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PREFACE

Our understanding of human cancer in the past 40 years has been
driven by linking innovative concepts and cutting edge technologies to key
problems identified by clinical research. Some of the successes in cancer
genetics identified from clinical work have been the identification of specific
gene deletions in human chromosomes, the use of PCR-based cloning
methodologies to identify and clone human cancer genes, the validation of
the human cancer genes using transgenetic technologies in the mouse, and
the ability to sequence whole genomes that has recently allowed a collation
of all somatic and germline mutations in a human genome. In the same
generation, entirely different disciplines involved in basic life science research
have used model organisms like yeast, flies, worms, and cancer causing animal
viruses as tools to develop windows to see into the machinery of the cell life
cycle. The discoveries of pro-apoptotic genes, oncogenes, and covalent control
mechanisms like phosphorylation and ubiquitination using the tools of
science and technology have all been awarded Nobel prizes for their
contribution to our understanding of how cells work. The discovery of p53
using the tumor causing animal virus SV40 falls into this pioneering period
of biological and medical research. Now, at the 30th year anniversary
following the discovery of p53, the international community has
demonstrated the fundamental role of p53 in cancer suppression,
reproduction, ageing, and anti-viral immunity, further cementing the
fundamental role of p53 as a key gene maintained by natural selection to
contribute to fitness and health. Although knowledge on p53 continues to
advance in leaps and bounds, and is all revealed in international journals, it
is relatively difficult for students entering the cancer field or p53 field to get
a historical or practical grasp on fundamentals of p53.

This volume, p53, was developed primarily as a resource for students
to have access to key ideas in the field that have developed over the years
including how transgenics have been used to study p53, how clinical genetics
have identified and studied mutations in p53 found in human cancers, how
p53 can be regulated by post-translational modification, and how key drug
targets have been defined, namely MDM2, which has provided fundamental
approaches for defining how p53 can be activated with potentially therapeutic
effect. This book is by no means comprehensive and the large number of
reviews published in peer-review journals always provide the cutting edge
ideas developing in the field. However, the key concepts in the chapters
included provide a perspective on key paradigms in the p53 field.

Theodore Hupp, PhD
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TP53 Mutations in Human Cancers:
Selection versus Mutagenesis
Magali Olivier,* Audrey Petitjean, Claude Caron de Fromentel
and Pierre Hainaut

Abstract

The tumor suppressor gene TP53 differs from most other cancer-related genes by the
very high prevalence of missense mutations which result in the expression of a mutant
protein. Considerable variations are observed between mutation patterns from differ-

ent types of cancer and from different population groups, reflecting both mutagenesis and
selection processes. These mutations are compiled in a database which includes information on
tumor histology and patient characteristics, allowing the analysis of TP53 mutation patterns
according to various parameters (http://www-p53.iarc.fr/). TP53 mutations are also observed
in the germline and are associated with a syndrome of early onset cancers, the Li-Fraumeni
syndrome. Germline and somatic mutations are very similar and affect codons located in the
DNA-binding domain of the protein. Six major hotspot codons account for 30% of all muta-
tions. Most mutations lead to proteins with impaired transactivation activities. However, all
mutations are not equivalent. In addition to the loss of wild-type activity, some mutants exert
dominant-negative effects and/or acquire new pro-oncogenic activities. Our understanding of
the behavior of mutant p53 functions is expanding and holds promises for applications to
cancer risk assessment, early diagnosis, prediction of disease outcome, as well as for develop-
ment of new therapeutic strategies.

Introduction
Cancer growth involves the sequential accumulation of genetic alterations in genes control-

ling cell proliferation, lifespan, responses to stress, relationships with neighbours and gene
homeostasis.1 Amongst these alterations, the TP53 tumor suppressor gene (OMIM #191170)
represents a focal point, irrespective of the tissue and cellular origin of the tumor.2 TP53 en-
codes the p53 protein, a transcription factor that controls the expression of several proteins
involved in cell-cycle control, DNA-repair, apoptosis and differentiation. The p53 protein acts
by inhibiting the growth of cells exposed to chemical or physical stress, including cancer cells.
Thus, loss of p53 functions promotes cell growth under conditions which suppress the prolif-
eration of normal cells. The special role of TP53 in cancer protection is also illustrated by the
fact that Li-Fraumeni Syndrome (LFS), a familial syndrome of predisposition to multiple can-
cers, is caused by germline TP53 mutation.3



p532

TP53 alterations typically include loss of alleles, gene mutations and inactivation of the protein
by sequestration by viral or cellular proteins.4 A database of mutations reported in human cancers
is maintained at the International Agency for Research on Cancer (http://www-p53.iarc.fr/).5

 The nature and distribution of mutations vary among cancer types and population groups. Two
main factors contribute to the shaping of a tumor-specific “mutation pattern”. The first is mu-
tagenesis: the type of damage caused by a mutagen can be specific in its nature and DNA se-
quence context, and the rate of mutation formation is limited by the cell’s capacity to repair DNA
lesions. The second is biological selection: only those mutants that have significant changes in
their functional properties will induce a proliferative advantage and contribute to cancer. Weight-
ing the contribution of these two factors provides interesting clues on the molecular mechanisms
involved in the etiology and pathogenesis of human cancers. Mutations are also useful biomarkers
in epidemiological and clinical studies and for patient management.

TP53 Alterations in Human Cancers

TP53 Mutation Databases
Soon after the identification of TP53 as a frequent target gene for mutation in cancer,6 it

became evident that mutation patterns could significantly differ from one cancer to an other.7,8

This observation led to the compilation of computerized lists of mutations that have now
evolved into complex databases. The TP53 database, maintained and developed at the Interna-
tional Agency for Research on Cancer (IARC TP53 Database, http://www-p53.iarc.fr/), in-
cludes somatic and inherited mutations or variations that have been reported in the literature
since 1989. Independent datasets or mirror datasets are maintained by other groups, providing
a variety of analysis tools for data mining (see list at http://www-p53.iarc.fr/p53databases.html).

The information compiled in the IARC TP53 database includes precise identification of
the mutation, detailed description of tumor specimen, patient demographics and, when avail-
able, individual risk factors, genetic background and clinical parameters. It is thus possible to
search for associations between mutation patterns and individual risk factors. Curated data also
include information on biological activities and structural properties of p53 mutant proteins
and provide a list of mouse models with engineered TP53 (Fig. 1).

It should be noted that the database is affected by several intrinsic biases.9 First, only a
minority of publications describes molecular epidemiological studies with adequate controls
and exposure groups. Second, as the database is exclusively based on peer-reviewed literature, it
reflects changing trends in reporting and publishing of mutations. Other biases may result
from the use of different methods for mutation detection. Despite these limitations, the data-
base is a powerful tool to retrieve and analyze large sets of mutation data and generate hypoth-
eses about their causes and consequences.

Sequence Variations
Several polymorphisms in the coding and noncoding regions of the TP53 gene have been

identified in human populations (see list at http://www.p53.iarc.fr/PolymorphismView.asp). Most
polymorphisms are located in introns, outside consensus splicing sites, and the functional conse-
quences of these variations remain largely unknown. With the recent discovery of p53 isoforms
that are generated by use of an alternative promoter or alternative splicing,10 some of these varia-
tions may affect the production or stability of some isoforms. Indeed, an intronic polymorphism
which consists of a 16 bp duplication in intron 3, p53PIN3 (rs17878362; A1: nonduplicated;
A2: duplicated), has been shown to affect p53 mRNA levels, with the presence of the A2 allele
being correlated with lower p53 mRNA levels and lower p53 activity.11 Adding to the complexity
of p53 regulation, a recent study showed that the p53 regulatory protein MDM2, which mainly
regulates p53 through protein-protein interactions, is also able to bind p53 mRNA and facilitate
its translation, and that silent mutations within the N-terminus of p53 can abrogate this effect.12

Thus, synonymous polymorphisms may affect p53 function through this new mechanism.
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In the coding sequence, four polymorphisms alter the amino acid sequence of p53. There is
sufficient molecular evidence that p53 function is affected by these polymorphisms for two of
them only. One is a nonsynonymous variation in exon 4 (rs1042522; G/C) that leads to an argin-
ine (R) to proline (P) amino-acid substitution at codon 72 (p53R72P). This residue is located in
the proline-rich domain that is thought to be essential for a full p53 apoptotic response. p53
proteins containing a R or P allele display subtle changes in biochemical and functional properties
that result in a more potent capacity of the R allele to induce apoptosis, while the P allele is more
efficient in inducing cell cycle arrest.13-15 However, the tissue specificity of these functional differ-
ences and their in vivo significance remains to be demonstrated. The other functional polymor-
phism is a rare C/T variation reported in African populations (rs1800371) that leads to a proline
(P) to serine (S) amino-acid substitution at codon 47 (p53P47S). This codon is located in the
transactivation domain and is close to a serine residue important for p53-dependent apoptosis
induced by DNA damage as well as cellular senescence induced by oncogenic stress.16 P47S was
shown to be a poorer substrate for phosphorylation of serine 46 by p38 MAPK. However, the

Figure 1. IARC TP53 Database online search system. The IARC TP53 database can be searched and
analyzed through a web interface (http://www-p53.iarc.fr/). Entire datasets, or sets of data selected
according to user’s queries, can be displayed and downloaded in tabular as well as graphical formats.
A user guide is available that describes database and web site contents.
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consequence on protein transactivation capacity has shown conflicting results. While yeast assays
showed a more potent transactivation capacity of 47S compared to 47P, other assays showed a
decreased ability to transactivate two p53 target-genes, p53AIP1 and PUMA, but not other p53
response genes, which is correlated with a lower capacity to induce apoptosis.17,18

Residue 72, although not conserved, is located within the proline-rich region and may
affect the structure of the putative SH3-binding domain. Sharp ethnic differences in codon 72
allele frequencies have been observed.19 In the Northern hemisphere, the Pro72 allele shows a
North-South gradient, from 0.17 in Swedish Saamis to 0.63 in African Blacks (Nigerians). In
Western Europe (France, Sweden, Norway), North America (USA), Central and South America
(Mexico, Costa-Rica, Peru) and Japan, the most common allele is Arg72, with frequencies
ranging from 0.60 to 0.83. However, frequencies of Pro72 superior to 0.40 have been observed
in African-American and Chinese populations.

Many studies have investigated the association of TP53 polymorphisms with increased risk of
cancer. p53R72P and p53PIN3 have been the most extensively studied, however no consistent
results have been found. For example, a meta-analysis of 13 studies on the association of 3 TP53
polymorphisms, including p53R72P and p53PIN3, and lung cancer risk failed to find any sig-
nificant association.20 In breast cancer, a large recent study has found that none of the frequent
TP53 SNPs (Single Nucleotide Polymorphisms) were associated with breast cancer risk.21

Overall, the functional significance and clinical impact of TP53 polymorphisms is far from
being understood.22

Somatic Alterations

Gene Mutations
Inactivation of p53 tumor suppressor functions by gene mutations is one of the most fre-

quent alterations found in human cancers. Mutations are found in almost every type of cancer
by the time the capacity for invasive growth has been acquired. The overall mutation frequen-
cies range from 5% to 50% depending on the tumor type (Fig. 2). Malignancies with high
mutation frequencies (40-55%) include ovarian, esophageal, colorectal, head and neck and
lung cancers. Tumors of the brain, breast, stomach and liver show an intermediate mutation
frequency (20-35%). Malignancies with low mutation frequency include cervical cancer, neu-
roblastoma, leukemia, sarcoma, testicular cancer and malignant melanoma.

Protein Interactions
In several cancers that do not carry TP53 mutations, inactivation of p53 occurs by

protein-protein interactions that either promote p53 degradation or inhibit its activity. In Hu-
man Papilloma Virus (HPV) related cervical cancers, the TP53 gene is often wild-type, but the
protein is inactivated by the HPV protein E6. E6 binds p53 in association with the cellular
protein E6AP and targets it for proteasome-mediated degradation.23,24 In soft tissue sarcomas,
the HDM2 gene is amplified and over expressed without evidence of TP53 gene mutation in
about 30% of the cases, leading to destabilization and inactivation of p53.25 Amplification of
HDM2 is also observed in other tumors, but not always correlated with the presence of wild-type
TP53.26 In retinoblastoma, caused by Rb1 deficiency, a recent study showed that amplification of
the HDMX gene and increased expression of HDMX protein was responsible for the suppression
of the p53 apoptotic response triggered by Rb1 deficiency.27 In neuroblastoma, Twist1, a protein
involved in development, has been found to interact with and inhibit p53 activities.28-30

Other Alterations
Other modes of inactivation of structurally normal p53 have been proposed in testicular

cancers, but the mechanism is unknown.31 Loss of function through cytoplasmic retention has
been observed in neuroblastoma and in inflammatory breast cancer.32,33 A similar phenom-
enon has been proposed in some hepatocellular carcinomas associated with Hepatitis B Virus
(HBV) infection, since transgenic expression of the HBx protein in mouse liver blocks p53
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entry into the nucleus.34 Mutations in p53 downstream effectors have been searched for, but
have produced largely negative results.

Germline Mutations
Inherited TP53 mutations are associated with a rare autosomal dominant disorder, the

Li-Fraumeni syndrome (LFS). LFS is characterized by familial clustering of tumors diagnosed
before 45 years of age, mostly sarcomas, breast, brain and adrenocortical cancers.35 Families
with incomplete features of LFS are referred to as Li-Fraumeni-like Syndrome (LFL), for which
several clinical definitions have been proposed.36 In LFS/LFL patients, normal cells are het-
erozygous (TP53 wild-type/mutant), but in cancer cells the wild-type allele is usually lost or
inactivated by somatic mutation.

Although breast cancers, sarcomas (soft tissue sarcomas and osteosarcomas), brain tumors
and adrenocortical carcinomas account for about 80% or all tumors arising in TP53 germline
mutation carriers, the spectrum of tumors observed in mutation carriers is wide (Fig. 3). This
heterogeneous tumor patterns in LFS/LFL families may be explained in part by differences in
TP53 mutation types and their functional consequences.36 In addition, polymorphisms in the
TP53 pathway have been shown to have modifier effects on TP53 germline mutations.37,38

Types of Mutations
The type and distribution of inherited and somatic TP53 mutations are very similar (Fig. 4).

In contrast to many tumor suppressors such as RB1, APC or BRCA1, which are often inactivated
by deletion, frameshift or nonsense mutations, most TP53 alterations are missense mutations
(73%) (Fig. 4A). About 35% of them fall within five “hotspot” codons (Fig. 4B) detectable in
almost every types of cancer (codons 175, 245, 248, 273, 282). The corresponding residues are
located in the DNA-binding domain of the protein. This domain has a complex structure made
of two beta-sheets (forming a sandwich) bridged by flexible loops and helixes.39 These loops are
kept in place by the binding of an atom of zinc. The hotspot residues play important roles either

Figure 2. TP53 mutation prevalence in sporadic cancers. The proportion of tumors with somatic TP53
mutations is indicated. Data from IARC TP53 Database (R13, November 2008).9
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in protein-DNA contacts (codons 248 and 273) or in maintaining the conformation of the pro-
tein (175, 245, 282) (Fig. 5), explaining their high mutation frequency in cancer. However, all
codons within the DNA-binding domain have been reported to be mutated in cancer and 80%
of all mutations fall within this domain, reflecting its importance in the tumor suppressor func-
tion of p53. The main function of this domain is to interact with specific DNA sequences that
regulate the transcription of p53 target genes. The main consequence of these mutations is thus a
loss of p53 capacity to regulate its target genes. However, different types of mutations show
different degrees of loss of function. Kato et al17 have performed, in yeast assays, a systematic
analysis of the transactivation capacity of all possible point mutants on several p53
responsive-elements. They showed that mutants that are found in cancer display severe loss of
function, while mutants that retain some activity are rarely found in human tumors. These results
show the importance of p53 transactivation capacity in its role as a tumor suppressor.

Sequence Variation and Phenotype
Several lines of evidence suggest that germline mutations may illicit tissue specific effects. The

most striking example is the R to H mutation at codon 337 (R337H) that has been found in the
Brazilian population and shown to predispose preferentially (although not exclusively) to child-
hood adrenocortical carcinoma.40,41 Functional analysis revealed that this mutant is pH-sensitive,
i.e., inactive (mutant-like) at pH>7.7 and active (wild-type-like) at pH<7.7.42 The protein may
thus adopt a mutant or unfolded conformation only under particular physiological conditions.
Although this effect does not explain the tissue-specificity of the R337H mutant, this example
illustrates the fact that mutant p53 protein function may depend on the cellular context.

Other evidence come from genotype-phenotype analysis of a large dataset of TP53 germline
carriers.36 These analyses have shown that missense mutations affecting residues located in the L2
and L3 loops of the p53 structure, that bind to the minor groove of DNA, were preferentially
associated with brain tumors, whereas those outside the DNA-binding surface (in the
non-DNA-binding loops, beta-sheets and oligomerization domain) were associated with

Figure 3. Tumor spectrum in individuals with a germline TP53 mutation. The proportion of specific
tumor types among all tumors reported in confirmed TP53 germline mutation carriers is indicated. Data
from IARC TP53 Germline Database (R13, November 2008, http://www-p53.iarc.fr/Germline.html).9
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Figure 4. Comparison of germline and somatic TP53 mutations. A) Pie charts showing the proportion
of the different types of TP53 germline and somatic mutations. B) Histograms displaying the position
of the germline and somatic point mutations in the coding sequence of the TP53 gene. Data from the
IARC TP53 Database (R13, November 2008).9

Figure 5. Structural localization of the most frequent TP53 mutations. 3D view of the core domain of
the p53 protein in complex with DNA. This domain has a complex structure made of two beta-sheets
(forming a sandwich) bridged by sets of loops and helixes. These loops are kept in place by the binding
of an atom of zinc (zinc coordination by codons 176, 179, 238 and 242), which is essential for the
stability of the whole structure. Codon 248 makes contact with DNA in the minor groove of the helix,
whereas codon 273 makes contact in the major groove. Codons 175, 245, 249 and 282 play important
roles in the conformation of the protein. Structure from Cho et al.39
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adrenocortical carcinoma. Mutations resulting in a p53-null phenotype (frameshift deletions or
insertions and nonsense mutations) were associated with early onset of brain tumors. Another
analysis that used annotations derived from functional assessment of p53 mutants transactivation
capacities, showed that the degree of loss of function was associated with age of onset of breast and
colorectal cancers.43 Thus, although the functional basis of these observations remains to be fully
elucidated, the degree of loss of function may affect mutation penetrance in a tissue specific manner.

The Case for Mutagenesis
TP53 somatic mutation patterns look extremely similar from one cancer to the next. This

similarity results from the fact that many mutations, in particular transitions at CpG sites, are
common in all cancers. Nevertheless, several cancers show distinct patterns that indicate the
presence of mutations induced by exogenous carcinogens. An “induced“ mutation profile is
suspected when the following features are present: (1) tumor-specific or exposure-specific
“hotspot” mutations; (2) unusual predominance of a particular type of base substitution; (3)
preferential accumulation of the mutation on the nontranscribed strand of DNA (strand bias).44

Strand bias is the consequence of the preferential repair of DNA adducts on the transcribed
strand by transcription-coupled repair systems.45 This phenomenon results in the preferential
accumulation of certain types of mutations on the nontranscribed strand.

TP53 Mutations as Carcinogen Fingerprints
The most distinctive mutation patterns have been observed in studies on populations ex-

posed to high levels of mutagens. In general, the spectrum of TP53 mutations is in keeping
with mutation patterns generated experimentally by the suspected agents. A well-documented
example is that of lung cancer, where a high prevalence of G>T mutations at specific residues
have been correlated with exposure to tobacco and with a site of DNA adduct by benzo(a)pyrene,
a major carcinogen contained in tobacco smoke.46 Other examples include hepatocellular car-
cinoma (dietary aflatoxins) and nonmelanoma skin cancers (solar UVs). In several other can-
cers, such as bladder and esophageal carcinomas, specific mutation profiles have been observed,
but the mutagens have not been clearly identified. These questions have been extensively ad-
dressed in recent reviews.46-48

Recently, cells derived from human p53 knock-in mouse models have been used to examine
induced human p53 gene mutations in cell cultures exposed to mutagenic factors.49 Mutations
observed in these models were very similar to the ones observed in human tumors. Thus, these
models provide a basis for generating experimental mutation patterns in human p53 and, to-
gether with the analysis of mutation patterns in human tumors, may help to identify carcinogens
and mutagenic processes involved in the development of cancer with specific mutation patterns.

Mechanisms of Mutation
Table 1 presents a simple key for the the interpretation of different types of mutations found

in sporadic tumors. The most frequent mutations (25%) are transitions (purine to purine or
pyrimidine to pyrimidine) at cytosines within CpG sites. These transitions can, in the first in-
stance, be considered as resulting from an endogenous mutagenic process. Spontaneous deamina-
tion of methylated cytosine occurs frequently at CpG sites, leading to a substitution to thymine.
This process is greatly enhanced by oxyradicals, in particular nitric oxide (NO), that are generated
endogenously during processes such as inflammation or bacterial infection.50,51 In colon cancer,
NO production has been correlated with the presence of transition mutations at CpG sites in
TP53.52 In contrast, transversions (purine to pyrimidine or vice-versa) at G bases (G:C to T:A or
G:C to C:G) are often caused by bulky carcinogens in various experimental systems. G:C to A:T
transitions at non-CpG sites can be induced by many different agents, in particular N-nitroso
compounds, oxidizing agents and alkylating agents (for review see ref. 53). Altogether, non-CpG
transitions and transversions at G bases represent around 40% of all mutations. About 10% of
mutations are deletions with the majority being small deletions. Micro deletions, in particular in
CG base repeats, are thought to primarily result from polymerase slippage during replication.54
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Nucleotide substitution rates55 derived from human-mouse aligned sequence of chromo-
somes 21 and 10 have been applied to TP53 wild-type and mutated sequences to estimate the
propensity of each mutation to occur as a neutral process from replication error or endogenous
mutagenesis.5 The comparison of these mutation rates with frequency of occurrence in cancers
shows that rare mutants have the lowest median nucleotide substitution rates while frequent
mutants have the highest rates (Fig. 6). Thus, underlying substitution rates are highly associ-
ated with mutation frequency, showing that mutagenesis (spontaneous or carcinogen-induced)
plays a major role in shaping mutation patterns.

Table 1. TP53 mutations in sporadic cancers and suspected mechanisms of mutagenesis

Mutation Type Cancer with High Prevalence Suspected Agents or Mechanisms

Insertions Head and neck, Esophagus
Deletions Head and neck Polymerase slippage; Irradiation?
CC tandem Skin (other than melanoma) UV
A:T bases Esophagus (SCC), Head and neck Acetaldehyde?
A:T>T:A Liver (Hemangiosarcoma) Vinyl chloride
G:C>A:T Bladder, Many other cancers Alkylating agents? Aromatic amines?

Radiations?
G:C>A:T at CpG Colon, Brain, Stomach, other cancers Spontaneous deamination

of methylated cytosines
G:C>C:G
G:C>T:A Lung PAH (Benzo(a)pyrene)

Hepatocellular carcinoma Aflatoxin B1
(hotspot at codon 249)

Data from IARC TP53 database and references 44,53,91. SCC= squamous cell carcinoma.

Figure 6. TP53 mutation rates and frequency in cancer. Single amino-acid substitutions were grouped
into four categories according to their frequency in the somatic dataset of the IARC TP53 database (R13,
November 2008). The median mutation rates were calculated for each group of mutants. These rates
were derived from dinucleotides substitution rates calculated for all point mutations according to
Lunter et al.55 Only mutations detected by DNA sequencing and located within the DNA-binding
domain were included. Data from the IARC TP53 Database (R13, November 2008).9


