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Preface

The chapters included in this book are extended versions of the most relevant works presented at the
Brain-inspired Cognitive Systems Conference held in July 2010 in Madrid, during mild estival days.
BICS 2010 was a multitrack conference organised around four strongly related symposia:

• The Sixth International Symposium on Neural Computation (NC 2010)
• The Fifth International Symposium on Biologically Inspired Systems (BIS 2010)
• The Fourth International Symposium on Cognitive Neuroscience (CNS 2010)
• The Third International Symposium on Models of Consciousness (MoC 2010)

BICS 2010 was the fourth of a series of BICS events taking place biennially. The three previous
BICS conferences were BICS 2008 (Sao Luis, Brazil), BICS 2006 (Lesbos, Greece) and BICS 2004
(Stirling, UK).

The Brain Inspired Cognitive Systems Conference in Madrid brought together a group of leading
scientists and engineers who use analytic and synthetic methods both to understand the astonishing
cognitive processing properties of biological systems, and specifically those of the living brain, and
to exploit such knowledge to advance engineering methods for building artificial systems with higher
levels of cognitive competence.

The four BICS 2010 Conference Symposia were closely connected events around different as-
pects of the relation between brain science and the engineering of cognitive systems. The scientific
program tried to encourage cross-fertilization across the many symposia topics. This emphasized the
role of BICS as a major meeting point for researchers and practitioners in the areas of biological and
artificial cognitive systems, encouraging debates across disciplines so as to enrich researchers with
complementary perspectives from the diverse scientific fields:

NC 2010 presented realistic neural network models and applications. In particular, the symposium fo-
cussed on pattern onset learning, structural analyses on Spike-Timing-Dependent Plasticity (STDP)
and computational implementations of the Continuum Neural Field Theory.

BIS 2010 was mainly devoted to neuromorphic systems and neurophysiologically inspired models.
The symposium explored biologically inspired architectures for simulation of object perception, de-
cision making, attention, language or emotions in autonomous agents.

CNS 2010 covered both computational models of the brain and brain-inspired algorithms and ar-
tifacts. This symposium presented a wide-ranging set of empirical and theoretical papers on key
topics in the field of cognitive neuroscience such as, perception, attention, memory or cognitive
impairment.

MoC 2010 shed light on both philosophical and neurological basis of consciousness. Machine Con-
sciousness focusses on both aspects by investigating how to build self-aware machines. The sympo-
sium focused on Machine Consciousness and presented papers such as a metric of visual qualia in ar-

vii



viii Preface

tificial cognitive architectures, and design and implementation principles for self-conscious robots
or machine free will.

BICS 2010 gathered cognitive systems engineers and brain scientists in sessions where cross-
domain ideas were fostered in the hope of getting new emerging insights on the nature, operation
and extractable capabilities of brains. This multiple perspective approach is necessary in complex
cognitive systems engineering because the progressively more accurate data about brains is produc-
ing a growing need of both a quantitative and theoretical understanding and an associated capacity to
manipulate this data and translate it into engineering applications rooted in sound theories.

The conference hosted both researchers that aim to build brain inspired systems with higher cog-
nitive competences, and as well as life scientists who use and develop mathematical and engineering
approaches for a better understanding of complex biological systems like the brain. All them trying to
meet at the point of rigorous theorising necessary both to understand biology and support engineering.

The four symposia and this resulting book—a collection of selected and extended papers—is an
attempt to provide a broader perspective on these issues which are at the core of XXI century science:
the discovery of the organisational principles governing the neural dynamics that mediate in cognition
and the potential application of these principles into technical systems.

Ricardo Sanz
Carlos Hernández

Jaime Gómez-Ramirez

Madrid, Spain

Autonomous Systems Laboratory
www.aslab.org

http://www.aslab.org
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Chapter 1
Introduction

From Brains to the Machines of the Future

Ricardo Sanz, Carlos Hernández, and Jaime Gómez-Ramirez

1.1 Introduction

Real-world, optimally performant, mission-flexible robots in open-ended environments have been pre-
dicted to arrive on a short time by many technologists. Indeed, they have been arriving in 25 years at
least during the last 30 years [11].

This is a similar scenario to what has been happening with controlled nuclear fusion. Like fusion
reactors, the promised robots are not yet here. The machines of the future are still inside the movies.

Commercial robots—the robots that people will pay-for today—are still only able to operate in
controlled or semi-controlled environments doing quite simple tasks: welding car parts in factories or
cleaning bathroom floors. The complexities of dwelling in the real world, performing heterogeneous
tasks in open-ended, dynamic environments, have proven too difficult for the control technologies
available these days.

However, the minute animals in our environment are perfectly able to manage in these conditions.
They prove that the problems of real-world activity can be solved in economic ways.

The bio-inspired systems research programme is guided by the idea that the solution can be found in
their senses, legs or brains. It should be possible to leverage the technologies produced by Darwinian
evolution to improve the behavior of our machines.

1.2 Going From Brains to Machines

The behavior of a machine is determined by the interaction between its internal dynamics and the
environment it is coupled to. The design process of machines starts in the identification of the desired
environmental changes—e.g. moving water from here to there—and goes into the design of a structure
for the machine that will bring forth such an effect by the emerging machine-environment interaction
dynamics.

When the desired behavior is complex the design of the machine structure is divided into two parts:
a physical subsystem capable of producing the environment changes and an informational subsystem

R. Sanz (�)
Autonomous Systems Laboratory, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
e-mail: ricardo.sanz@upm.es

C. Hernández et al. (eds.), From Brains to Systems, Advances in Experimental Medicine and Biology 718,
DOI 10.1007/978-1-4614-0164-3_1, © Springer Science+Business Media, LLC 2011
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2 R. Sanz et al.

Fig. 1.1 Brain-inspired robotics serve both as an engineering method and as a experimental testbed for biological
theories. Theories of brain function can be tested in robot-based controllers implementing transferred theoretical models

that forces the machine behave in a certain way. The term controller is used for the informational
subsystem in charge of forcing behavior.

There are different strategies to build controllers. The conventional engineering strategy is to build
the controller in such a way that the machine will necessarily behave as desired. Let’s call this strategy
the design and build strategy for artificial minds. This is done using first principles and classic engi-
neering strategies for design [9]. However, when behavior or environment is way too complicated, the
design strategy does not cope well.

An alternative strategy is used when the task requirements and its constraints are so complex that
we cannot apply the design-build strategy. This strategy is based on reverse-engineering systems that
manifest the desired behaviour and copy their functional organisations. This second strategy—let’s
call it reverse-engineer and copy—is what is addressed in this volume, taking the brain as a source of
design inspiration.

The study of the brain as source of design knowledge for more effective machines offers the possi-
bility of addressing extremely complex, real-world tasks than only animals can perform so far.

Consider for example the apparently simple task of going around, picking some waste objects to
dispose of them into the recycling bin. This is a task that can be done by a toddler or a trained dog. This
is also easily done by a robot when the objects and the recycling bin fit certain predefined perceptual
categories and the environment conditions are kept in a narrow operative band (e.g. illumination is
broadly uniform and sufficient, or the ground is even enough and uncluttered).

However, when these operational conditions are not met, the designed-built robot, designed de-
parting from now no longer holding assumptions, will fail in performing the task. Do not try to find
articles about robots failing in the scholarly journals of the field. From time to time they appear in
funny videos in YouTube but nobody is willing to publish about failures—neither authors nor editors.
But failures are there: robots are not functionally robust enough except in performing simple tasks.
There is a strong need of improving mission-level robustness if the robots are going to be able to
provide their services in open-ended conditions.

It is in this context when we revert to the second strategy: copying brains. Bioinspired cognitive
architectures offer the promise of solving this kind of problems because the original architectures—
those of brains—are already solving them. There are plenty of threads in this research strategy. Some
of them are focused in physical competences of agents but most of them are related to mental com-
petences. Current trends tend to depart from the exploration of the abstractions about the mind and
intelligence (as embraced by AI of the sixties), turning to the insights gained exploring the brain [14].

Some will argue that by focusing in the brain we are losing the necessary holistic picture of bio-
logical agents. Beyond discussions about embodiment and disembodiment [1, 6] there is a clear need
of focusing on the cognitive organisation of the agent (that obviously encompasses the body [12]).
While the body is enormously relevant in cognitive processes [2, 10], the role of the brain in higher
level cognition is indubitable. The flow from brain knowledge to robotics is a potential source of tech-
nological assets. Also, while brain-inspired robotics is a very promising engineering method it is also
well settled as an experimental testbed for biological theories (see Fig. 1.1).
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Fig. 1.2 Brain-inspired robotics will be a technology sensu stricto when biological implementation details are ab-
stracted out and only systemic aspects prevail. This implies rendering the theories in cognitive neuroscience in a form
that is devoid of biological ties (the abstract Theory level shown in the figure above)

Building robot controllers by implementing theories about the brain will serve two basic purposes:
(i) controlling the robots and (ii) exploring the implications of the theories and, in a sense, validating
them in their ecological contexts [4].

However, systematic cognitive systems engineering requires solid theories and not just a collection
of inexplicable designs. It is necessary to transition from a catalog of ad-hoc cognitive mechanisms
to a rigorous cognitive science; this science may later be applied in the requirements-driven, design
process necessary for attaining pre-specified performance levels (see Fig. 1.2).

In bioinspired cognitive systems’ engineering it is necessary to extract basic design principles
[7, 8]. It is not enough to copy the organisations of animals’ brains or bodies [13, 17]. This is the
fundamental methodological doctrine behind the several works included in this book: all they try to
go beyond the shallow analysis of biological structures, trying to offer more profound, rigorous visions
on cognitive systems operation.

1.3 Book Contents

The book contains eighteen chapters that cover the whole spectrum of the conference. From models of
biological aspects at molecular levels to philosophical considerations about the most abstract aspects
of minds.

Coath et al.—Emergent Feature Sensitivity in a Model of the Auditory Thalamocortical System—
investigate plasticity of the brain auditory system. They address the question of whether a recur-
rently connected thalamocortical model exhibiting spike time dependent plasticity can be tuned to
specific features of a stimulus. This is of relevance to the understanding of post-natal—and beyond—
construction of cortical and thalamic representations of the features of auditory stimulus that will
be available for the cortex-related auditory processing. This work is relevant for the understanding
of continuous, post-developmental plasticity that may be critical for robust autonomous systems in
changing environments.

Humble et al.—STDP Pattern Onset Learning Depends on Background Activity—study to what
extent the well-known spike-timing dependent plasticity [5] depends on background activity leading
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even to instabilities. From their results the authors present preliminary insights into the neuron’s en-
coding of temporal patterns of coincidence of spikes and how the temporal precision of the onset
response depends on the background activity.

Basalyga et al.—Emergence of Small-World Structure in Networks of Spiking Neurons Through
STDP Plasticity—investigate how a neural network structure changes under synaptic plasticity. They
use complex networks of conductance-based, single-compartment integrate-and-fire excitatory and in-
hibitory neurons showing that under certain conditions, a nontrivial small-world1 structure can emerge
from a random initial network by learning.

Lefort et al.—Coupling BCM and Neural Fields for the Emergence of Self-organization Consen-
sus—focus on the integration of multimodal perception. They propose a cortex-inspired models for
multi-modality association. The model integrates modality maps using an associative map to raise a
consistent multimodal perception of the environment. They couple the BCM learning rule and neural
maps to obtain a decentralized and unsupervised self-organization.

Bhattacharya et al.—Alpha and Theta Rhythm Abnormality in Alzheimer’s Disease: A Study Us-
ing a Computational Model—address theoretical model construction towards solving clinical issues
of disease. Their models—of thalamocortical circuitry which exhibits oscillation within the theta and
the alpha bands—are aimed at gaining a better understanding of the neuronal mechanisms underlying
EEG band power changes. Their work shows how the change in model oscillatory behaviour is related
to changes in the connectivity parameters in the thalamocortical as well as sensory input pathways.
This understanding of the mechanics under the disease symptomatology may in the future provide
useful biomarkers towards early detection of the Alzheimer’s disease and for neuropharmaceutical
investigations.

Raiko and Valpola—Oscillatory Neural Network for Image Segmentation with Biased Compe-
tition for Attention—study the emergent properties of a cortex-inspired artificial neural network for
image segmentation. They combine segmentation by oscillations and biased competition for percep-
tual processing. They show encouraging results of experiments using artificial image data.

Johnsson and Gil—Internal Simulation of Perceptions and Actions—address the architectural as-
pects of neural network architectures based on associative self-organising maps to be able to internally
simulate perceptions and actions. They present several topologies—mostly recurrently connected—as
e.g. a bimodal perceptual architecture and action neural networks adapted by the delta rule. They show
simulation tests that show encouraging experimental results.

Woodman et al.—Building Neurocognitive Networks with a Distributed Functional Architec-
ture—suggest that the very possibility of successful modeling human behavior with reduced-
dimensionality models is a key point in understanding the implementation of cognitive processes
in general. They suggest that this is due to a separation in the time scales of the dynamics guiding
neural processes and the overall behavioral expression, offering a distributed model based on struc-
tured flows on manifolds to understand the organization of this class of behavioral dynamics. They
demonstrate this model in a functional architecture of handwriting showing hierarchical sequencing
of behavioral processes.

Schierwagen—Reverse Engineering for Biologically Inspired Cognitive Architectures: A Critical
Analysis—analyses methodological and theoretical issues in the development of biologically inspired
cognitive systems. He is concerned about the very possibility of reverse-engineering brains by con-
ventional decompositional analysis. Schierwagen concludes that this approach is a no go, discussing
the implications for investigations of organisms and behavior as sources of engineering knowledge.

Quinton et al.—Competition in High Dimensional Spaces Using a Sparse Approximation of Neu-
ral Fields—address the computational tractability of implementations of the continuum neural field

1A small-world network is a type of mathematical graph in which most nodes are not neighbors of one another, but
most nodes can be reached from every other by a small number of hops or steps.
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theory when an adaptive resolution or an arbitrary number of input dimensions is required. They pro-
pose a more economic alternative to self-organizing maps using a sparse implementation based on
Gaussian mixture models. They test the proposed algorithm in a reactive color tracking application,
using spatially distributed color features.

Aleksander and Gamez—Informational Theories of Consciousness: A Review and Extension—
analyse recent theories that establish a systematic link between conscious experience and the flow of
information—differentiation and integration—in certain areas of the brain. They analyse measures of
information integration [15, 16] and some related algorithms for providing quantitative measures of
information integration or causal density; hopefully to be used to make predictions about conscious-
ness. They analyse the computational complexity of these algorithms, which limit their application
to just small datasets—networks of around a dozen neurons—implementing one of the better known
algorithms in the SpikeStream neural simulator to carry out some experimental comparisons.

Gómez and Sanz—Hippocampal Categories: A Mathematical Foundation for Navigation and
Memory—address the theoretical tools necessary for capturing the theories of cognition that span
from neurons to psychological aspects. The mathematical theory of categories is proposed as a valid
foundational framework for theoretical modeling in brain sciences, and demonstrated presenting a
category-based formal model of grid cells and place cells in hippocampus.

Dura-Bernal et al.—The Role of Feedback in a Hierarchical Model of Object Perception—address
the question of robust object recognition—including occluded and illusory images, or position and
size invariances. They propose a model derived from the HMAX model showing how this feedforward
system can include feedback, by means of an architecture which reconciles biased competition and
predictive coding approaches. This work provides a biologically plausible model of the interaction
between top-down global feedback and bottom-up local evidence in the context of hierarchical object
perception.

Manzotti—Machine Free Will: Is Free Will a Necessary Ingredient of Machine Consciousness?—
addresses the elusive concept of free will in a mechanistic context. Manzotti analyses whether freedom
and consciousness are independent aspects of the human mind or by-product of the same underlying
structure; this analysis leads to the author outlining a proposal for an architecture sustaining machine
free will.

Jändel—Natural Evolution of Neural Support Vector Machines—describe two different neural im-
plementations of support vector machines for one-shot trainable pattern recognition. One is based on
oscillating associative memory—inspired in the olfactory system—and the second is founded on com-
petitive queuing memory—originally employed for generating motor action sequences in the brain.
For both support vector machine models they show that there is a plausible evolutionary path showing
that they can apparently emerge by natural processes.

Chella et al.—Self-Conscious Robotic System Design Process—from Analysis to Implementa-
tion—address some of the engineering issues concerning the development of robots endowed with
self-conscious capabilities. They analyse the whole engineering lifecycle (from analysis to imple-
mentation) focusing on aspects that are specific to the development of self-conscious robotic systems.
They propose a new design process—PASSIC—offering custom software engineering techniques for
realizing the complex sub-systems needed. This work binds the studies of consciousness with the
necessary engineering methods to apply them.

Arrabales et al.—Simulating Visual Qualia in the CERA-CRANIUM Cognitive Architecture—
touch upon the elusive problem of hard consciousness in robots. They attack qualia by a comple-
mentary study building “artificial visual qualia” using their cognitive architecture CERA-CRANIUM
based on Baars [3] global workspace theory. They study artificial qualia as simulated, synthetic visual
experience. The inspection of the dynamics and transient inner states of the cognitive artificial system
let them discuss the possible existence of similar mechanisms in human brains.

Thomsen—The Ouroboros Model, Selected Facets—describes some fundamental aspects of the
Ouroboros cognitive architecture: self-referential recursive processes, schema-based memory organi-
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sation, feature-driven expectations, etc. Thomsen shows how the Ouroboros Model can address bio-
logical cognitive system aspects like attention, emotion, priming, masking, learning, sleep and con-
sciousness.

1.4 Value and Perspectives

Science moves in little steps, but also makes its progress with revolutionary discoveries and concepts
that sweep away whole and entire edifices of thinking and replace them with new theories that ex-
plain more with less. However, there is a constant in this march, the strive for mathematisation and
unification.

The extent to which reverse-engineering of brains will help with technological advance in the engi-
neering of more robust autonomous systems is yet to be clear. Nevertheless, the different approaches
offered in this book show a steady progress toward more rigorous methods of analysis and synthesis.
This rigour implies that they may eventually converge into a single, unified theory of cognition: the
very holy grail of cognitive science and engineering.
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Chapter 2
Emergent Feature Sensitivity in a Model of the Auditory
Thalamocortical System

Martin Coath, Robert Mill, Susan L. Denham, and Thomas Wennekers

Abstract If, as is widely believed, perception is based upon the responses of neurons that are tuned to
stimulus features, then precisely what features are encoded and how do neurons in the system come to
be sensitive to those features? Here we show differential responses to ripple stimuli can arise through
exposure to formative stimuli in a recurrently connected model of the thalamocortical system which
exhibits delays, lateral and recurrent connections, and learning in the form of spike timing dependent
plasticity.

2.1 Introduction

Since Hubel and Wiesel [11] showed that, for neurons in visual cortex there were ‘preferred stimuli’
which evoked a more vigorous response than all other stimuli, it has become commonplace to think
of neurons, or clusters of neurons, as having stimulus preferences—or alternatively as responding to
‘features’ of the stimulus.

Although it is widely believed that auditory perception is based on the responses of neurons that
are tuned to features of the stimulus it is not clear what these features are or how they might come in to
existence. There is, however, evidence that cortical responses develop to reflect the nature of stimuli in
the early post-natal period [12, 24, 25] and that this plasticity persists beyond early development [20].
In addition it has been shown that excitatory corticofugal projections to the thalamus are likely to be
crucial in thalamic plasticity and hence in the representation of the stimulus that is available to the
cortex [7].

The work presented here is motivated by the desire to investigate whether a recurrently connected
thalamocortical model exhibiting spike time dependent plasticity (STDP) can be sensitized to specific
features of a stimulus by exposure. Modelling studies have suggested [4, 5] that the spectro-temporal
patterns found in a limited number of stimuli, which reflect some putative early auditory environment,
may bootstrap the formation of neural responses and that unsupervised, correlation based learning
leads to a range of responses with features similar to those reported from measurements in vivo. How-
ever in this previously reported work the model of STDP adopted, mostly for reasons of computational
efficiency, was based on average activity over a period of time rather than the times of the spikes them-
selves. In addition this model also led to some synaptic weights increasing without limit and hence an
arbitrary cut-off in the time used for training.

Here we employ a model of plasticity that depends on times of pre-synaptic spikes and a vari-
able representing the post-synaptic activity [2] and avoids the problem of unlimited weights by using
synapses that are bi-stable, that is, over time the weights of all synapses tend to one or zero. We
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Fig. 2.1 Each vertical
sub-unit of the network
consists of eight neurons.
The sub-cortical section
receives input from one
stimulus channel
representing a position on
the tonotopic axis. Each
thalamic (MGB) cell is
connected to a number of
cortical cells representing
layer IV, the principal
receiving layer. Layer VI

cells recurrently connect
the cortex to the thalamus
via NMDA synapses which
exhibit STDP and thus are
the loci of the
correlation-based learning
in the network

show that a model of auditory cortex incorporating lateral spread of excitation with associated de-
lays, recurrent connections between layers, and exhibiting STDP (learning) adapts during exposure to
training patterns (stimuli) in a way that is determined partly by the stimuli themselves, and the result-
ing network exhibits ‘feature preferences’ that could support the representation of the input in a high
dimensional feature space.

2.2 Methods

2.2.1 The Network

2.2.1.1 Network Architecture

The model auditory cortex consists of five hundred repeating units each consisting of eight neurons
arranged in layers, as illustrated in Fig. 2.1. The lower, sub-cortical, section represents the junction of
the inferior-colliculus (IC) with the medial geniculate body of the thalamus (MGB). The upper section
represents a two-layer cortical structure consisting of a receiving layer (layer IV [22] marked simply
as P4 in Fig. 2.1) and a second layer (marked as P6 in the figure) providing a recurrent excitatory
connection to the thalamus [10], and recurrent inhibitory connection to the thalamus via the thalamic
reticular nucleus (RTN) [9, 10]. Inhibitory inputs to the thalamus also come from the IC, in this case
via a GABA-type interneuron, although there is evidence for direct connections from GABAergic cells
in IC [14, 21].

The recurrent excitatory connections from P6 to MGB are mediated by NMDA type synapses that
are the locui of the STDP (see Sect. 2.2.2). This approach reflects the belief that the principle role
of such corticofugal connections is to modulate thalamocortical transmission and that “corticofugal
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modulation is an important mechanism for learning induced or experience-dependent auditory plas-
ticity” [17, 26]. Although it is clear that some of the changes associated with this plasticity must be
located in the cortex, there is recent evidence that corticothalamic synapses are regulated by cortical
activity during the early developmental period [23].

2.2.1.2 Neurons

The neurons used are linear integrate-and-fire units and use a stimulation paradigm not of current
injection, but of conductance injection which moves integrate-and-fire models closer to a situation that
cortical neurons would experience in vivo [6]. This modification also allows the use of conductance-
based synapses as described in Sect. 2.2.1.3 below.

The behaviour of the neurons can be described by:

τ
dV

dt
= −(V (t) − EL) −

∑

i

wi · (V (t) − ERi)

if V > VT then V → EL : Z(t) → 1 else Z(t) → 0 (2.1)

where τ is the membrane time constant, V the membrane potential, EL = 0 the leak reversal potential,
wi(t) is the weight of the ith synapse—this is a function of time because the value of w subsumes
not only the weight constant but also the time varying conductance of the synapse (see Sect. 2.2.1.3),
VT = 1 is the firing threshold potential, and Z(t) is the output of the neuron expressed as delta func-
tions at firing times. Values for τ were assigned identically and independently randomly from an equal
distribution (i.i.d.) in the range 9–11 ms. The value ERi is the reversal potential of the ith synapse.

In addition all neurons received i.i.d. current injections representing the sum of non-stimulus-
specific activity. This has the effect of bringing the neurons closer to threshold and the range of values
was chosen such that a low level (<1 Hz) of spontaneous action potentials was evoked.

2.2.1.3 Synapses

There are four types of synapse present in the model. Each exhibits a time dependent conductance
which is derived from the train of spikes (delta functions) originating in the pre-synaptic neuron.
The conductance is the output of a second-order low-pass filter and the resulting temporal response
function for a single spike is an alpha-function characterised by two parameters: the rise-time τr and
the decay-time τd .

The majority of excitatory synapses have fast rise and fall times and are designated AMPA types.
Other excitatory synapses in the thalamocortical projections have longer rise and fall times and are
designated as NMDA synapses. Inhibitory synapses are all of the same type which have very fast rise
times and intermediate fall time and these are designated as GABA. The time constants are given in
Table 2.1 [8].

Table 2.1 Time constants
used in synapse models τr τd

AMPA 0.90 ms 1.50 ms

GABA 0.01 ms 5.00 ms

NMDA 3.00 ms 40.00 ms
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2.2.1.4 Depressing Synapses

The axons that project from MGB to layer IV of the cortex have the same time constants as other AMPA

synapses but exhibit synaptic depression and are referred to as dAMPA. The dynamical properties of
cortical synapses can influence the temporal sensitivity of cortical circuitry. Here we use a model
of synaptic depression which is characterised by the variable representing the running fraction of
available neurotransmitter x(t) that recovers to unity with a time constant τA [19].

dx

dt
= 1 − x

τA

− x · Z(t) (2.2)

The time constant τA was adjusted so as to be consistant with paired pulse ratios reported in in vivo
studies of pyramidal neurons [1]. All simulations were run with τA = 30 ms.

2.2.1.5 Connections Between Columns

The excitatory afferents from the thalamus to each cell in the cortical receiving layer come from a
number of MGB cells as indicated in Fig. 2.1. These are selected based on connection probabilities
that vary with the distance between cells as shown in (2.3), i.e. falling as the inter-column distance
d increases. The maximum probability of a connection being made is at d = 0 and this value is
controlled by the variable C and the ‘width’ of the function is determined by s. All simulations were
run with C = 0.2, s = 20.

In a similar way the corticothalamic connections to each MGB cell also come from a number of P6

cells selected in a similar way. For these connections C = 0.1, s = 100. The probability of connection
is given by:

P = C · exp

(−0.5 · d2

s2

)
(2.3)

For each of the 500,000 possible connections in the cortico-thalamic and thalamocortical projections
a Boolean value was chosen with the probability of TRUE being P and a synapse created, or not,
accordingly.

These ‘fan out’ connections give the opportunity for cortical neurons to integrate information from
heterotopic areas of thalamus and also stand as surrogates for the cortico–cortical connections [18]
which have no explicit representation in this model. The cortico–thalamic connections are mediated
via NMDA type synapses which are the loci of the STDP and hence the correlation-based learning in
the network, see Sect. 2.2.2.

2.2.1.6 Delays

In order to investigate the role played by the temporal structure of the stimuli in the emergent stimulus
preferences of the network, delays were incorporated in to the network. Assumptions were made
about the dimensions of the cortical area represented by the model and the range of values for axonal
propagation rates. Using these two figures, distance dependent delays were introduced for fan-out
connections in the model based on the inter-column distance.

Under the simplifying assumption that the delay increases linearly with d we have assumed a max-
imum separation between neurons of 1 cm and values of axonal propagation rate from 0.5–10.0 ms−1.
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2.2.2 Synaptic Plasticity

Spike-timing-dependent plasticity (STDP) is the modification of synaptic weights based on the corre-
lation between pre- and post-synaptic firing times. Evidence for this has been gathered in vitro, and
is beginning to emerge in vivo [13], and it is believed to be a feature of synapses which have NMDA

receptors that regulate the genes required for long term maintenance of these changes [15]. In general,
if a pre-synaptic spike precedes a post-synaptic spike then the synapse is potentiated; if the timing of
the spikes is reversed then the synapse is depressed.

One problem with correlation-based learning is that the weight changes are unstable and additional
mechanisms have to be invoked to ensure that weights do not increase in an uncontrolled manner. Our
approach in earlier work was to start with very low weights and keep the training short [3]. In this way
we see how the pattern of weight changes establishes itself in the early stages of training. Another
possibility, the approach that is adopted here, is to implement a form of STDP in which the weights
are bi-stable [2].

The learning rule used in the results presented here is summarized in (2.4), (2.5), and (2.6). At
the arrival time of each pre-synaptic spike the synaptic efficacy X is modified based on the post-
synaptic neuron membrane potential V and the post-synaptic neuron internal state variable C. The
variable C is identified with the calcium concentration [16] and is determined by a leaky integration
of post-synaptic spiking activity with a relatively slow time constant τC:

dC(t)

dt
= − 1

τC

C(t) + JC

∑

i

δ(t − ti ) (2.4)

where JC is the contribution of a single post-synaptic spike. The synapse is potentiated by a small
amount a if V is above a pre-determined threshold θV and C is within set limits θ l

up and θh
up. Similarly

the synapse is de-potentiated by an amount b if V is less than or equal to θV and C is within a different
pair of bounds θ l

down and θh
down:

X → X + a if V (tpre) > θV and θ l
up < C(tpre) < θh

up

X → X − b if V (tpre) ≤ θV and θ l
down < C(tpre) < θh

down

(2.5)

If no modification is triggered by the conditions in (2.5) (including in the absence of pre-synaptic
spikes) X drifts towards one of two stable states depending on whether it is greater than a threshold
value θX:

dX

dt
= α if X > θX

dX

dt
= −β if X ≤ θX

(2.6)

where α and β are positive constants.

2.2.3 Training

Each of the stimuli used in these experiments consists of a pattern of current injection into the units
representing neurons of the inferior colliculus, these are marked IC in Fig. 2.1. Although, for sim-
plicity, these patterns of current injection are not derived from audio files via a cochlear model they
can be thought of as time varying patterns of activity across the tonotopic axis represented by the one
dimensional array of IC cells.
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Fig. 2.2 Example stimuli used in training the network. Each example, in common with all such stimuli used in the
experiments, have a 5 Hz amplitude modulation rate. (a) A stimulus with no FM component, and (b) a stimulus with a
slowly moving up FM component (determined by θd ). In the work reported here stimuli varied only in the value for θd

2.2.3.1 Parametric AM/FM Stimuli

The stimuli were all of the form given by (2.7) below:

z(t, c) = (cos(2πtθx) + 1)(cos(2π(cθc + tθd) + 1))

4
(2.7)

where z(t, c) is the value of the current injection at time t and in channel c.
The parameters θx , θc and θd can be adjusted to give sweeps or gratings that move in the tonotopic

axis with time, and also patches of stimulation that have a temporal amplitude modulation (AM) but
no frequency modulation (FM) component. Examples of such stimuli are shown below in Fig. 2.2.

The value of θx , the temporal modulation rate, was fixed at 5 for all experiments. This value was
chosen because of the inherent low-pass nature of the thalamocortical projections caused by the de-
pressing synapses, (see Fig. 2.1) hence stimuli with temporal modulation rates much greater than 5
would drive the cortical receiving layer only weakly. In addition rates of temporal modulation around
4–5 Hz are important for communication signals such as the syllable rate for human speech. The value
of θc, the spectral density, was fixed at 2.

For each experiment one value of θd was chosen as the training stimulus. The network was then
exposed to 50 epochs (each 2 seconds) of this stimulus with the learning rule turned on. Between
each of these learning phases the response of the network was recorded to 10 other stimuli. These
are referred to as test stimuli, with a range of values for θd both positive and negative. Each test and
training stimulus was separated from the previous one by ≈300 ms of random current injection at the
same mean level as the stimuli and the phase of the stimulus advanced by a random value from 0 to
2π to ensure that both the training and test stimuli were not presented stating at the same phase in
all cases, this process is summarised in Fig. 2.3. In the results section we consider networks trained
with the values for θd of −10, −5, 0, 5, 10. Fixing θd at integer multiples of θx produces stimuli
with similar temporal characteristics in that the maxima of the current injections occur in the same
channels with each presentation.

2.2.3.2 Random Chord Stimuli

We also consider results of training with stimuli that consist of injections of current in channels chosen
at random (P = 0.1) for short periods of time chosen from an equal distribution from 20–60 ms. These
noise-like ‘random chord’ stimuli are more suitable than random current injections representing white
noise which drive the cortical receiving layer only very weakly.


