z) = 0. From (2.1.5), the busy period starts with Q,
customers in the system. The p.g.f. and the mean of @), are, respectively,

vt(A(L = 2)) = v* (M)

@lz) = 1o (n)
E(Qy) = % (2.2.1)

As a special case, it follows directly from Theorem 2.1.1 that the sto-
chastic decomposition properties exist in the M/G/1 (E,MV).

Theorem 2.2.1. For p < 1, in an M/G/1 (E, MV) system, the queue
length L, can be decomposed into the sum of two independent random
variables,

Lv:L+Lda



