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Preface

Nanotechnology is a key technology of the 21st century. It investigates very small
structures of the size of a few nanometers up to several 100 nanometers. Thus,
these structures are often smaller then the wave length of light. In this book, we
concentrate on the mathematics of photonic crystals, which form an important
class of physical structures investigated in nanotechnology.

The investigation of these structures by mathematical methods is highly im-
portant for the following reasons.

• Since the physical behaviour in the nanoscale is very difficult and expensive
to measure in real experiments, numerical simulations play a fundamental
role in understanding such processes. In many cases theses structures are
fully three dimensional, and process on very different scales in space and
time, so that constructing efficient and reliable simulation methods is a true
mathematical challenge.

• Often ill-posed problems arise in a natural way, e. g., in the reconstruction
problem of nanostructures from measurements. Here, methods of the theory
of inverse problems must be developed and applied.

• Often it is not possible, e. g. due to very large differences in the underlying
scales, to consider the full basic physical equations directly in a numerical
simulation. Then, reduced and simplified models have to be constructed, and
their analytical properties and approximation qualities have to be investi-
gated.

• The numerical simulation can study only specific configurations. For a quali-
tative understanding of the behaviour of the underlying system, the mathe-
matical analysis of the underlying equations is indispensable.

In the mathematical analysis and the numerical appromixation of the partial
differential equations describing nanostructures, several mathematical difficulties
arise, e. g., the appropriate treatment of nonlinearities, simultaneous occurrence
of continuous and discrete spectrum, multiple scales in space and time, and the
ill-posedness of these problems.

Photonic crystals are materials which are composed of two or more different
dielectrics or metals, and which exhibit a spatially periodic structure, typically
at the length scale of hundred nanometers. Photonic crystals can be fabricated
using processes such as photolithography or vertical deposition methods. They
also occur in nature, e. g. in the microscopic structure of certain bird feathers,
butterfly wings, or beetle shells.

A characteristic feature of photonic crystals is that they strongly affect the
propagation of light waves at certain optical frequencies. This is due to the fact
that the optical density inside a photonic crystal varies periodically at the length
scale of about 400 to 800 nanometers, i. e., precisely at the scale of the wave-
lengths of optical light waves. Light waves that penetrate a photonic crystal are
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therefore subject to periodic, multiple diffraction, which leads to coherent wave
interference inside the crystal. Depending on the frequency of the incident light
wave this interference can either be constructive or destructive. In the latter case
the light wave is not able to propagate inside the photonic crystal. Typically, this
phenomenon only occurs for bounded ranges of optical wave frequencies, if it does
occur at all. Such a range of inhibited wave frequencies is called a photonic band
gap. Light waves with frequencies inside a photonic band gap are totally reflected
by the photonic crystal. It is this effect which causes, e. g., the iridescent colours
of peacock feathers.

In the mathematical modeling of photonic crystals by Maxwell’s equations
with periodic permittivity, such photonic band gaps are described as gaps in the
spectrum of a selfadjoint operator with periodic coefficients, while the frequency
ranges where constructive interference takes place form the spectrum (which is
arranged in bands) of this selfadjoint operator.

In this proceedings volume we collect a series of lectures which introduce into
the mathematical background needed for the modeling and simulation of light, in
particular in periodic media, and for its applications in optical devices. We start
with an introduction to Maxwell’s equations, which build the basis for the math-
ematical description of all electro-magnetic phenomena, and thus in particular of
optical waves. Next, we focus on explicit methods for the numerical computa-
tion of photonic band gaps. Furthermore, a general introduction to the so-called
Floquet–Bloch theory is given, which provides analytical tools to investigate the
spectrum of periodic differential operators and provides the aforementioned band-
gap structure of selfadjoint operators with periodic coefficients, such as they occur
for Maxwell’s equations in a photonic crystal. In the rest of this volume we con-
sider two applications. In the first application the theory of direct and inverse
scattering is introduced and applied to periodic media, and the second application
investigates nonlinear optical effects in wave guides which can be described by the
nonlinear Schrödinger equation.

We greatly appreciate the opportunity to give this course in the framework of
the Oberwolfach seminars, and we would like to thank the Oberwolfach institute
for their kind hospitality. Further, we want to thank for the kind assistance of
Birkhäuser in the realisation of these lecture notes.



Chapter 1

Introduction

by Willy Dörfler

In this introduction we will present both the main physical concepts of elec-
tromagnetism (Section 1.1.1) and mathematical basic tools (Section 1.2) that are
needed for the topics discussed here.

1.1 The Maxwell Equations

The foundations of electromagnetism were laid by James Clerk Maxwell 1 in the
years 1861–1865. It not only provided insight into the nature of electromagnetism,
but also gave the theory a clear mathematical structure. It consists of a system of
partial differential equations and some constitutive laws that describe the interac-
tion of the fields with matter. Here, we mainly consider waves of a fixed frequency
(in the range of light) or pulses with concentrated frequencies. This leads to the
simplification of the time-harmonic equations. On idealised periodic material ar-
rangements one ends up with linear (and nonlinear) eigenvalue equations. Using
results from spectral theory it is possible to understand the structure of the (linear)
eigenvalue problems qualitatively.

1.1.1

We seek vector fields D,E,B,H : Ω → R
3 such that Maxwell equations

∂tD −∇×H = −J (1.1)
∇·D = � (Gauss’s law), (1.2)

∂tB + ∇×E = 0 (Faraday’s law of induction), (1.3)
∇·B = 0 (Gauss’s law for magnetism), (1.4)

113 June 1831 – 5 November 1879

W. Dörfler et al., Photonic Crystals: Mathematical Analysis and Numerical Approximation,

(Ampère’s circuital law),

The partial differential equations

Oberwolfach Seminars 42, DOI 10.1007/978-3-0348-0113-3_1,  © Springer Basel AG 2011
1
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hold for given J : Ω → R
3 and � : Ω → R. We call E electric field , D electric

displacement field (or electric flux density), H magnetic field intensity, B mag-
netic induction, and J and � electric current intensity and electric charge density,
respectively. Furthermore, there are constitutive relations D(E,H) and B(E,H)
that describe the interaction of the fields with matter. Examples are given in Sec-
tion 1.1.3. This yields 14 scalar equations for 12 unknown functions. From the
above equations we can derive the compatibility condition

∂t�+ ∇·J = 0,

which expresses conservation of charge. For a physical interpretation of equations
(1.1)–(1.4) see [17, Ch. 1].

1.1.2 The integral formulation

Let M be a smooth oriented two-dimensional manifold in R
3 and V ⊂ R

3 a
bounded domain with smooth boundary. Using the well-known integral relations
for sufficiently smooth vector fields A : V → R

3, resp. A : M → R
3,

∫
V

∇·A =
∫

∂V

A · nV (Gauss’ theorem),
∫

M

(∇×A) · nM =
∮

∂M

A · tM (Stokes’ theorem),

we can derive the following identities from (1.1)–(1.4)
∮

∂M

H · tM =
∫

M

(
∂tD + J

)
· nM ,

∮
∂V

D · nV =
∫

V

�, (1.5)
∮

∂M

E · tM = −
∫

M

∂tB · nM ,

∮
∂V

B · nV = 0. (1.6)

Here, nM is the normal vector field on M , tM is the tangential vector field on
∂M (oriented counter-clockwise if one looks into the direction of nM ), and nV

the exterior normal to V .

1.1.3 Constitutive relations

In vacuum there hold the relations

D(t,x) = ε0E(t,x), B(t,x) = µ0H(t,x)

with the permittivity of free space ε0 and the permeability of free space µ0. In
matter, however, the fields have to be interpreted in a macroscopic way as a
mean field. An electric field E induces local dipoles in nonconducting media by
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dislocation of charges (as sketched in Figure 1.1). This gives rise to a polarisation
field P , that superposes the electric field and results in a total field

D = ε0E + P .

The connection between E und P can be described by a material model. For a
linear medium one makes the ansatz

P (t,x) = ε0(G ∗E)(t,x) := ε0

∫ ∞

−∞
G(t− τ,x)E(τ,x) dτ. (1.7)

�

�

Figure 1.1: Dislocation of local charges by an exterior electric field E and the polarisation

field P (without (left) and with (right) exterior electrical field).

The transfer function G(·,x) : R → R
3,3 is assumed to be causal , which

means that P (t, . ) can only depend on E(τ, . ) on past times τ ≤ t. This is
expressed by the requirement

G(s,x) = 0 for all s < 0 and all x ∈ R
3.

Special cases are homogeneous media, whereG does not depend on x and isotropic
media, where G is real valued. If we perform a Fourier transformation in time,
e. g.,

D̂(ω,x) =
∫

R3
D(t,x)e−iωt dt

(and likewise for E,P ), the convolution will turn into

P̂ (ω,x) = ε0χE(ω,x)Ê(ω,x)

with the electric susceptibility

χE(ω,x) =
1
ε0
Ĝ(ω,x).

Thus we obtain the relation

D̂(ω,x) = ε0
(
1 + χE(ω,x)

)
Ê(ω,x)

≡ ε0εr(ω,x)Ê(ω,x). (1.8)



4 Chapter 1. Introduction

Note that a relation D = ε0εrE will only follow if the material parameter εr

is frequency independent, or, if the relation is considered at a single frequency
ω0. To see this, multiply (1.8) by the Dirac measure δω0 and apply the inverse
Fourier transform. This independency is not given in reality, however, it often holds
approximately on large frequency intervals. Linear relations B = µ0(H +M), M
the magnetisation, and B = µ0µrH follows from analogous reasoning.

Usually, εr is taken to be real. This can only be an approximation, since εr

must have an imaginary part, except in the vacuum case, by the Kramers–Kronig
relation, that relates �(εr) to �(εr)− 1 [17, Ch. 7.10].

In the following, we will use the linear constitutive relations

D = εE = ε0εrE, (1.9)
B = µH = µ0µrH (1.10)

(here with possibly space-dependent but time-independent scalar functions ε, µ).
ε, µ (εr, µr) are called (relative) permittivity and (relative) permeability, respec-
tively.

The interaction of electromagnetic fields with media is a rich and still devel-
oping topic. We mention only a few models.

The homogeneous, isotropic one–resonance model

Here it is assumed that the mentioned local dipoles are oscillating systems at
resonance frequency ω0, that oscillate in the direction of the electric field. In this
model the equation for P is that of a damped harmonic oscillator and can be
solved explicitly. As a result one obtains the Drude–Lorentz model

χE(ω) =
1
ε0

ω2
p

ω2
0 − ω2 − iγω

,

where ω2
p and γ are material constants named plasma frequency and damping

factor , respectively [17, Ch. 7.5]. The dependence of ε on ω is especially important
for metallic materials. Here, one often uses the expression with ω0 := 0 (Drude
model).

A quantum mechanical model

In a medium or an a scale where quantum effects become apparent the polarisation
will depend on a density matrix � ∈ C

N,N with a number N of energy levels. �
is hermitian and nonnegative with positive diagonal entries. Then one finds a
dependence P (E,�) and � satisfies an equation of the form ∂t� = L(E,�), where
L is affine linear in both arguments. The final set of (nonlinear) equations is
called Maxwell–Bloch equations. In case of N = 2 (two level model) one arrives
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for example at equations

∂2
tP + α1∂tP + ω2P = α2�E,

∂t�+ α3(�− �0) = −α4∂tP ·E.

α1, . . . , α4 are positive constants and � is the difference in number between excited
states and ground states per unit volume [22]. For mathematical investigations see
[8] [9].

Effective medium approximations

These are methods to describe the effective permittivity or effective permeabil-
ity of composed materials when the material structures are very small, like the
Bruggeman model [4] or the Maxwell–Garnett model [15]. Especially newly de-
signed materials at nano-scale with electric and magnetic effects can result in
effective media with unusual optical properties (meta materials) [23].

Nonlinear polarisation

The previous approach (1.7) can be generalised to higher polynomial dependence
on E [1]. Of special importance is the cubic (Kerr–) nonlinearity

P = ε0(εr + α|E|2)E

(with some parameter α ∈ R). Equations with cubic nonlinearities will be studied
in Chapter 5.

1.1.4 The wave equation

We consider the case of an electromagnetic field in the absence of charges and
currents (� = 0 and J = 0) and in the presence of a material with constitutive
relations D = ε0E + P and (1.10). From the Maxwell equations (1.1) and (1.3)
we get

∂2
t (ε0E + P ) = ∂2

tD = ∂t(∇×H) = −∇×
( 1
µ

∇×E
)

or ε0∂
2
t

(
E +

1
ε0
P
)

+ ∇×
( 1
µ

∇×E
)

= 0.

Using the linear relations (1.8) and (1.9), we find E + 1/ε0P = εE and therefore

ε∂2
tE + ∇×

( 1
µ

∇×E
)

= 0.

In vacuum, we have ε = ε0, µ = µ0. With 0 = ∇·(ε0E) = ε0∇·E we observe that

∇× (∇ ×E) = ∇(∇·E)−∆E = −∆E
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and thus obtain the wave equation

1
c2
∂2

tE −∆E = 0, (1.11)

where c2 = 1/(ε0µ0) is the speed of light . An analogous equation holds for H .
Note, that the wave equation has solutions of the form E(t,x) = A(x ± ctn)
for some suitable function A : R

3 → R
3 and a unit vector n. This models the

propagation of light in vacuum.

1.1.5 Time–harmonic Maxwell equations

In case of a monochromatic wave we can assume that all fields are of the form
E(x)eiωt, etc. With � = 0 and J = 0 and the linear relations D = εE and
B = µH , the Maxwell equations (1.1)–(1.4) turn into the time-harmonic Maxwell
equations

iωεE −∇×H = 0, (1.12)
∇·(εE) = 0, (1.13)

iωµH + ∇×E = 0, (1.14)
∇·(µH) = 0. (1.15)

Elimination of E yields

∇×
(1
ε
∇×H

)
= ∇× (iωE) = iω(−iω)µH = ω2µH, (1.16)

while elimination of H gives analogously

∇×
( 1
µ

∇×E
)

= ω2εE. (1.17)

We thus finally arrive at eigenvalue problems for H and E. It means that, except
in cases where the frequency ω (actually, ω2) is an eigenvalue of this equation,
there exists no nontrivial electric field and thus no wave is transmitted. Note that
a solution of one of this problems will determine a solution of the other, using
the first order equations (1.12) and (1.14) above. Note further that (1.16) and
(1.17) have to be accompanied by (1.13) and (1.15), respectively, but formally, the
ladder follow as a consequence from the previous by taking the divergence and
using ∇·∇× = 0.

In the following we study this problem in special geometric configurations
for illustration.

1d–like structures

Assume that we have a layered structure in x1–direction, with material properties
x1 	→ ε(x1) and x1 	→ µ(x1) (see Figure 1.2 (left)). We especially seek an electric
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Figure 1.2: Examples of a one-dimensional (left) and two-dimensional (right) structure.

field of the form x1 	→ E(x1). As an example, we think of an idealisation of a device
that consists of plane layers of material with alternating constant permittivity and
that we look for nonvanishing standing waves E(x1)eiωt for ω 
= 0. Note that in
this case

∇×E =


 0
−∂1E3

∂1E2




and therefore

∇×
(

1
µ


 0
−∂1E3

∂1E2



)

= −




0
∂1

(
1
µ∂1E2

)
∂1

(
1
µ∂1E3

)


 .

As a consequence we obtain from (1.17) the decoupled system

E1 = 0,

−∂1

( 1
µ
∂1Ej

)
= ω2εEj for j = 2, 3.

The equation for H is analogous with ε and µ exchanged. As a result, we obtain
standard elliptic eigenvalue problems for E2 and E3.

2d–like structures (waveguide)

Consider now a material that consists of infinite columns in x3–direction modeled
by a permittivity (x1, x2) 	→ ε(x1, x2) (see Figure 1.2 (right)), and we look for
time-harmonic solutions that are also periodic in x3–direction along the struc-
ture. Thus we seek fields (t, x1, x2, x3) 	→ E(x1, x2)eik3x3eiωt and (t, x1, x2, x3) 	→
H(x1, x2)eik3x3eiωt for ω 
= 0. This corresponds to a wave with frequency ω that
travels in x3–direction with wavenumber k3. This structure is called a waveguide
if nontrivial fields of this kind exist. For such a vector field E we obtain

∇× (Eeik3x3) =

[
∇⊥

1,2E3 − ik3[E1;E2]⊥

−∇⊥
1,2 · [E1;E2]

]
eik3x3 ,
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where ∇1,2 := [∂1; ∂2], ∇⊥
1,2 := [∂2;−∂1], and [E1;E2]⊥ = [E2;−E1]. If we insert

this into (1.17), we get a system that can be separated as

−∇⊥
1,2

( 1
µ

∇⊥
1,2 ·

[
E1

E2

] )
+ i

1
µ
k3∇1,2E3 +

1
µ
k2
3

[
E1

E2

]
= ω2ε

[
E1

E2

]
, (1.18)

−∇1,2 ·
( 1
µ

∇1,2E3

)
+ i

1
µ
k3∇1,2 ·

[
E1

E2

]
= ω2ε E3. (1.19)

For given k3 this is an eigenvalue problem for ω, while for given ω this is a quadratic
eigenvalue problem for k3 (for such problems see [25]). In case of k3 = 0 (standing
wave) this system decouples as

−∇⊥
1,2

(
1
µ

∇⊥
1,2 ·

[
E1

E2

])
= ω2ε

[
E1

E2

]
,

−∇1,2 ·
( 1
µ

∇1,2E3

)
= ω2εE3.

The second equation is an elliptic eigenvalue problem for (E3, ω). Correspondingly,
one can also obtain (H3, ω) by the same type of equation (but with µ and ε
interchanged). Having determined in this way E3 and H3, we derive equations for
the remaining components from Maxwell’s first order equations[

E1

E2

]
=

1
iωε

∇⊥
1,2H3,

[
H1

H2

]
= − 1

iωµ
∇⊥

1,2E3.

Waves that are described by the components E1, E2, H3 are called transverse-
electric (TE) and those described by the components H1, H2, E3 are called trans-
verse-magnetic (TM). If µ and ε are constant, then (1.18)–(1.19) simplifies to the
eigenvalue problem

−∆1,2E =
(
ω2εµ− k2

3

)
E.

However, this result could easier be obtained from (1.11).
We have seen that problems with 1D or 2D structures can be solved using

an eigenvalue problem for the Laplace-operator. The off-plane problem (k3 
= 0)
however leads to the more involved equation (1.18). Also, full 3D problems will in
general be of a more complex type.

The construction of waveguides is an important topic in optical communica-
tion technology [1], see also Chapter 5.7.3.

1.1.6 Boundary and interface conditions

Electromagnetic fields generally exist in the whole space, they are generated by
charges and currents (� and J in (1.1) and (1.2)) and influenced by interaction with
matter as indicated in Section 1.1.3. In our macroscopic modeling, permittivity
and permeability are assumed to be smooth functions that are discontinuous along
smooth material interfaces. It is therefore important to consider how this influences
the electromagnetic field.


