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Preface

Time delay always arises in engineering models, where the rates of change of state
variables depend both on present and on past state variables of the system. Control
processes with feedback delay, regenerative machine tool chatter, wheel shimmy
models including the elastic contact between the tire and the road, car-following
traffic models with the reaction time of the drivers, human motion control with re-
flex delay, can be mentioned as examples. The analysis of these systems requires the
characterization of their local behavior around a desired position or a desired (pos-
sibly periodic) path. Such properties can be described by stability charts that present
the stability of the linearized system in the plane of the system parameters. These
stability charts provide a useful tool for engineers, since they present an overview
on the effects of system parameters on the local dynamics of the system.

The main differences between systems with and without time delay is that
time delay produces an infinite-dimensional dynamics as opposed to the finite-
dimensional dynamics of delay-free systems. For simple time-delay systems, stabil-
ity charts can be derived analytically. However for complex systems, for instance,
when the time-delay effect is coupled with parametric excitation, only numerical
techniques can be used.

The scope of this book is to present a numerical technique, called the semi-
discretization method, for the stability analysis of linear time-periodic time-delay
systems, which is also an essential tool in the study of periodic motions of non-
linear time-delay systems. Semi-discretization is a well-known technique used, for
example, in the finite element analysis of solid bodies, or in computational fluid
mechanics, where the corresponding partial differential equations are discretized
along the spatial coordinates only, while the time coordinates are unchanged. In
case of time-delay systems, semi-discretization results in the discretization of de-
layed terms only, while the actual-time-domain terms are not discretized. In this
way, the infinite-dimensional system is approximated by a finite-dimensional one.

The structure of the book is as follows. Chapter 1 gives some introduction to lin-
ear time-delay systems. Chapter 2 deals with the construction of the stability charts
for some fundamental delay-differential equations. The semi-discretization method
is presented in Chapter 3 including higher-order methods, rate convergence esti-
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mates, and numerical issues. The semi-discretization method is applied in Chapter
4 to some Newtonian examples with different delay types, such as single point de-
lay, multiple delays, distributed delay, and time-periodic delay. Finally, Chapter 5
presents real-world mechanical engineering applications. Turning and milling pro-
cesses are considered with varying spindle speed, resulting in time-periodic time
delays. Then, the so-called act-and-wait control concept is introduced, and it is an-
alyzed through applications to the stick-balancing problem and to a force-control
process with feedback delay. It is shown that the inclusion of waiting periods in the
control rule may have a stabilizing effect. This provides the surprising conclusion
that doing nothing and rather waiting for the response of a previous action might
be a superior control strategy for systems with feedback delay. Finally, the stick-
balancing model with reflex delay is investigated in the case of parametric forcing
at the stick’s base. The book concludes with an appendix that contains Matlab codes
for the semi-discretization of the examples presented in Chapter 4.

The book is designed for graduate and PhD students as well as for researchers
working in the fields of mechanical, electrical, and chemical engineering, control
theory, biomechanics, population dynamics, neurophysiology, even climate research
in which time-delay models occur.

The book is based on the authors’ research work over the last 10 years, but
many colleagues have contributed to different parts. Hereby, the authors thank and
acknowledge the useful discussions with and comments of Mikel Zatarain, Jokin
Muñoa, Grégoire Peigné, and Sébastien Seguy regarding the computational effi-
ciency of the semi-discretization for different milling applications. The helpful con-
sultations and joint works related to the mathematical issues of the method with
Janos Turi, Ferenc Hartung, and Barnabás Garay are greatly appreciated. The com-
ments and novel ideas provided by our young colleagues Zoltán Dombóvári and
Dániel Bachrathy are gratefully recognized. Finally, the inspiring long-term cooper-
ation and mutual comparative studies for machining operations with Philip V. Bayly,
Brian P. Mann, and Firas A. Khasawneh are gratefully acknowledged.

The appearance of this book and the related research work during recent years
were supported by the Hungarian National Science Foundation (OTKA) under grant
no. K72911 and K68910 and the János Bolyai Research Scholarship of the Hun-
garian Academy of Sciences. This work is linked to the scientific program of the
“Development of quality-oriented and harmonized R+D+I strategy and functional
model at BME” project. This project is supported by the New Hungary Develop-
ment Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002). This book is re-
lated to activities performed within the DYNXPERTS project, funded by the Euro-
pean Commission FP7 Factories of the Future with Grant Number 260073.

Budapest, Tamás Insperger
April 2011 Gábor Stépán
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Chapter 1
Introducing Delay in Linear Time-Periodic
Systems

Dynamical systems have been described with differential equations since the ap-
pearance of the differential calculus; Newton’s second law could be considered one
of the first examples. A differential equation can serve as a model for how the rate
of change of state depends on the present state of a system. However, the rate of
change of state may depend on past states, too. It has been known for a long time
that several problems can be described by models including past effects. One of the
classical examples is the predator–prey model of Volterra [288], where the growth
rate of predators depends not only on the present quality of food (say, prey), but
also on past quantities (in the period of gestation, say). The first delay models in
engineering appeared for wheel shimmy [230] and for ship stabilization [194] in
the early 1940s. There are several other engineering applications in which time de-
lay plays a crucial role. As recognized in the late 1940s with the development of
control theory, time delay typically arises in feedback control systems due to the
finite speed of information transmission and data processing [284, 252]. Another
typical application is the stability of machining processes, where time delay ap-
pears due to the surface regeneration by the cutting edge [280, 281, 256, 5]. Similar
equations describe the car-following traffic models involving the reaction time of
drivers [213, 214, 215]. Reflex delay is also a relevant issue to human motion con-
trol [24, 259, 192, 13]. Time delay also plays important role in population dynamics
[160, 251], in neural networks [49, 216], and in epidemiology models [226, 2].

Systems whose rate of change of state depends on states at deviating arguments
are generally described by functional differential equations (FDEs). According to
Myshkis [203], FDEs are equations involving the function x(t) of one scalar argu-
ment t (called time) and its derivatives for several values of argument t. FDEs can
be categorized into retarded, neutral, and advanced types (see, e.g., [74, 152]). If the
rate of change of state depends on past states of the system, then the corresponding
mathematical model is a retarded functional differential equation (RFDE). If the rate
of change of state depends on its own past values as well, then the corresponding
equation is called a neutral functional differential equation (NFDE). If the rate of
change of state depends on past values of higher derivatives of the state, then the
system is described by an advanced functional differential equation (AFDE). These
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2 1 Introducing Delay in Linear Time-Periodic Systems

equations are also referred to as FDEs of retarded, neutral, or advanced type. While
RFDEs and NFDEs have many practical applications, AFDEs are rarely used in
engineering modeling due to their inverted causality. Note, however, that there are
some special problems even in Newtonian mechanics where the governing equations
are related to AFDEs [136, 137].

The literature on FDEs is quite extensive. Several books have appeared sum-
marizing the most important theorems; see, for instance, the books by Myshkis
[203], Bellman and Cooke [27], Èl’sgol’c [74], Halanay [98], Hale [99], Driver [72],
Kolmanovskii and Nosov [153], Hale and Lunel [100], Kolmanovskii and Myshkis
[152], Diekmann et al. [64], just to mention a few. There are also several books deal-
ing with different applications and numerical techniques; see for instance, Stepan
[255], Kuang [160], Kuang and Cong [159], Niculescu [207], Hu and Wang [113],
Bellen and Zennaro [26], Gu et al. [91], Zhong [306], Michiels and Niculescu [187],
Kushner [163], Erneux [79], Balachandran et al. [20], Lakshmanan and Senthilku-
mar [165], Smith [251], and Yi et al. [299]. It is known that discretization techniques
preserve asymptotic stability for RFDEs (see, e.g., [95] or [85]); however, this is not
true for NFDEs and AFDEs in general (see, e.g., [81] and [136], respectively).

RFDE is a mathematical terminology. In the engineering literature, RFDEs are
referred to as delay-differential equations (DDEs), or simply delay equations. In
this monograph, we follow the latter terminology, and use the term DDE rather than
RFDE.

This monograph deals with the stability analysis of linear time-periodic DDEs
using the semi-discretization method. These equations often arise during the analy-
sis of delayed systems, since the stability properties of the periodic orbits of nonlin-
ear DDEs are described by linear time-periodic DDEs [143, 158]. This introductory
chapter gives a brief overview on some special cases of linear DDEs. The corre-
sponding basic theory is essential for constructing the analytical examples of Chap-
ter 2, which then serve as references for the tests of the numerical method introduced
in Chapter 3. The last two chapters investigate pure Newtonian examples of delayed
oscillators and the dynamics of real-world engineering problems modeled by time-
periodic DDEs.

1.1 Linear Autonomous ODEs

Linear autonomous ordinary differential equations (ODEs) have the general form

ẋ(t) = Ax(t) , (1.1)

where x(t) ∈ Rn, A is an n × n matrix, and

ẋ =
dx
dt
= col

(
dx1

dt
dx2

dt
· · · dxn

dt

)
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with x1, x2, . . . , xn being the elements of vector x. For a given initial value x(0), the
solution of (1.1) can be written in the form

x(t) = eAtx(0) , (1.2)

where eAt is the exponential of matrix At, defined by the Taylor series of the expo-
nential function (see Appendix A.1). For a general overview on matrix exponentials,
see the book of Hirsch and Smale [108], or the book of Perko [219].

The stability of the trivial solution x(t) ≡ 0 is determined by the eigenvalues λ j,
j = 1, 2, . . . , n, of the coefficient matrix A. These eigenvalues are the characteristic
exponents of (1.1), but they are often called characteristic roots or poles, too. If
each λ j is unique in the minimal polynomial of A, then each solution of (1.1) can be
written in the form

x(t) =
n∑

j=1

C je
λ j t , (1.3)

with C j ∈ Cn being appropriate vectors depending on the initial condition. If
the characteristic exponents have negative real parts, i.e., Re λ j < 0 for all j =
1, 2, . . . , n, then the trivial solution of (1.1) is asymptotically stable. In the general
case, the characteristic exponents can be determined by solving the characteristic
equation

det (λI − A) = 0 , (1.4)

where I stands for the n × n identity matrix. Development of (1.4) results in an
nth-degree polynomial of λ, whose roots (i.e., the characteristic exponents) can be
determined by a number of numerical methods. Stability analysis, however, does not
require the exact calculation of the characteristic exponents; only the sign of the real
part of the critical (i.e., rightmost) exponent must be determined. This analysis can
be performed by the celebrated Routh–Hurwitz criterion [227, 114], which gives
a necessary and sufficient condition for stability based on the coefficients of the
characteristic polynomial (for details, see Appendix A.2).

Depending on the location of the critical characteristic exponents, there are two
typical mechanisms for loss of stability of linear autonomous systems [92]:

1. The critical characteristic exponents form a complex conjugate pair moving from
the left-hand side of the complex plane to the right-hand side; they cross the
imaginary axis, as shown by case (a) in Figure 1.1. This case is an essential
necessary condition for the so-called Hopf (or Andronov–Hopf or Poincaré–
Andronov–Hopf ) bifurcation of the corresponding nonlinear system, for which
the equation under analysis is the variational system. The systematic study of the
conditions and a proof of the corresponding bifurcation theorem have been done
by Andronov and Leontovich [10] for the two-dimensional case, and by Hopf
[109] for the n-dimensional case. According to the theory of nonlinear systems,
either stable or unstable periodic motion may exist around the equilibrium of the
corresponding nonlinear system, called supercritical and subcritical bifurcation,
respectively.
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Fig. 1.1 Critical character-
istic exponents for linear
autonomous ODEs: (a) Hopf
bifurcation, (b) and saddle-
node bifurcation.

2. The critical characteristic exponent is a real one moving from the left-hand side
of the complex plane to the right-hand side through the origin, as shown by case
(b) in Figure 1.1. This case is called saddle-node bifurcation of the corresponding
nonlinear system.

1.2 Linear Periodic ODEs

The general form of linear periodic ODEs reads

ẋ(t) = A(t)x(t) , A(t) = A(t + T ) , (1.5)

with x(t) ∈ Rn. Here, the n × n coefficient matrix A(t) is time-periodic at period
T , called the principal period in contrast to the constant-coefficient matrix of the
autonomous system (1.1). The main theorems on general periodic systems are sum-
marized in the book of Farkas [83].

For periodic ODEs, a stability condition is provided by the Floquet theory [84].
The solution of (1.5) with the initial condition x(0) is given by x(t) = Φ(t)x(0),
where Φ(t) is a fundamental matrix of (1.5). According to the Floquet theory, the
fundamental matrix can be written in the formΦ(t) = P(t)e Bt, where P(t) = P(t+T )
is a periodic matrix with initial value P(0) = I, and B is a constant matrix. The
matrixΦ(T ) = eBT is called the monodromy matrix (or principal matrix or Floquet
transition matrix) of (1.5). This matrix gives the connection between the initial state
and the state one principal period later: x(T ) = Φ(T )x(0).

The eigenvalues of Φ(T ) are the characteristic multipliers (µ j, j = 1, 2, . . . , n)
(also called Floquet multipliers or the poles ofΦ(T )) calculated from

det(µI −Φ(T )) = 0 . (1.6)

The eigenvalues of matrix B are the characteristic exponents (λ j, j = 1, 2, . . . , n)
given by

det(λI − B) = 0 . (1.7)

If µ is a characteristic multiplier, then there are characteristic exponents λ such that
µ = exp(λT ), and vice versa. Due to the periodicity of the complex exponential
function, each characteristic multiplier is associated with infinitely many character-
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Fig. 1.2 Critical characteristic multipliers for periodic systems: (a) secondary Hopf bifurcation,
(b) cyclic-fold bifurcation, and (c) period-doubling bifurcation.

istic exponents of the form λk = γ + i(ω + k2π/T ), where γ, ω ∈ R, k ∈ Z, and
Tω ∈ (−π, π].

The trivial solution x(t) ≡ 0 of (1.5) is asymptotically stable if and only if all the
characteristic multipliers have modulus less than one, that is, all the characteristic
exponents have negative real parts.

Similarly to autonomous systems, the basic types of loss of stability can be clas-
sified according to the location of the critical characteristic multipliers [92]. For
periodic systems, there are three typical cases:

1. The critical characteristic multipliers form a complex conjugate pair crossing the
unit circle, i.e., |µ| = 1 and | µ̄| = 1, as shown by case (a) in Figure 1.2. This case
is topologically equivalent to the Hopf bifurcation of autonomous systems and is
called secondary Hopf (or Neimark–Sacker) bifurcation.

2. The critical characteristic multiplier is real and crosses the unit circle at +1,
as shown by case (b) in Figure 1.2. The bifurcation that arises is topologically
equivalent to the saddle-node bifurcation of autonomous systems and is called
cyclic-fold (or period-one) bifurcation.

3. The critical characteristic multiplier is real and crosses the unit circle at −1,
as shown by case (c) in Figure 1.2. There is no topologically equivalent type
of bifurcation for autonomous systems. This case is called period-doubling (or
period-two or flip) bifurcation.

Generally, the monodromy matrix cannot be determined in closed form, but there
exist several numerical and semi-analytical techniques to approximate it, such as
Hill’s infinite determinant method and its generalizations [107, 266, 32, 205], the
method of strained parameters [205], the method of multiple scales [205], and the
Chebyshev polynomial approach [247, 246]. A simple numerical method is the
piecewise constant approximation of the periodic matrix A(t) in the form

A(t) ≈ Ai :=
∫ ih

(i−1)h
A(s) ds , t ∈ [ti, ti+1) , (1.8)

where ti = ih is the discrete time with i ∈ Z, h = T/p is the length of the discretiza-
tion step, and p is an integer [111, 83]. The original system can be approximated
by

ẏ(t) = Aiy(t) , t ∈ [ti, ti+1) , (1.9)
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for which the solution over a discretization interval is

y(ti+1) = eAihy(ti) . (1.10)

Application of (1.10) over p repeated discretization steps with initial state y(0) re-
sults in

y(T ) = Φ̃(T )y(0) , (1.11)

where
Φ̃(T ) = eAp−1h eAp−2h · · · eA0h (1.12)

is an approximation for the monodromy matrix Φ(T ). Eigenvalue analysis of
Φ̃(T ) gives then an approximate description of the stability properties of (1.5). A
higher-order generalization of this piecewise constant approximation technique is
the method of Magnus expansion, which involves higher-order terms of the so-
called Magnus series of the logarithm of the fundamental matrix Φ(h) (see, e.g.,
[175, 138, 139, 46]). Approximation (1.8) corresponds to the first-order Magnus
expansion of ln

(
Φ(h)

)
.

1.3 Linear Autonomous DDEs

The general form of linear autonomous DDEs is

ẋ(t) = L(xt) , (1.13)

where L : C → Rn is a continuous linear functional (C is the Banach space of
continuous functions) and the continuous function x t is defined by the shift

xt(ϑ) = x(t + ϑ) , ϑ ∈ [−σ, 0] . (1.14)

According to the Riesz representation theorem (see [99]), the linear functional L
can be represented in the matrix form

L(xt) =
∫ 0

−σ
dη(ϑ) x(t + ϑ) , (1.15)

where η : [−σ, 0]→ Rn×n is a matrix function of bounded variation, and the integral
is a Stieltjes one, i.e., (1.15) contains both point delays and distributed delays.

The characteristic equation can be obtained by substituting the nontrivial solution
x(t) = C eλt, C ∈ C

n, into (1.13), which gives

det

(
λI −

∫ 0

−σ
eλϑ dη(ϑ)

)
︸�������������������������︷︷�������������������������︸

:= D(λ)

= 0 . (1.16)
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The left-hand side of this equation defines the characteristic function D(λ) of (1.13).
The characteristic exponents are the zeros of the characteristic function. As opposed
to the characteristic polynomial of autonomous ODEs, the characteristic function
D(λ) has, in general, an infinite number of zeros in the complex plane, all of which
should be considered during the stability analysis. Stability charts that present the
stability properties as a function of the system parameters have therefore a rich and
intricate structure even for the simplest DDEs.

DDEs containing only point/discrete delays can be given in the form

ẋ(t) = Ax(t) +
g∑

j=1

B j x(t − τ j) , (1.17)

where A and the B j’s are n × n matrices, τ j > 0 for all j, and g ∈ Z
+. In this case,

only discrete values of the past have influence on the present rate of change of state.
An example of a DDE with distributed delay is

ẋ(t) = Ax(t) +
∫ −σ2

−σ1

K(ϑ) x(t + ϑ) dϑ , (1.18)

where K(ϑ) is an n × n measurable kernel function, σ 1, σ2 ∈ R, and σ1 > σ2 ≥ 0.
The kernel function K(ϑ) describes the weight of the past effects over the interval
[t − σ1, t − σ2]. If the kernel is a constant matrix multiplied by the shifted Dirac
delta distribution, i.e., K(ϑ) = K0 δ(ϑ + τ) with σ1 ≤ τ ≤ σ2, then the integral in
(1.18) gives the point delay K0 x(t − τ).

Linear autonomous DDEs with distributed delay and with a finite number of
point delays can be given in the general form

ẋ(t) =
∫ 0

−σ
K(ϑ)x(t + ϑ) dϑ , (1.19)

where K(ϑ) is an n × n measurable kernel function that may comprise a measurable
distribution and finitely many shifted Dirac delta distributions. That is, K(ϑ) can
also be given in the form

K(ϑ) =W(ϑ) +
g∑

j=1

B jδ(ϑ + τ j) , (1.20)

where W(ϑ) is an n × n measurable function (a weight function), the B j’s are n × n
constant matrices, δ(ϑ) denotes the Dirac delta distribution, τ j ≥ 0 for all j, and
g ∈ N. Thus, (1.19) can be written as

ẋ(t) =
∫ 0

−σ
W(ϑ)x(t + ϑ)dϑ +

g∑
j=1

B jx(t − τ j) . (1.21)
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A necessary and sufficient condition for the asymptotic stability of DDE (1.13)
with (1.15) is that all the infinite number of characteristic exponents have negative
real parts and there exist a scalar ν > 0 such that∫ 0

−∞
e−νϑ

∣∣∣dη jk(ϑ)
∣∣∣ < ∞ , j, k = 1, 2, . . . , n , (1.22)

where η jk(ϑ) are the elements of η(ϑ). Condition (1.22) means that the past effect
decays exponentially in the past. Obviously, this condition holds if σ in the lower
limit of the integral in (1.15) is finite.

Although there are infinitely many characteristic exponents, it is not necessary to
compute all of them, since stability analysis requires only the sign of the real part
of the rightmost one(s). There exist several analytical and semi-analytical methods
to derive the stability conditions for the system parameters. The first attempts for
determining stability criteria for first- and second-order scalar DDEs were made by
Bellmann and Cooke [27] and by Bhatt and Hsu [28]. They used the D-subdivision
method of Neimark [206] combined with a theorem of Pontryagin [221]. The book
of Kolmanovskii and Nosov [153] summarizes the main theorems on the stability
of DDEs, and contains several examples as well. A sophisticated method was de-
veloped by Stepan [255] (generalized also by Hassard [103]) that can be applied
even for a combination of multiple point delays and for distributed delays. There
exist several efficient numerical methods to determine the rightmost exponents for
a delayed system; see, for instance, the celebrated DDE-BIFTOOL developed by
Engelborghs et al. [76, 77], the pseudospectral differencing method by Breda et al.
[34, 35], the cluster treatment method by Olgac and Sipahi [210, 211], the Galerkin
projection by Wahi and Chatterjee [289, 290], the mapping algorithm by Vyhlı́dal
and Zı́tek [287], the harmonic balance by Liu and Kalmár-Nagy [171], or the Lam-
bert W function approach by Ulsoy et al. [14, 298].

The stability properties of DDEs are often represented in the form of stability
charts that show the stable and unstable domains, or alternatively, the number of un-
stable characteristic exponents (also called instability degree) in the space of system
parameters. Stability charts for autonomous DDEs can be constructed by the D-
subdivision method. The curves where changes in the number of unstable exponents
happen are given by the so-called D-curves (also called exponent-crossing curves or
transition curves) given by

R(ω) = 0 , S (ω) = 0 , ω ∈ [0,∞) , (1.23)

where
R(ω) := Re D(iω) , S (ω) := Im D(iω) , (1.24)

with D(λ) being the characteristic function defined in (1.16) and ω the parameter
of the curves [256]. Due to the continuity of the characteristic exponents with re-
spect to changes in the system parameters (see, for instance, [187]), the D-curves
separate the parameter space into domains where the numbers of unstable character-
istic exponents are constant. The determination of these numbers for the individual


