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T.R. Bielecki, S. Crépey, M. Jeanblanc and M. Rutkowski
Convertible Bonds in a Defaultable Diffusion Model . . . . . . . . . . . . . . . . . 255

T.-S. Chiang and S.-J. Sheu
A Convexity Approach to Option Pricing with Transaction
Costs in Discrete Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

J.M. Corcuera
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Preface

The Workshop on Stochastic Analysis and Finance took place at City University
of Hong Kong from June 29 to July 03, 2009. The goal of this workshop was to
present a broad overview of the range of applications of stochastic analysis and its
recent theoretical developments, while giving some weight to the research being
carried out in the East Asia region. The topics of the talks given in the conference
ranged from mathematical aspects of the theory of stochastic processes, to their
applications to finance. This is reflected in the organization of the volume which
is split into two sections on stochastic analysis and on financial applications.

In recent times the applications of stochastic analysis to finance and insur-
ance have bloomed exponentially, and for this reason we have devoted to them a
significant attention. Stochastic analysis has also a variety of other applications to
biological systems, physical and engineering problems, requiring the development
of advanced techniques, a representative sample of which is also included here.

A large number of articles in this volume deal with stochastic equations,
and in particular stochastic (partial) differential equations and stochastic delay
equations which arise naturally in physical systems depending on time and space.
Contributions dealing with the numerical simulation and error analysis of these
stochastic systems, which are an obligatory step before carrying out the actual
applications, are also included and can also be of crucial importance to finance.
The important and difficult topics of statistical estimation of parameters in these
models, as well as their control and robustness, are also treated in this volume.

The conference has also covered two areas that are growing rapidly. First
the area of backward stochastic differential equations and all its variants that
have deep connections with non-linear partial differential equations. Secondly, the
recent developments of (non-linear) G-Brownian motion and its potential uses in
risk analysis, which are also opening a new venue of development for stochastic
analysis. From a technical point of view, the existence of densities of random
variables associated with stochastic differential equations is an important matter,
for which a quite complete basic theory is already available for continuous diffusion
processes. The case of jump processes, which has already been the object of many
important advances, is still in need of many developments that are motivated by
applications, as shown in this volume. Concerning the applications to finance, many
of the articles deal with a topic that has taken by storm our current society, which
is how to deal with the valuation and hedging of credit risk in various forms. The
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results presented in the financial applications section cover in particular pricing
and hedging in credit risk and jump models, including recent results on markets
with frictions such as transaction costs, and Lévy driven market models.

The articles contained in these proceedings are survey articles and original
research papers which have been peer reviewed, and we take this opportunity to
thank the colleagues who have largely contributed with their time as referees. We
also thank the contributors for answering our requests to improve the presentation
and results in order to produce a high quality volume, and all workshop partic-
ipants for lively discussions. The participants and organizers are also grateful to
the Lee Hysan Foundation, the Hong Kong Pei Hua Education Foundation, and
the Department of Mathematics at City University of Hong Kong, for their gener-
ous financial support and for providing the conference venue. Last but not least,
we acknowledge Ms Lonn Chan of the Mathematics General Office, whose highly
efficient organizational skills ensured the complete success of the event.

October 2010 Arturo Kohatsu-Higa
Nicolas Privault
Shuenn-jyi Sheu
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Dirichlet Forms for Poisson Measures and Lévy
Processes: The Lent Particle Method

Nicolas Bouleau and Laurent Denis

Abstract. We present a new approach to absolute continuity of laws of Poisson
functionals. The theoretical framework is that of local Dirichlet forms as a tool
for studying probability spaces. The argument gives rise to a new explicit
calculus that we present first on some simple examples: it consists in adding a
particle and taking it back after computing the gradient. Then we apply the
method to SDE’s driven by Poisson measure.

Mathematics Subject Classification (2000). Primary 60G57, 60H05; secondary
60J45, 60G51.

Keywords. Stochastic differential equation, Poisson functional, Dirichlet form,
energy image density, Lévy processes, gradient, carré du champ.

1. Introduction

In order to situate the method it is worth to emphasize some features of the Dirich-
let forms approach with comparison to the Malliavin calculus which is generally
better known among probabilists.

First the arguments hold under only Lipschitz hypotheses: for example the
method applies to a stochastic differential equation with Lipschitz coefficients. Sec-
ond a general criterion exists, (EID) the Energy Image Density property, (proved
on the Wiener space for the Ornstein-Uhlenbeck form, still a conjecture in gen-
eral cf. Bouleau-Hirsch [7] but established in the case of random Poisson mea-
sures with natural hypotheses) which ensures the existence of a density for a
R
d-valued random variable. Third, Dirichlet forms are easy to construct in the

infinite-dimensional frameworks encountered in probability theory and this yields
a theory of errors propagation through the stochastic calculus, especially for fi-
nance and physics cf. Bouleau [2], but also for numerical analysis of PDE’s and
SPDE’s cf. Scotti [18].

Our aim is to extend, thanks to Dirichlet forms, the Malliavin calculus applied
to the case of Poisson measures and SDE’s with jumps. Let us recall that in the
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case of jumps, there are several ways for applying the ideas of Malliavin calculus.
The works are based either on the chaos decomposition (Nualart-Vives [14]) and
provide tools in analogy with the Malliavin calculus on Wiener space, but non-
local (Picard [15], Ishikawa-Kunita [12]) or dealing with local operators acting on
the size of the jumps using the expression of the generator on a sufficiently rich
class and closing the structure, for instance by Friedrichs’ argument (cf. especially
Bichteler-Gravereaux-Jacod [1], Coquio [8] and Ma-Röckner [13]).

We follow a way close to this last one. We will first expose the method from
a practical point of view, in order to show how it acts on concrete cases. Then in
a separate part we shall give the main elements of the proof of the main theorem
on the lent particle formula. Eventually we will display several examples where
the method improves known results. Then, in the last section, we shall apply the
lent particle method to SDE’s driven by a Poisson measure or a Lévy process.
Complete details of the proofs and hypotheses for getting (EID) are published in
[3] and [4].

2. The lent particle method

Consider a random Poisson measure as a distribution of points, and let us see a
Lévy process as defined by a Poisson random measure, that is let us think on the
configuration space. We suppose the particles live in a space (called the bottom
space) equipped with a local Dirichlet form with carré du champ and gradient. This
makes it possible to construct a local Dirichlet form with carré du champ on the
configuration space (called the upper space). To calculate for some functional the
Malliavin matrix – which in the framework of Dirichlet forms becomes the carré du
champ matrix – the method consists first in adding a particle to the system. The
functional then possesses a new argument which is due to this new particle. We can
compute the bottom-gradient of the functional with respect to this argument and
as well its bottom carré du champ. Then taking back the particle we have added
does not erase the new argument of the obtained functional. We can integrate the
new argument with respect to the Poisson measure and this gives the upper carré
du champ matrix – that is the Malliavin matrix. This is the exact summary of the
method.

2.1. Let us give more details and notation

Let (X,X , ν,d, γ) be a local symmetric Dirichlet structure which admits a carré
du champ operator. This means that (X,X , ν) is a measured space, ν is σ-finite
and the bilinear form e[f, g] = 1

2

∫
γ[f, g] dν is a local Dirichlet form with domain

d ⊂ L2(ν) and carré du champ γ (cf. Fukushima-Oshima-Takeda [10] in the locally
compact case and Bouleau-Hirsch [7] in a general setting). (X,X , ν,d, γ) is called
the bottom space.

Consider a Poisson random measureN on [0,+∞[×X with intensity measure
dt × ν. A Dirichlet structure may be constructed canonically on the probability
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space of this Poisson measure that we denote (Ω1,A1,P1,D,Γ). We call this space
the upper space.

D is a set of functions in the domain of Γ, in other words a set of random
variables which are functionals of the random distribution of points. The main
result is the following formula:

For all F ∈ D

Γ[F ] =
∫ +∞

0

∫

X

ε−(γ[ε+F ]) dN

in which ε+ and ε− are the creation and annihilation operators.
Let us explain the meaning and the use of this formula on an example.

2.2. First example

Let Yt be a centered Lévy process with Lévy measure ν integrating x2. We assume
that ν is such that a local Dirichlet structure may be constructed on R\{0} with
carré du champ γ[f ] = x2f ′2(x).

The notion of gradient in the sense of Dirichlet forms is explained in [7]
Chapter V. It is a linear operator with values in an auxiliary Hilbert space giving
the carré du champ by taking the square of the Hilbert norm. It is convenient to
choose as Hilbert space a space L2 of a probability space.

Here we define a gradient � associated with γ by choosing ξ such that
∫ 1

0

ξ(r)dr = 0 and
∫ 1

0

ξ2(r)dr = 1

and putting
f � = xf ′(x)ξ(r).

Practically � acts as a derivation with the chain rule (ϕ(f))� = ϕ′(f).f � (for
ϕ ∈ C1 ∩ Lip or even only Lipschitz).

N is the Poisson random measure associated with Y with intensity dt × σ
such that

∫ t
0 h(s) dYs =

∫
1[0,t](s)h(s)xÑ (dsdx) for h ∈ L2

loc(R+).
We study the regularity of

V =
∫ t

0

ϕ(Ys−)dYs

where ϕ is Lipschitz and C1.
1) We add a particle (α, x), i.e., a jump to Y at time α with size x what gives

ε+V = V + ϕ(Yα−)x+
∫ t

]α

(ϕ(Ys− + x)− ϕ(Ys−))dYs.

2) V � = 0 since V does not depend on x, and

(ε+V )� =

(

ϕ(Yα−)x+
∫ t

]α

ϕ′(Ys− + x)xdYs

)

ξ(r)

because x� = xξ(r).
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3) We compute

γ[ε+V ] =
∫

(ε+V )�2dr = (ϕ(Yα−)x +
∫ t

]α

ϕ′(Ys− + x)xdYs)2.

4) We take back the particle what gives

ε−γ[ε+V ] = (ϕ(Yα−)x+
∫ t

]α

ϕ′(Ys−)xdYs)2

and compute Γ[V ] =
∫
ε−γ[ε+V ]dN (lent particle formula)

Γ[V ] =
∫ (

ϕ(Yα−) +
∫ t

]α

ϕ′(Ys−)dYs

)2

x2 N(dαdx)

=
∑

α � t

∆Y 2
α (
∫ t

]α

ϕ′(Ys−)dYs + ϕ(Yα−))2

where ∆Yα = Yα − Yα−.
For real functional, the condition (EID) is always fulfilled: V possesses a

density as soon as Γ[V ] > 0. Then the above expression may be used to discuss
the strict positivity of Γ[V ] depending on the finite or infinite mass of ν cf. [4]
Example 5.2.

Before giving a typical set of assumptions that the Lévy measure ν has to
fulfill, let us explicit the (EID) property.

2.3. Energy Image Density property (EID)

A Dirichlet form on L2(Λ) (Λ σ-finite) with carré du champ γ satisfies (EID) if, for
any d and all U with values in R

d whose components are in the domain of the form,
the image by U of the measure with density with respect to Λ the determinant of
the carré du champ matrix is absolutely continuous with respect to the Lebesgue
measure, i.e.,

U∗[(detγ[U,U t]) · Λ]� λd.

This property is true for the Ornstein-Uhlenbeck form on the Wiener space, and in
several other cases cf. Bouleau-Hirsch [7]. It was conjectured in 1986 that it were
always true. It is still a conjecture.

It is therefore necessary to prove this property in the context of Poisson
random measures. With natural hypotheses, cf. [4] Parts 2 and 4, as soon as (EID)
is true for the bottom space, (EID) is true for the upper space. Our proof uses a
result of Shiqi Song [19].

2.4. Main example of bottom structure in R
d

Let (Yt)t � 0 be a centered d-dimensional Lévy process without gaussian part,
with Lévy measure ν = kdx. Under standard hypotheses, we have the following
representation:

Yt =
∫ t

0

∫

Rd

xÑ(ds, dx),
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where Ñ is a compensated Poisson measure with intensity dt× kdx. In this case,
the idea is to introduce an ad-hoc Dirichlet structure on R

d.
The following example gives a case of such a structure (d, e) which satisfies

all the required hypotheses and which is flexible enough to encompass many cases:

Lemma 1. Let r ∈ N
∗, (X,X ) = (Rr,B(Rr)) and ν = kdx where k is non-negative

and Borelian. We are given ξ = (ξi,j)1 � i,j � r an R
r×r-valued and symmetric

Borel function. We assume that there exist an open set O ⊂ R
r and a function ψ

continuous on O and null on R
r \O such that

1) k > 0 on O ν-a.e. and is locally bounded on O.
2) ξ is locally bounded and locally elliptic on O.
3) k � ψ > 0 ν-a.e. on O.
4) for all i, j ∈ {1, . . . , r}, ξi,jψ belongs to H1

loc(O).
We denote by H the subspace of functions f ∈ L2(ν)∩L1(ν) such that the restric-
tion of f to O belongs to C∞

c (O). Then, the bilinear form defined by

∀f, g ∈ H, e(f, g) =
r∑

i,j=1

∫

O

ξi,j(x)∂if(x)∂jg(x)ψ(x) dx

is closable in L2(ν). Its closure, (d, e), is a local Dirichlet form on L2(ν) which
admits a carré du champ γ:

∀f ∈ d, γ(f)(x) =
r∑

i,j=1

ξi,j(x)∂if(x)∂jf(x)
ψ(x)
k(x)

.

Moreover, it satisfies property (EID).

Remark. In the case of a Lévy process, we will often apply this lemma with ξ
the identity mapping. We shall often consider an open domain of the form O =
{x ∈ R

d; |x| < ε} which means that we “differentiate” only w.r.t. small jumps
and hypothesis 3. means that we do not need to assume regularity on k but only
that k dominates a regular function.

2.5. Multivariate example

Consider as in the previous section, a centered Lévy process without gaussian part
Y such that its Lévy measure ν satisfies assumptions of Lemma 1 (which imply
1 + ∆Ys �= 0 a.s.) with d = 1 and ξ(x) = x2.

We want to study the existence of density for the pair (Yt, Exp(Y )t) where
Exp(Y ) is the Doléans exponential of Y .

Exp(Y )t = eYt

∏

s � t

(1 + ∆Ys)e−∆Ys .

1) We add a particle (α, y), i.e., a jump to Y at time α � t with size y:

ε+(α,y)(Exp(Y )t) = eYt+y
∏

s � t

(1 + ∆Ys)e−∆Ys(1 + y)e−y = Exp(Y )t(1 + y).
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2) We compute γ[ε+Exp(Y )t](y) = (Exp(Y )t)2y2 ψ(y)
k(y) .

3) We take back the particle:

ε−γ[ε+Exp(Y )t] =
(
Exp(Y )t(1 + y)−1

)2
y2ψ(y)
k(y)

we integrate w.r.t. N and that gives the upper carré du champ operator (lent
particle formula):

Γ[Exp(Y )t] =
∫

[0,t]×R

(
Exp(Y )t(1 + y)−1

)2
y2ψ(y)
k(y)

N(dα, dy)

=
∑

α � t

(
Exp(Y )t(1 + ∆Yα)−1

)2 ψ(∆Yα)
k(∆Yα)

∆Y 2
α .

By a similar computation the matrix Γ of the pair (Yt, Exp(Yt)) is given by

Γ =
∑

α � t

(
1 Exp(Y )t(1 + ∆Yα)−1

Exp(Y )t(1 + ∆Yα)−1
(
Exp(Y )t(1 + ∆Yα)−1

)2

)
ψ(∆Yα)
k(∆Yα)

∆Y 2
α .

Hence under hypotheses implying (EID), such as those of Lemma 1, the
density of the pair (Yt, Exp(Yt)) is yielded by the condition

dim L
((

1
Exp(Y )t(1 + ∆Yα)−1

)

α ∈ JT
)

= 2

where JT denotes the jump times of Y between 0 and t.
Making this in details we obtain

Let Y be a real Lévy process with infinite Lévy measure with density dom-
inating near 0 a positive continuous function, then the pair (Yt, Exp(Y )t)
possesses a density on R

2.

3. Demonstration of the lent particle formula

3.1. The construction

Let us recall that (X,X , ν,d, γ) is a local Dirichlet structure with carré du champ
called the bottom space, ν is σ-finite and the bilinear form e[f, g] = 1

2

∫
γ[f, g] dν

is a local Dirichlet form with domain d ⊂ L2(ν) and with carré du champ γ. We
assume {x} ∈ X for all x ∈ X and ν is diffuse. The associated generator is denoted
a, its domain is D(a) ⊂ d.

We consider a random Poisson measure N , on [0,+∞[×X with intensity
dt×ν. It is defined on (Ω1,A1,P1) where Ω1 is the configuration space of countable
sums of Dirac masses on [0,+∞[×X , A1 is the σ-field generated by N and P1 is
the law of N .

(Ω1,A1,P1) is called the upper space. The question is to construct a Dirichlet
structure on the upper space, induced “canonically” by the Dirichlet structure of
the bottom space.
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This question is natural by the following interpretation. The bottom struc-
ture may be thought as the elements for the description of a single particle moving
according to a symmetric Markov process associated with the bottom Dirichlet
form. Then considering an infinite family of independent such particles with ini-
tial law given by (Ω1,A1,P1) shows that a Dirichlet structure can be canonically
considered on the upper space (cf. the introduction of [4] for different ways of
tackling this question).

Because of typical formulas on functions of the form eiN(f) related to the
Laplace functional, we consider the space of test functions D0 to be the set of
elements in L2(P1) which are the linear combinations of variables of the form eiÑ(f)

where f belongs to
(
D(a)⊗ L2(dt)

)⋂
L1(dt×ν) and is such that γ[f ] ∈ L2(dt×ν),

recall that Ñ = N − dt× ν.

Remark 1. As we need D0 to be a dense subset, we make what we call a Bottom
core hypothesis. Namely we assume that there exists a subspace H of D(a)

⋂
L1(ν),

dense in L1(ν)∩L2(ν) and such that ∀f ∈ H, γ[f ] ∈ L2(ν) (see [4] for more details
on the technical hypotheses we adopt).

If U =
∑

p λpe
iÑ(fp) belongs to D0, we put

A0[U ] =
∑

p

λpe
iÑ(fp)(iÑ(a[fp])−

1
2
N(γ[fp])), (1)

where, in a natural way, if f(x, t) =
∑
l ul(x)ϕl(t) ∈ D(a)⊗ L2(dt)

a[f ] =
∑

l

a[ul]ϕl and γ[f ] =
∑

l

γ[ul]ϕl.

In order to show that A0 is uniquely defined and is the generator of a Dirichlet
form satisfying the required properties, starting from a gradient of the bottom
structure we construct a gradient for the upper structure defined first on the test
functions. Then we show that this gradient does not depend on the form of the
test function and this allows to extend the operators thanks to Friedrichs’ property
yielding the closedness of the upper structure.

3.2. The bottom gradient

We suppose the space d separable, then there exists a gradient for the bottom
space, i.e., there is a separable Hilbert space and a linear map D from d into
L2(X, ν;H) such that ∀u ∈ d, ‖D[u]‖2H = γ[u], then necessarily

– If F : R→ R is Lipschitz then ∀u ∈ d, D[F ◦ u] = (F ′ ◦ u)Du,
– If F is C1 and Lipschitz from R

d into R then D[F ◦ u] =
∑d

i=1(F
′
i ◦ u)D[ui]

∀u = (u1, . . . , ud) ∈ dd.
We take for H a space L2(R,R, ρ) where (R,R, ρ) is a probability space s.t.

L2(R,R, ρ) is infinite dimensional. The gradient D is denoted by �:

∀u ∈ d, Du = u� ∈ L2(X ×R,X ⊗R, ν × ρ).
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Without loss of generality, we assume moreover that the operator � takes its values
in the orthogonal space of 1 in L2(R,R, ρ). So that we have

∀u ∈ d,
∫
u�dρ = 0 ν-a.e.

3.3. Candidate gradient for the upper space

Now, we introduce the creation operator (resp. annihilation operator) which con-
sists in adding (resp. removing if necessary) a jump at time t with size u:

ε+(t,u)(w1) = w11{(t,u)∈supp w1} + (w1 + ε(t,u)})1{(t,u)/∈supp w1}

ε−(t,u)(w1) = w11{(t,u)/∈supp w1} + (w1 − ε(t,u)})1{(t,u)∈supp w1}.

In a natural way, we extend these operators to the functionals by

ε+H(w1, t, u) = H(ε+(t,u)w1, t, u) ε−H(w1, t, u) = H(ε−(t,u)w1, t, u).

Definition. For F ∈ D0, we define the pre-gradient

F � =
∫ +∞

0

∫

X×R
ε−((ε+F )�) dN � ρ,

where N�ρ is the point process N “marked” by ρ, i.e., if N is the family of marked
points (Ti, Xi), N � ρ is the family (Ti, Xi, ri) where the ri are new independent
random variables mutually independent and identically distributed with law ρ,
defined on an auxiliary probability space (Ω̂, Â, P̂). So N � ρ is a Poisson random
measure on [0,+∞[×X ×R.

3.4. Main result

The above candidate may be shown to extend in a true gradient for the upper
structure. The argument is based on the extension of the pregenerator A0 thanks
to Friedrichs’ property (cf. for instance [7] p. 4): A0 is shown to be well defined
on D0 which is dense, A0 is non-positive and symmetric and therefore possesses
a selfadjoint extension. Before stating the main theorem, let us introduce some
notation. We denote by D the completion of D0⊗L2([0,+∞[, dt)⊗d with respect
to the norm

‖H‖D =
(

E

∫ +∞

0

∫

X

ε−(γ[H ])(w, t, u)N(dt, du)
) 1

2

+ E

∫ +∞

0

∫

X

(ε−|H |)(w, t, u)η(t, u)N(dt, du)

=
(

E

∫ +∞

0

∫

X

γ[H ](w, t, u)ν(du)dt
) 1

2

+ E

∫ +∞

0

∫

X

|H |(w, t, u)η(t, u)ν(du)dt,

where η is a fixed positive function in L2(R+ ×X, dt× dν).
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As we shall see below, a peculiarity of the method comes from the fact that
it involves, in the computation, successively mutually singular measures, such as
measures PN = P1(dω)N(ω, dt, dx) and P1×dt× ν. This imposes some care in the
applications.

Main theorem. The formula

∀F ∈ D, F � =
∫ +∞

0

∫

X×R
ε−((ε+F )�) dN � ρ,

extends from D0 to D, it is justified by the following decomposition:

F ∈ D
ε+−I→ ε+F −F ∈ D

ε−((.)�)→ ε−((ε+F )�) ∈ L2
0(PN ×ρ)

d(N�ρ)→ F � ∈ L2(P1× P̂)

where each operator is continuous on the range of the preceding one and where
L2

0(PN × ρ) is the closed set of elements G in L2(PN × ρ) such that
∫
RGdρ = 0

PN -a.s.
Furthermore for all F ∈ D

Γ[F ] = Ê(F �)2 =
∫ +∞

0

∫

X

ε−γ[ε+F ] dN. (2)

Let us explain the steps of a typical calculation applying this theorem.
Let H = Φ(F1, . . . , Fn) with Φ ∈ C1 ∩ Lip(Rn) and F = (F1, . . . , Fn) with

Fi ∈ D, we have:

a) γ[ε+H ] =
∑

ij

Φ′
i(ε

+F )Φ′
j(ε

+F )γ[ε+Fi, ε+Fj ] P× ν-a.e.

b) ε−γ[ε+H ] =
∑

ij

Φ′
i(F )Φ′

j(F )ε−γ[ε+Fi, ε+Fj ] PN -a.e.

c) Γ[H ] =
∫
ε−γ[ε+H ]dN =

∑

ij

Φ′
i(F )Φ′

j(F )
∫
ε−γ[ε+Fi, ε+Fj ]dN P-a.e.

Let us eventually remark that the lent particle formula (2) has been encoun-
tered previously by some authors for test functions (see, e.g., [17] before Prop. 8).
Here, it is proved on the whole domain D, this is essential to apply the method to
SDE’s and to exploit the full strength of the functional calculus of Dirichlet forms.

4. Applications

4.1. Sup of a stochastic process on [0, t]
The fact that the operation of taking the maximum is typically a Lipschitz oper-
ation makes it easy to apply the method.

Let Y be a centered Lévy process as in §2.2. Let K be a càdlàg process
independent of Y . We put

Hs = Ys +Ks.

Proposition. If ν(R\{0}) = +∞ and if P1[sups � tHs = H0] = 0, the random
variable sups � tHs has a density.
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As a consequence, any Lévy process starting from zero and immediately en-
tering R

∗
+, whose Lévy measure dominates a measure ν satisfying Hamza condition

and infinite, is such that sups � tXs has a density.
Let us recall that the Hamza condition (cf. Fukushima et al. [10] Chapter 3)

gives a necessary and sufficient condition of existence of a Dirichlet structure on
L2(ν). Such a necessary and sufficient condition is only known in dimension one.

4.2. Regularity without Hörmander

Consider the following SDE driven by a two-dimensional Brownian motion





X1
t = z1 +

∫ t
0 dB

1
s

X2
t = z2 +

∫ t
0

2X1
sdB

1
s +

∫ t
0
dB2

s

X3
t = z3 +

∫ t
0
X1
sdB

1
s + 2

∫ t
0
dB2

s .

(3)

This diffusion is degenerate and the Hörmander conditions are not fulfilled. The
generator is A = 1

2 (U2
1 + U2

2 ) + V and its adjoint A∗ = 1
2 (U2

1 + U2
2 ) − V with

U1 = ∂
∂x1

+ 2x1
∂
∂x2

+ x1
∂
∂x3

, U2 = ∂
∂x2

+ 2 ∂
∂x3

and V = − ∂
∂z2
− 1

2
∂
∂z3

. The Lie
brackets of these vectors vanish and the Lie algebra is of dimension 2: the diffusion
remains on the quadric of equation 3

4x
2
1 − x2 + 1

2x3 − 3
4 t = C.

Consider now the same equation driven by a Lévy process:





Z1
t = z1 +

∫ t
0 dY

1
s

Z2
t = z2 +

∫ t
0

2Z1
s−dY

1
s +

∫ t
0
dY 2

s

Z3
t = z3 +

∫ t
0
Z1
s−dY

1
s + 2

∫ t
0
dY 2

s

under hypotheses on the Lévy measure such that the bottom space may be
equipped with the carré du champ operator γ[f ] = y2

1f
′2
1 + y2

2f
′2
2 satisfying the

hypotheses yielding (EID). Let us apply in full details the lent particle method.
For α � t

ε+(α,y1,y2)Zt = Zt +






y1
2Y 1

α−y1 + 2
∫ t
]α
y1dY

1
s + y2

Y 1
α−y1 +

∫ t
]α
y1dY

1
s + 2y2




 = Zt +




y1

2y1Y 1
t + y2

y1Y
1
t + 2y2



 ,

where we have used Y 1
α− = Y 1

α because ε+ send into P1×dt×ν classes. That gives

γ[ε+Zt] =




y2
1 y2

12Y
1
t y2

1Y
1
t

id y2
14(Y 1

t )2 + y2
2 y2

12(Y 1
t )2 + 2y2

2

id id y2
1(Y 1

t )2 + 4y2
2





and

ε−γ[ε+Zt] =




y2
1 y2

12(Y 1
t −∆Y 1

α ) y2
1(Y

1
t −∆Y 1

α )
id y2

14(Y 1
t −∆Y 1

α )2 + y2
2 y2

12(Y 1
t −∆Y 1

α )2 + 2y2
2

id id y2
1(Y 1

t −∆Y 1
α )2 + 4y2

2



 ,
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where id denotes the symmetry of the matrices. Hence

Γ[Zt] =
∑

α � t

(∆Y 1
α )2




1 2(Y 1

t −∆Y 1
α ) (Y 1

t −∆Y 1
α )

id 4(Y 1
t −∆Y 1

α )2 2(Y 1
t −∆Y 1

α )2

id id (Y 1
t −∆Y 1

α )2





+ (∆Y 2
α )2




0 0 0
0 1 2
0 2 4



 .

With this formula we can reason, trying to find conditions for the determinant of
Γ[Z] to be positive. For instance if the Lévy measures of Y 1 and Y 2 are infinite,
it follows that Zt has a density as soon as

dim L









1

2(Y 1
t −∆Y 1

α )
(Y 1
t −∆Y 1

α )



 ,




0
1
2



 α ∈ JT





= 3.

But Y 1 possesses necessarily jumps of different sizes, hence Zt has a density on R
3.

It follows that the integro-differential operator

Ãf(z) =
∫


f(z)− f




z1 + y1

z2 + 2z1y1 + y2
z3 + z1y1 + 2y2





−(f ′
1(z) f

′
2(z) f

′
3(z))




y1

2z1y1 + y2
z1y1 + 2y2







σ(dy1dy2)

is hypoelliptic at order zero, in the sense that its semigroup Pt has a density. No
minoration is supposed on the growth of the Lévy measure near 0 as assumed by
some authors.

This result implies that for any Lévy process Y satisfying the above hy-
potheses, even a subordinated one in the sense of Bochner, the process Z is never
subordinated of the Markov process X solution of equation (3) (otherwise it would
live on the same manifold as the initial diffusion).

5. Application to SDE’s driven by a Poisson measure

5.1. The equation we study

We consider another probability space (Ω2,A2,P2) on which an R
n-valued semi-

martingale Z = (Z1, . . . , Zn) is defined, n ∈ N
∗. We adopt the following assump-

tion on the bracket of Z and on the total variation of its finite variation part. It
is satisfied if both are dominated by the Lebesgue measure uniformly:
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Assumption on Z: There exists a positive constant C such that for any square
integrable R

n-valued predictable process h:

∀t � 0, E[(
∫ t

0

hsdZs)2] � C2
E[
∫ t

0

|hs|2ds]. (4)

We shall work on the product probability space: (Ω,A,P) = (Ω1×Ω2,A1⊗A2,P1×
P2).
For simplicity, we fix a finite terminal time T > 0.
Let d ∈ N

∗, we consider the following SDE:

Xt = x+
∫ t

0

∫

X

c(s,Xs− , u)Ñ(ds, du) +
∫ t

0

σ(s,Xs−)dZs (5)

where x ∈ R
d, c : R

+ × R
d ×X → R

d and σ : R
+ × R

d → R
d×n satisfy the set of

hypotheses below denoted (R).

Hypotheses (R):

1. There exists η ∈ L2(X, ν) such that:
a) for all t ∈ [0, T ] and u ∈ X , c(t, ·, u) is differentiable with continuous

derivative and

∀u ∈ X, sup
t∈[0,T ],x∈Rd

|Dxc(t, x, u)| � η(u),

b) ∀(t, u) ∈ [0, T ]×X, |c(t, 0, u)| � η(u),
c) for all t ∈ [0, T ] and x ∈ R

d, c(t, x, ·) ∈ d and

sup
t∈[0,T ],x∈Rd

γ[c(t, x, ·)](u) � η2(u),

d) for all t ∈ [0, T ], all x ∈ R
d and u ∈ X , the matrix I + Dxc(t, x, u) is

invertible and

sup
t∈[0,T ],x∈Rd

∣
∣
∣(I +Dxc(t, x, u))

−1 × c(t,x,u)
∣
∣
∣ � η(u).

2. For all t ∈ [0, T ], σ(t, ·) is differentiable with continuous derivative and

sup
t∈[0,T ],x∈Rd

|Dxσ(t, x)| < +∞.

3. As a consequence of hypotheses 1. and 2. above, it is well known that equa-
tion (5) admits a unique solution X such that E[supt∈[0,T ] |Xt|2] < +∞. We
suppose that for all t ∈ [0, T ], the matrix (I +

∑n
j=1Dxσ·,j(t,Xt−)∆Zjt ) is

invertible and its inverse is bounded by a deterministic constant uniformly
with respect to t ∈ [0, T ].

Remark. We have defined a Dirichlet structure (D, E) on L2(Ω1,P1). Now, we work
on the product space, Ω1 ×Ω2. Using natural notations, we consider from now on
that (D, E) is a Dirichlet structure on L2(Ω,P). In fact, it is the product structure
of (D, E) with the trivial one on L2(Ω2,P2) (see [7] ). Of course, all the properties
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remain true. In other words, we only differentiate w.r.t. the Poisson noise and not
w.r.t. the one introduced by Z.

5.2. Spaces of processes and functional calculus

We denote by P the predictable sigma-field on [0, T ]×Ω and we define the following
sets of processes:

– HD: the set of real-valued processes (Ht)t∈[0,T ], which belong to L2([0, T ]; D),
i.e., such that

‖H‖2HD
= E[

∫ T

0

|Ht|2dt] +
∫ T

0

E(Ht)dt < +∞.

– HD,P : the subvector space of predictable processes in HD.
– HD⊗d,P : the set of real-valued processes H defined on [0, T ]× Ω ×X which

are predictable and belong to L2([0, T ]; D⊗ d), i.e., such that

‖H‖2HD⊗d,P = E

[∫ T

0

∫

X

|Ht|2ν(du)dt

]

+
∫ T

0

∫

X

E(Ht(·, u))ν(du)dt + E

[∫ T

0

e(Ht)dt

]

< +∞.

The main idea is to differentiate equation (5). To do that, we need some functional
calculus. It is given by the next proposition that we prove by approximation:

Proposition 2. Let H ∈ HD⊗d,P and G ∈ HnD,P , then:
1) The process

∀t ∈ [0, T ], Xt =
∫ t

0

∫

X

H(s, w, u)Ñ(ds, du)

is a square integrable martingale which belongs to HD and such that the pro-
cess X− = (Xt−)t∈[0,T ] belongs to HD,P . The gradient operator satisfies for
all t ∈ [0, T ]:

X�
t (w, ŵ) =

∫ t

0

∫

X

H�(s, w, u, ŵ)dÑ(ds, du)

+
∫ t

0

∫

X×R
H�(s, w, u, r)N � ρ(ds, du, dr).

(6)

2) The process

∀t ∈ [0, T ], Yt =
∫ t

0

G(s, w)dZs

is a square integrable semimartingale which belongs to HD, Y − = (Yt−)t∈[0,T ]

belongs to HD,P and

∀t ∈ [0, T ], Y �t (w, ŵ) =
∫ t

0

G�(s, w, ŵ)dZs. (7)
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5.3. Computation of the Carré du champ matrix of the solution

Applying the standard functional calculus related to Dirichlet forms, the previous
proposition and a Picard iteration argument, we obtain:

Proposition 3. The equation (5) admits a unique solution X in HdD. Moreover, the
gradient of X satisfies:

X�
t =

∫ t

0

∫

X

Dxc(s,Xs−, u) ·X�
s−Ñ(ds, du)

+
∫ t

0

∫

X×R
c�(s,Xs−, u, r)N � ρ(ds, du, dr)

+
∫ t

0

Dxσ(s,Xs−) ·X�
s−dZs.

Let us define the R
d×d-valued processes U by

dUs =
n∑

j=1

Dxσ.,j(s,Xs−)dZjs ,

and the derivative of the flow generated by X :

Kt = I +
∫ t

0

∫

X

Dxc(s,Xs−, u)Ks−Ñ(ds, du) +
∫ t

0

dUsKs−.

Proposition 4. Under our hypotheses, for all t � 0, the matrix Kt is invertible and
its inverse K̄t = (Kt)−1 satisfies:

K̄t = I −
∫ t

0

∫

X

K̄s−(I +Dxc(s,Xs−, u))−1Dxc(s,Xs−, u)Ñ(ds, du)

−
∫ t

0

K̄s−dUs +
∑

s � t

K̄s−(∆Us)2(I + ∆Us)−1

+
∫ t

0

K̄sd < U c, U c >s .

We are now able to calculate the carré du champ matrix. This is done in
the next theorem whose proof is sketched to show how simple is the lent particle
method.

Theorem 5. For all t ∈ [0, T ],

Γ[Xt] = Kt

∫ t

0

∫

X

K̄sγ[c(s,Xs−, ·)]K̄∗
s N(ds, du)K∗

t .
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Proof. Let (α, u) ∈ [0, T ]×X . We put X(α,u)
t = ε+(α,u)Xt.

X
(α,u)
t = x+

∫ α

0

∫

X

c(s,X(α,u)
s− , u′)Ñ(ds, du′)

+
∫ α

0

σ(s,X(α,u)
s− )dZs + c(α,X(α,u)

α− , u)

+
∫

]α,t]

∫

X

c(s,X(α,u)
s− , u′)Ñ(ds, du′) +

∫

]α,t]

σ(s,X(α,u)
s− )dZs.

Let us remark that X(α,u)
t = Xt if t < α so that, taking the gradient with respect

to the variable u, we obtain:

(X(α,u)
t )� = (c(α,X(α,u)

α− , u))� +
∫

]α,t]

∫

X

Dxc(s,X
(α,u)
s− , u′) · (X(α,u)

s− )�Ñ(ds, du′)

+
∫

]α,t]

Dxσ(s,X(α,u)
s− ) · (X(α,u)

s− )�dZs.

Let us now introduce the process K(α,u)
t = ε+(α,u)(Kt) which satisfies the following

SDE:

K
(α,u)
t = I +

∫ t

0

∫

X

Dxc(s,X
(α,u)
s− , u′)K(α,u)

s− Ñ(ds, du′) +
∫ t

0

dU (α,u)
s K

(α,u)
s−

and its inverse K̄(α,u)
t = (K(α,u)

t )−1. Then, using the flow property, we have:

∀t � 0, (X(α,u)
t )� = K

(α,u)
t K̄(α,u)

α (c(α,Xα− , u))�.

Now, we calculate the carré du champ and then we take back the particle:

∀t � 0, ε−(α,u)γ[(X(α,u)
t )] = KtK̄αγ[c(α,Xα− , ·)]K̄∗

αK
∗
t .

Finally integrating with respect to N we get

∀t � 0, Γ[Xt] = Kt

∫ t

0

∫

X

K̄sγ[c(s,Xs− , ·)](u)K̄∗
sN(ds, du)K∗

t . �

5.4. First application: the regular case

An immediate consequence of the previous theorem is:

Proposition 6. Assume that X is a topological space, that the intensity measure
ds × ν of N is such that ν has an infinite mass near some point u0 in X. If the
matrix (s, y, u)→ γ[c(s, y, ·)](u) is continuous on a neighborhood of (0, x, u0) and
invertible at (0, x, u0), then the solution Xt of (5) has a density for all t ∈]0, T ].
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5.5. Application to SDE’s driven by a Lévy process

Let Y be a Lévy process with values in R
d, independent of another variable X0.

We consider the following equation

Xt = X0 +
∫ t

0

a(Xs−, s) dYs, t � 0

where a : R
k × R

+ → R
k×d is a given map.

Proposition 7. We assume that:
1) The Lévy measure, ν, of Y satisfies hypotheses of the example given in Sec-

tion 2.4 with ν(O) = +∞ and ξi,j(x) = xiδi,j. Then we may choose the
operator γ to be

γ[f ] =
ψ(x)
k(x)

d∑

i=1

x2
i

d∑

i=1

(∂if)2 for f ∈ C∞0 (Rd).

2) a is C1 ∩ Lip with respect to the first variable uniformly in s and

sup
t,x
|(I +Dxa · u)−1(x, t)| � η(u),

where η ∈ L2(ν).
3) a is continuous with respect to the second variable at 0, and such that the

matrix aa∗(X0, 0) is invertible;
then for all t > 0 the law of Xt is absolutely continuous w.r.t. the Lebesgue measure.

Proof. We just give an idea of the proof in the case d = 1:

Let us recall that γ[f ](u) =
ψ(u)
k(u)

u2f ′2(u).

We have the representation: Yt =
∫ t
0

∫
R
uÑ(ds, du), so that

Xt = X0 +
∫ t

0

∫

R

a(s,Xs−)u Ñ(ds, du).

The lent particle method yields:

Γ[Xt] = K2
t

∫ t

0

∫

X

K̄2
sa

2(s,Xs−)γ[j](u)N(ds, du)

where j is the identity application: γ[j](u) =
ψ(u)
k(u)

u2.

So

Γ[Xt] = K2
t

∫ t

0

∫

X

K̄2
sa

2(s,Xs−)
ψ(u)
k(u)

u2N(ds, du)

= K2
t

∑

α<t

K̄2
sa

2(s,Xs−)
ψ(∆Ys)
k(∆Ys)

∆Y 2
s ,

and it is easy to conclude. �
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Remarks

(i) We refer to [5] for other examples and applications.
(ii) Let us finally remark that, as easily seen, the gradient we have introduced

may be naturally iterated. This yields a criteria of regularity for the density
of Poisson functionals such as solutions of SDE’s, this is the object of a
forthcoming paper.
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