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To Paul and Roberta





Foreword

It is honor and privilege to be asked to provide the foreword to Looking Back. As an
academic statistician, as a director of a research department at Educational Testing

Service (ETS), as a colleague, as a mentor, and as a consultant inside ETS as well as

to various external statistical and scientific agencies, Paul Holland throughout his

illustrious career has made significant contributions to theory and practice in the

fields of psychometrics, statistics, and social science research. On a more personal

note, I have been fortunate to have spent most of my career at ETS during a period

in which Paul was also employed there. Although I did not collaborate as directly

with Paul as did the authors of the various chapters of this book, it is not difficult

to discern Paul’s influence on my own professional career in terms of what I know

about statistics and psychometrics, the kind of activities I engaged in as a practicing

psychometrician, and the stewardship of testing programs I was required to provide

as an ETS technical leader. What is true for me is, I believe, true for many of the

statistics and psychometric staff of my vintage – at ETS as well as elsewhere.

I attended graduate school at the University of Arizona in the late 1970s and

early 1980s and, as part of my degree program, took an applied statistics course in

the sociology department. The course was in the area of analysis of contingency

tables using log-linear models. The primary text for the course was a book by

Stephen Fienberg (one of the contributors to this volume) called The Analysis of
Cross-Classified Data (2nd edition). But looming in the background as highly

recommended supplementary material was a more imposing tome, Discrete Multi-
variate Analysis: Theory and Practice by Yvonne Bishop, Stephen Fienberg, and

one Paul W. Holland. Throughout the course, we were assigned sections of this

tome as supplementary reading and, for someone like me with relatively modest

mathematical training, I found the material enlightening, though challenging and

intimidating as well. As a result of this experience, I was very familiar with the

name Paul Holland and had learned at least some of what I know about log-linear

models and their applications from him well before I ever set foot on the ETS

campus. I viewed Paul as a sort of rock star in the area of discrete data analysis,
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and one of the things that made it exciting and desirable to come to ETS after

I completed graduate school was the opportunity to work for an organization that

employed the great man himself.

I joined ETS in 1984, as what we called then an associate measurement statisti-

cian. I was responsible for overseeing statistical and psychometric support activities

for several ongoing ETS testing programs. While I had some measurement and

applied statistics background, like many freshly minted graduate students, I had

very limited experience with score equating – the statistical process testing com-

panies use to ensure that scores from different forms of the same test (e.g., different

administrations of the SAT) are expressed on a common scale. Then, as well as

today, equating tests constituted a large portion of the activities of ETS psychome-

tricians. So as part of my early on-the-job education, I tried to learn as much as

I could, and as quickly as I could, about equating. Of course, I read various ETS

memos and orientation materials that were given to me as a new employee.

However, I also read what was then a relatively new book, Test Equating, edited
by Paul Holland and Don Rubin. In it was a chapter by Paul and Henry Braun titled

“Observed-Score Test Equating: A Mathematical Analysis of Some ETS Proce-

dures.” In that chapter, Paul and Henry laid out a formal statistical framework for

describing equating procedures in widespread use at ETS. This chapter helped me

greatly to organize and make sense of the various documents about equating that

I was reading and to better understand the nature of what I was seeking to

accomplish in my day-to-day work as an ETS measurement statistician. I am certain

that Paul and Henry’s chapter accelerated my development and made me a more

effective measurement professional than I otherwise would have been.

Of course, throughout the 1980s and early 1990s, like most of my ETS collea-

gues I had the pleasure to see Paul’s work on differential item functioning (DIF)

develop and contribute directly to a substantial research program and, more impor-

tantly, to improved statistical procedures for ensuring fairness. The resulting

methodologies and rules of thumb that Paul and his colleagues developed became

standard operating procedure at ETS and continue to this day. So, once again, my

understanding of statistical approaches to assessing fairness issues and the day-to-

day activities of testing professionals at ETS, and I would guess other companies as

well, were in no small part shaped by Paul’s contributions to psychometric theory

and practice.

Paul, much to our chagrin, left ETS in 1993, taking an academic position at the

University of California at Berkeley. Near the end of last century, Paul Ramsey and

Drew Gitomer, both ETS vice presidents at that time, initiated a concerted effort to

strengthen ETS’s statistical and psychometric foundation. Paul Ramsey asked

Steve Lazer and me to speak with colleagues and to prepare A and B lists of

statisticians/psychometricians we should try to hire. After a number of colleagues

were consulted, it was clear that at the top of everyone’s A list was Paul Holland.

Fortunately, Paul was ready to consider coming back to ETS, as he notes in

Returning to ETS From Berkeley in this volume, and Paul Ramsey and Drew

Gitomer were able to make that happen. The impact of Paul’s return to the ETS

was immediate and profound. He re-established his program of research on
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equating, presaged in the Braun and Holland chapter, which resulted in the

publication of the book The Kernel Method of Test Equating with Alina von Davier
and Dorothy Thayer. This work also led to the creation and deployment of software

for implementing the approach operationally.

Paul began attending National Assessment of Educational Progress technical

advisory committee meetings – contributing to discussions surrounding technical

matters associated with this important testing program. He produced several white

papers on issues associated with the impact on NAEP of the newly passed No Child

Left Behind Act, and, generally, through his wisdom and guidance, helped those of

us charged with directing NAEP psychometric activities better manage the NAEP

program through a period of rapid change. Through his activities he demonstrated

to the NAEP sponsors (the National Center for Education Statistics and the National

Assessment Governing Board) what we all knew from working with him over the

years – that he is not only a world-class researcher, but one who is willing to use

those gifts in tackling problems of real practical importance.

But the impact of Paul’s return on ETS went beyond his contributions to NAEP.

Drew Gitomer recounted to me how he had sent a company-wide announcement of

Paul’s return to ETS and was amazed at the sheer number of positive responses he

received from not just the technical areas but from all parts of ETS, indicating how

happy people were that he was returning and how they were looking forward to

working with him. The conference proceedings that are captured here in Looking
Back are a fitting recognition and celebration of Paul’s substantial impact on ETS

and the profession.

John Mazzeo

Vice President

Statistical Analysis &

Psychometric Research

Educational Testing Service
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Preface

In 2006, Paul W. Holland retired from Educational Testing Service (ETS) after a

career spanning five decades. In 2008, ETS sponsored a conference, Looking Back,
honoring Paul’s contributions to applied and theoretical psychometrics and statis-

tics. Looking Back attracted a large audience that came to pay homage to Paul and

to hear presentations by colleagues who worked with Paul in special ways over

those 40+ years. This book contains papers based on these presentations, as well as

vignettes provided by Paul before each section.

Shelby Haberman, the eminent statistician who is a long-time contemporary of

Paul’s, was attracted to ETS by Paul in 2002. Shelby is very conversant about the

history of statistics. In The Contributions of Paul Holland, Shelby provides a

history with commentary on some of Paul’s major contributions.

The first collection of papers appears under the heading Holland the Young
Scholar. Two well-known statisticians, who worked closely with Paul in the 1970s

when they all were young, contributed papers in this collection. Stephen Feinberg,

co-author with Paul and Yvonne Bishop of the classic Discrete Multivariate
Analysis: Theory and Practice, contributes Algebraic Statistics for p1 Random
Graph Models: Markov Bases and Their Uses with Sonja Petrović and Alessandro

Rinaldo. In Mr. Holland’s Networks, Stanley Wasserman, who was a doctoral

student when Paul taught at Harvard, reports on work in social network theory

that has evolved since Paul’s seminal work with Sam Leinhardt.

As the title Holland Shaping ETS states for the next collection of papers, Paul

applied statistical thinking to a broad range of ETS activities in test development,

statistical analysis, test security, and operations. Donald Rubin attracted Paul to ETS

in 1975 and co-edited with Paul the book Test Equating, which was one of first to

bring professional attention to the critical statistical practice of score equating.

Donald’s Bayesian Analysis of a Two-Group Randomized Encouragement Design
addresses a practical problem in causal inference, an area to which he and Paul made

significant contributions. The development and implementation of procedures for

differential item functioning (DIF) was one major application. Michael Zieky, who

was at ETS when DIF was introduced, provides a valuable history of DIF in the 1980s

in The Origins of Procedures for Using Differential Item Functioning Statistics at
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Educational Testing Service. Brian Junker, who was a summer intern under Paul in

the 1980s, contributes The Role of Nonparametric Analysis in Assessment Modeling:
Then and Now. Paul Rosenbaum, an expert on statistical treatment of data from

observational designs, contributes What Aspects of the Design of an Observational
Study Affect Its Sensitivity to Bias From Covariates That Were not Observed?

Holland left ETS in the early 1990s to become a professor. The next section,

Holland the Berkeley Professor, contains papers from two of his former students.

Derek Briggs addresses a very current topic in Cause or Effect? Validating the
Use of Tests for High-Stakes Inferences in Education. Ben Hansen assesses coach-

ing effects in Propensity Score Matching to Extract Latent Experiments From
Nonexperimental Data: A Case Study.

While Paul was at Berkeley, the productive group he left behind at ETS missed

his guidance and leadership. Paul returned to ETS in 2000 and began to mentor a

new set of young ETS professionals. Three of those lucky individuals contributed to

Holland Rebuilding ETS. Tim Moses worked closely with Paul on several topics,

including, as the title of his paper states, Log-Linear Models as Smooth Operators:
Holland’s Statistical Applications and Their Practical Uses. Sandip Sinharay, who
worked with Paul on several topics, contributed Chain Equipercentile Equating and
Frequency Estimation Equipercentile Equating: Comparisons Based on Real and
Simulated Data. Alina von Davier discusses her work with Paul on his kernel-

equating model and its extensions in An Observed-Score Equating Framework.
When Paul returned to ETS, he asked two ETS employees whom he had

mentored to join his group. Henry Braun currently of Boston College and a former

ETS Vice-President for Research and Neil Dorans of ETS made contributions to

Holland: From Mentor to Colleague. Henry, an expert in the application of

statistics to issues in educational policy, contributes An Exploratory Analysis of
Charter Schools. Neil, who focuses on fairness assessment topics including DIF

and equating, builds upon Paul’s historical review of testing inHolland’s Advice for
the Fourth Generation of Test Theory: Blood Tests Can Be Contests.

The papers in this book attest to how Paul’s pioneering ideas influenced and

continue to influence several fields such as social networks, causal inference, item

response theory, equating, and DIF.

Through Looking Back and this book, we thank Paul for service to our field and

years of generous and wise advice to us and to his many students and colleagues.

Anyone who has met and talked with Paul will share our gratitude to a man who

inspired with his intelligence and encouraged with his enthusiasm for life.

Our deepest thanks go to all contributors for their generosity, help, and patience

and also to the participants in Looking Back. Several ETS staff provided essential

support. Liz Brophy and Jazzme Blackwell organized the conference, which was

attended by 100 scholars. The book benefited from the editorial acumen of Kim

Fryer. The conference and book were supported by a research allocation from the

ETS Research & Development division led by Senior Vice President Ida Lawrence.

Princeton, NJ Neil J. Dorans

Sandip Sinharay
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Part I

Paul Holland’s Contributions



Chapter 1

The Contributions of Paul Holland

Shelby J. Haberman

1.1 Introduction

Paul Holland’s work over his long and varied career has shown both breadth and

depth. He has made major contributions to the analysis of discrete data, to the study

of social networks, to equating, to differential item functioning (DIF), to item

response theory (IRT), and to causal inference. He has worked on a wide variety

of applied problems ranging from scanner accuracy to test security to summarization

of data on candidates. Any review of his contributions will necessarily provide a

rather limited indication of his achievements. Nonetheless, several instructive

themes can be found in his work. One is the long-standing connection with the

analysis of discrete data. A second is a longstanding connection to the social and

behavioral sciences. A third is an emphasis on the observed over the unobserved in

the analysis of data. These themes interact and have been demonstrated in Paul’s

work at least since graduate school. Paul’s doctoral dissertation concerned a new

minimum chi-square test. His involvement in research in the social sciences reflects

both his family background and his early association with his dissertation advisor

Patrick Suppes (Robinson, 2005). The emphasis on the observed can be seen in his

emphasis on observed-score equating and log-linear models rather than on latent-

structure models, although Paul has made major contributions to IRT.

This overview of Paul’s work is necessarily selective and biased. For example,

Paul is a coauthor of a highly influential work on discrete multivariate analysis

(Bishop, Fienberg, & Holland, 1975); however, I will concentrate here on

contributions that are more specifically connected to Paul himself. In addition,

due to my own limited knowledge, causal inference will be less examined than is

appropriate given its significance in Paul’s work. This review will emphasize DIF,

S.J. Haberman (*)

Educational Testing Service, Rosedale Road, Princeton, NJ 08541, USA

e-mail: shaberman@ets.org

N.J. Dorans and S. Sinharay (eds.), Looking Back: Proceedings of a Conference
in Honor of Paul W. Holland, Lecture Notes in Statistics 202,

DOI 10.1007/978-1-4419-9389-2_1, # Springer Science+Business Media, LLC 2011
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IRT, social networks, and kernel equating. Briefer consideration will be given to

other contributions to equating, causal inference, and the analysis of empirical data.

1.2 Differential Item Functioning

A good example of the application of methodology for analysis of contingency tables

to educational measurement arises in testing for DIF by use of the Mantel-Haenszel

(MH) statistic (Mantel & Haenszel, 1959). In Bishop et al. (1975, pp. 147–148), this

statistic is described in terms of a test of conditional independence of two dichoto-

mous random variables given a polytomous variable. No connection to psychomet-

rics is contemplated. The data are independent and identically distributed triples

ðAh;Bh;ChÞ, 1 � h � N, withAh andBh equal 0 or 1 andCh an integer from0 to k � 1

for some integer k � 2. The probability pabc that Ah ¼ a, Bh ¼ b, and Ch ¼ c,
0 � a � 1, 0 � b � 1, and 0 � c � k � 1, is assumed to be positive. The null

hypothesis under study is that Ah and Bh are conditionally independent given Ch.

To test this hypothesis, one considers the counts nabc of h such that Ah ¼ a,
Bh ¼ b, and Ch ¼ c. Let naþc be the number of h with Ah ¼ a and Ch ¼ c, let
nþbc be the number of h with Bh ¼ b and Ch ¼ c, and let nþþc be the number of

h with Ch ¼ c. Under the null hypothesis, the expected value mabc ¼ Npabc of

nabc has maximum-likelihood estimate m̂abc ¼ naþcnþbc=nþþc, at least if nþþc is

positive. Mantel and Haenszel considered the marginal total n11þ, the number of

h with Ah ¼ Bh ¼ 1. Under the null hypothesis, the estimated expected value of

n11þ is m̂11þ , the sum of the expected values m̂11c for 1 � c � k. If nþþc > 1

for each c, then conditional on the observed values of naþc and nþbc, the

difference n11þ � m̂11þ has variance

V ¼
Xk

c¼1

m̂11cn2þcnþ2c=½nþþcðnþþc � 1Þ�

Mantel and Haenszel (1959) suggested use of Z ¼ ðn11þ � m̂11þÞ=V1=2 to test

the hypothesis of conditional independence. If the null hypothesis holds, then

Z converges in distribution to a standard normal random variable.

As noted in Bishop et al. (1975), the MH statistic has an important optimality

property. Consider the log-linear model of no three-factor interaction in which it is

assumed that each log cross-product ratio

log
m11cm22c

m21cm12c

� �
¼ logm11c � logm21c � logm12c þ logm22c

has a common value t. If t ¼ 0, then Ah and Bh are conditionally independent given

Ch. The uniformly most powerful unbiased test of the null hypothesis of conditional

independence of Ah and Bh given Ch against the alternative hypothesis of no three-

factor interaction depends on the MH statistic Z (Birch, 1964).

4 S.J. Haberman



In a typical application to DIF, Ah ¼ 1 if h is an examinee with a correct response

to an item, Ah ¼ 0 otherwise, Bh ¼ 1 if h belongs to some group of interest, say

female examinees, Bh ¼ 0 if h belongs to a reference group, say male examinees,

and Ch is a polytomous variable typically determined by the total score of h on the

examination. The null hypothesis is that the relationship of the item response Ah to

the score variableCh is unaffected by the groupBh (Holland&Thayer, 1988), so that

Ah and Bh are conditionally independent given Ch. This application of this familiar

statistic had a remarkable effect on an entire field, as is evident from an edited

volume on DIF that soon appeared (Holland & Wainer, 1993).

An interesting aspect of the development of DIF is the decision to use the

MH estimate of the common cross-product ratio q ¼ expðtÞ (Mantel & Haenszel,

1959). Let

dc ¼ ðn11c þ n22cÞ=nþþc;

ec ¼ ðn12c þ n21cÞ=nþþc;

fc ¼ n11cn22c=nþþc;

gc ¼ n12cn21c=nþþc;

fþ ¼
Xk

c¼1

fc;

gþ ¼
Xk

c¼1

gc;

and

vc ¼ 1

n11c
þ 1

n12c
þ 1

n21c
þ 1

n22c
:

Then q has MH estimate O ¼ fþ=gþ and t has estimate T ¼ logO. The consider-
ations that entered into this decision reflected the computational environment in

existence at the time. The MH estimate is easily computed, and has a normal

approximation. Let

s2ðTÞ ¼ 1

2

Xk

c¼1

ðdc=fþ þ ec=gþÞðfc=fþ þ gc=gþÞ

and

sðOÞ ¼ OsðTÞ:

1 The Contributions of Paul Holland 5



As the sample size N becomes large, ðQ� qÞ=sðOÞ and ðT � tÞ=sðTÞ both

converge in distribution to a standard normal random variable (Phillips & Holland,

1987), so that approximate confidence intervals are readily derived. A variety of

alternatives to sðTÞ and sðOÞ are also available.

Nonetheless, alternatives to the MH estimate have been available since before

the MH statistic was ever introduced (Woolf, 1955). The estimate

OW ¼ expðTWÞ

can be used with

TW ¼
Pk

c¼1 t̂c=vcPk
c¼1 1=vc

and

t̂c ¼ logðn11cÞ � logðn21cÞ � logðn12cÞ þ logðn22cÞ:

As the sample size N becomes large, ðOW � qÞ=sðOWÞ and ðTW � tÞ=sðTWÞ
converge in distribution to a standard normal random variable, where

s2ðTWÞ ¼ 1
Pk

c¼1 v�1
c

and

sðOWÞ ¼ OsðTWÞ:

To improve the accuracy of large-sample approximations and to avoid problems

that arise if some count nabc is 0, it is helpful to replace nabc by nabc þ 0:5 in the

formulas for TW and sðTWÞ (Haldane, 1955). Unless t is 0, so that conditional

independence holds, the probability is 1 that sðTWÞ< sðTÞ for sufficiently large N.
If t is 0, then sðOÞ=sðOWÞ converges to 1 with probability 1. It is not clear that the

MH estimate O should be used rather than the Woolf estimate OW , although study

of O for use in DIF did yield results that suggested that sO and sW should be rather

similar for the small values of t of primary interest.

The common cross-product ratio q can also be obtained by maximum likelihood,

but iterative computation is needed. Iterative proportional fitting was well known at

the time, as evident in Paul’s publications (Bishop et al., 1975, chap. 3), and Newton-

Raphson algorithms were also available (Haberman, 1978, chap. 3); however,

iterative computation was unattractive at the time. Similarly, use of conditional

maximum likelihood to alleviate problems of small frequency counts was not

practical given computational constraints (Birch, 1964). The question now is

whether improvements in the computational environment warrant revisiting the

methodology for DIF.
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1.3 Item Response Theory

A somewhat more complex application of contingency tables has been to IRT. Here

the basic observation is that in a right-scored test with k � 2 items and n � 1

examinees, the item responses Xij of examinee i, 1 � i � n, on item j, 1 � j � k,
can be used to develop a 2k contingency table. Let Xij be 1 if the response is correct,

and let Xij be 0 otherwise. Let Xi be the vector with coordinates Xij, 1 � j � k, and
assume that the Xi are independent and identically distributed. For simplicity,

assume that each response Xij is 1 with positive probability and is 0 with positive

probability. For each k-dimensional vector x with coordinates xj equal to 0 or 1, let

pðxÞ be the probability that Xi ¼ x, and let f ðxÞ be the number of examinees i with
Xi ¼ x, so that f ðxÞ has expected value mðxÞ ¼ NpðxÞ. Then the array of f ðxÞ forms

a 2k contingency table with a multinomial distribution. To be sure, the number of

cells in the table will be extremely large for an assessment with 100 items; however,

techniques associated with the analysis of contingency tables remain applicable

when IRT is introduced.

In typical item-response models, a d-dimensional latent random vector yi is
assumed to exist, and it is assumed that the Xij, 1 � j � k, are conditionally

independent given yi. The conditional probability that Xij ¼ 1 given yi ¼ o is the

item characteristic curve PjðoÞ. Item response models restrict the distribution of yi
and the item characteristic curves PjðoÞ in a variety of ways. In typical cases, one

has the monotonicity condition that PjðoÞ � Pjðo0Þ if each coordinate of o is at

least as large as the corresponding coordinate of o0. In such case, one may exploit

the mathematical concept of total positivity (Karlin, 1968).

In an early example of this approach (Cressie & Holland, 1983), the one-

dimensional Rasch model is considered. Here the dimension d is 1 and

PjðoÞ ¼ expðo� bjÞ=½1þ expðo� bjÞ�

for real bj. The Rasch model implies that the log-linear model

log pðxÞ ¼ cm �
Xk

j¼1

xjbj;
Xk

j¼1

xj ¼ m;

holds (Tjur, 1982). On the other hand, the log-linear model does not imply the

Rasch model. Indeed, the Rasch model holds if, and only if, a positive random

variable T exists such that expðcm � c0Þ is the mth moment of T for 1 � m � k
(Cressie & Holland, 1983). Under the Rasch model, expðcm � c0Þ is the mth
moment of a random variable with density uvðoÞ relative to the ability distribution,
where u is a positive constant and

1=vðoÞ ¼
Yk

j¼1

½1þ expðo� bjÞ�
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for o real. The well-known result that k moments do not specify a distribution

implies that the ability distribution cannot be determined from the k items even if a

linear constraint is imposed on the item parameters bj in order to determine them.

In practice, the identification problem is much less significant if a parametric

model is employed for the distribution of yi. For example, if yi is assumed to

have a normal distribution with mean 0 and positive variance s2, then the item

parameters bj and the variance s2 can be estimated (Bock & Aitkin, 1981).

A variety of cases can also be considered in which yi is assumed to be polytomous

(Heinen, 1996).

Although initial results were obtained without explicit use of total positivity

(Holland, 1981), total positivity provides a number of generalizations (Holland &

Rosenbaum, 1986). A few simple illustrations of findings are instructive. Any pair

of item responses Xij and Xij0 , j 6¼ j0, must have a nonnegative correlation. If Ti is
the sum of the Xij00 for j

00 for 1 to k, then the conditional correlation of Xij and Xij0

given Ti � Xij � Xij0 must be nonnegative. One learns that negative point-biserial

correlations are fundamentally incompatible with item-response models, for Xij and

Ti � Xij must have a nonnegative correlation and Xij and Ti must have a positive

correlation.

Work on the Dutch identity (Holland, 1990) considered the relationship between

item-response models and log-linear models with only main effects and two-factor

interactions. A rather striking result is that the log-linear model holds if, for some

possible value x ofXi, the conditional distribution of yi givenXi ¼ x is multivariate

normal with positive covariance matrix and if the item logit function

log fPjðoÞ=½1� PjðoÞ�g is a linear function of o for each item j. This result

leads to an even more striking series of conjectures based on Bayes’ theorem and

on Taylor’s theorem. The suggestion is that, for an item-response model with a

large number of items, the item characteristic curves can only be estimated without

problems of parameter identification if each curve is determined by no more than

two parameters. This claim suggests difficulties can be anticipated with the three-

parameter logistic model. The influence of the Dutch identity in IRT has continued.

For example, when the Rasch model is applied and the yi have normal distributions,

then bounds can be obtained on the log cross-product ratios for responses Xij and Xij0

(Haberman, Holland, & Sinharay, 2008). Similar results can also be obtained with

the two-parameter logistic model.

1.4 Social Networks

The use of techniques associated with the analysis of contingency tables is also

quite evident in Paul’s joint work with Samuel Leinhardt on analysis of social

networks. From a statistical point of view, an inherent challenge in the study of

social networks is that observations are usually dependent in complex ways. The

techniques used often come from the analysis of contingency tables, but treatment
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of dependence complicates analysis. For a basic case to explore, consider nodes

(individuals) 1 to g, and let Xij describe the relationship of node i to node j, say
whether individual i regards individual j as a friend. The sociomatrix X is the g by

gmatrix with row i and column j equal to Xij. Various descriptive terms can be used

for relationships. The essential feature is that Xij is equal to 1 if i relates to j and Xij

is 0 otherwise. Relationships need not be reciprocal, so that Xji and Xij need not be

the same. The convention is adopted that Xii ¼ 0, so that nodes are not related to

themselves. Analysis of data can involve both descriptive statistics and probability

models. For instance, the sum Xiþ of the Xij, 1 � j � g, measures the tendency of

node i to relate to other nodes, the sum Xþj of the Xij, 1 � i � g, measures the

tendency of other nodes to relate to node j, the sum Xþþ of the Xij for 1 � i � g and

1 � j � q measures the overall level of relationship in the group, and the sumM ¼
Pg

i¼2

Pi�1
j¼1 XijXji measures the extent to which relationships are mutual (Holland

& Leinhardt, 1970). Far more complex analysis may be based on results for all

combinations of three nodes (triads) i, j, and k for 1 � i<j<k � g, and analysis can
consider changes in networks over time (Holland & Leinhardt, 1977). The descrip-

tive statistics Xþþ, Xiþ, Xþj, andM form the basis of the log-linear model in which,

for each x in the set G of possible sociomatrices for g nodes, the probability pðxÞ
that X ¼ x satisfies

log pðxÞ ¼ kþ rmþ yxþþ þ
Xg

i¼1

axiþ þ
Xg

j¼1

bjxþj; (1.1)

where xiþ is the sum of xij over j, xþj is the sum of xij over i, xþþ is the sum of xij
over i and j, and m is the sum of xijxij for 1 � i<j � g. The model parameters r, y,
ai, and bj determine the constant k due to the constraint that the sum of the pðxÞ, x in
G, must be 1. To identify model parameters, the constraints are imposed that the

sum of the ai is 0 and the sum of the bj is also 0 (Holland & Leinhardt, 1981a). The

model implies that the pairs ðXij;XjiÞ are independent for 1 � i<j � g, and each

pair ðXij;XjiÞ has common log cross-product ratio r. The conditional log odds

log ½PðXij ¼ 1jXji ¼ 0Þ=PðXij ¼ 0jXji ¼ 0Þ� ¼ yþ ai þ bj

then satisfies an additive model.

Numerous special cases of (1.1) appear in the literature (Holland & Leinhardt,

1979). If r ¼ y ¼ ai ¼ bj ¼ 0, then X is uniformly distributed on G. Consider the
following cases:

1. r ¼ ai ¼ bj ¼ 0, so that the Xij are independent and identically distributed with

y the logit of the probability that Xij ¼ 1.

2. ai ¼ bj ¼ 0, so that all pairs ðXij;XjiÞ, i 6¼ j, are identically distributed.

3. r ¼ bj ¼ 0, so that for each node i, the Xij are independent and identically

distributed for j 6¼ i.
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4. r ¼ ai ¼ 0, so that for each node j, the Xij are independent and identically

distributed for i 6¼ j.
5. r ¼ 0, so that the Rasch model holds in which node i and node j, both i and j

integers between 1 and g and i 6¼ j, are in effect regarded as examinee i and item j
(Haberman, 1981).

Statistical inferences can be straightforward or remarkably challenging in (1.1).

Straightforward cases involve strong parameter restrictions. If Case 1, 2, 3, or 4 is

assumed, then conventional use of maximum likelihood is satisfactory for g large.

Case 5 is challenging, for use of maximum likelihood leads to the customary

problems associated with joint estimation in the Rasch model. The case in which

no parameter is restricted in (1.1) is even more difficult (Haberman, 1981; Holland

& Leinhardt, 1981b). The challenges of the model specified by (1.1) can be treated

by linear restrictions on the ai and bj or by use of random effects models as in item-

response theory. Statistical analysis of social networks continues; however, Paul

has not been involved for some time.

1.4.1 Log-Linear Smoothing and Kernel Equating

In work on kernel equating with Dorothy Thayer and later Alina von Davier, Paul

used log-linear models to improve efficiency of estimation of probabilities prior to

application of kernel smoothing (von Davier, Holland, & Thayer, 2004). The log-

linear models, typically polynomial models for one-dimensional or two-dimensional

contingency tables, are employed to estimate probabilities for specific scores or pairs

of scores. In equating applications, these estimated probabilities are then added

together to estimate distribution functions of individual variables. The kernel part of

kernel equating is a traditional approach to estimation in applications far removed

from psychometrics such as density estimation and estimation of the power spec-

trum associated with a stochastic process. The notable feature of kernel equating is

the combination of statistical concepts that have little relationship to each other.

The kernel part of kernel equating is more essential in equating than is the

application of log-linear models. Consider any two real random variables X and Y.
Suppose that X has distribution function F, and Y has distribution function G.
Let F1=2 be the percentile rank function defined for real x to be F1=2ðxÞ ¼
PðX< xÞ þ 1

2
PðX ¼ xÞ. Similarly, let G1=2 be the percentile rank function of Y.

Note that F1=2ðxÞ ¼ FðxÞ if F is continuous at x, a condition equivalent to the

condition that X ¼ x with probability 0. A similar remark applies to G1=2 and G.
Equipercentile methods of equating seek monotone real conversion functions

eY�X and eX�Y such that eY�X is the inverse of eX�Y , GðeY�XÞ ¼ F, and FðeX�YÞ ¼ G.
The function eY�X is used to convert X to Y in the sense that eY�XðXÞ and Y have the

same distribution. The function eX�Y is used to convert Y to X in the sense that

eX�YðYÞ and X have the same distribution. If F and G are both strictly increasing and
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continuous, then F has an inverse F�1, G has an inverse G�1, eY�X ¼ G�1ðFÞ, and
eX�Y ¼ F�1ðGÞ. If X has a normal distribution with mean mX and with positive

variance s2X, and Y has a normal distribution with mean mY and positive variance

s2Y , then eY�XðxÞ ¼ mY þ ðsY=sXÞðx� mXÞ for real x and eX�YðyÞ ¼ mX þ ðsX=sYÞ�
ðy� mYÞ for real y, so that the conversion functions are linear.

If X is discrete, then F is not continuous, so that the inverse F�1 does not exist.

A similar comment applies if Y is discrete. The functions eY�X and eX�Y may still exist

if X and Y are discrete. For example, if X and Y have the same distribution, then eX�Y
and eY�X can be chosen to be the identity function. Nonetheless, in typical cases in

which X and Y are discrete, no functions eX�Y and eY�X can satisfy all requirements.

This problem has two consequences in equipercentile equating. The first conse-

quence involves discrete test scores. In virtually all applications of observed-score

equating, the test scores of each test are discrete variables. As a consequence, the

desired conversion functions eX�Y and eY�X do not generally exist. The second

consequence involves use of empirical distribution functions. For positive integers

m and n, consider independent and identically distributed random variables

Xi, 1 � i � m, with common distribution function F and independent and identically

distributed random variables Yi, 1 � i � n, with common distribution function G.
In equating, equivalent-groups designs have sampling with the Xi, 1 � i � m, and
the Yi, 1 � i � n, independent. In single-groups designs, the pairs ðXi; YiÞ are

independent and identically distributed as ðX; YÞ and m ¼ n. For either case, let wS
be the indicator function of a set S of the real line. The empirical distribution function

F̂ is defined for real x by the equation

F̂ðxÞ ¼ m�1
Xm

i¼1

wð�1; x�ðXiÞ;

so that F̂ðxÞ is the fraction of the Xi that do not exceed x. Similarly,

ĜðyÞ ¼ n�1
Xn

i¼1

wð�1;y�ðYiÞ:

For each x, F̂ðxÞ converges almost surely to FðxÞ asm approaches1. For each y,

ĜðyÞ converges almost surely to GðyÞ as n approaches1. Nonetheless, F̂ and Ĝ are

not continuous functions, so that they do not lead directly to estimates of the

conversion functions eY�X and eX�Y .
It is possible to consider imperfect conversion functions. Kernel equating

provides one source of such functions. In general, strictly increasing continuous

functions dX�Y and dY�X are considered such that dX�Y is the inverse of dY�X and the

expectation

K ¼ Eð½G1=2ðYÞ � F1=2ðdX�YðYÞÞ�2Þ þ Eð½F1=2ðXÞ � G1=2ðdY�XðXÞÞ�2Þ
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