Expert Twisted

Event-Driven and Asynchronous
Programming with Python

Mark Williams
Cory Benfield
Brian Warner
Moshe Zadka
Dustin Mitchell
Kevin Samuel
Pierre Tardy

Apress’

Expert Twisted

Event-Driven and Asynchronous
Programming with Python

Mark Williams
Cory Benfield
Brian Warner
Moshe Zadka
Dustin Mitchell
Kevin Samuel
Pierre Tardy

Apress’

Expert Twisted

Mark Williams Cory Benfield
Pasadena, CA, USA London, UK
Brian Warner Moshe Zadka
New York, USA New York, USA
Dustin Mitchell Kevin Samuel
New York, USA Nice, France
Pierre Tardy

Toulouse, France

ISBN-13 (pbk): 978-1-4842-3741-0 ISBN-13 (electronic): 978-1-4842-3742-7
https://doi.org/10.1007/978-1-4842-3742-7

Library of Congress Control Number: 2018965166

Copyright © Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka,
Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019, corrected publication 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: James Markham

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484237410. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3742-7

Dedicated to AZ, NZ, and TS: Twisted prevails,
and we're looking forward to the next
generation of maintainers.

—Moshe Zadka

Table of Contents

About the AUtROrS........ccusmmismmmssnmmsasmssanmsnssssssasssass s sansssassssnsssansssansssansnas Xiii
About the Technical REVIEWErScccsssessssnssssssssassssnsssasssssssssnsssasssssssssnsssassssasssansss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
L1 T LT (1 Xix
Part 1: Foundationscccusseeemmmmmmnsssssnmmmmsssssnmmssssssssnnmssssssssnnesssssssnssnssssnnnns 1
Chapter 1: An Introduction to Event-Driven Programming with Twisted 3
A Note About PYthon VEISIONS.........ccccoerenerinerinesese s s sssssssssssssessssens 4
What Is Event-Driven Programming?.........ccoueerennnnnnnesenssessessssssssssessssessssssssssssssssssssssssssenes 4
MUIEIPIE EVENTSeveeeieiieersere s sere s se s s sa e s s sa e e sae e e s e s sae st s e s e saesae s s e saesaessesenaenneses 5
Application(tkinter.TK()).MaiNIOOP()erverrerrerimrrerssereriesssessessessessse e s ssesssesessesssessessesssssssssesaesnes 6
Multiplexing and DemultipleXing......c..coo v e 7
The SEleCt MUIPIEXET ... e e s p e nne s 9
Its History, Its Siblings, and S PUIPOSE.........ccccirererercrnesere et 9
SEIECE ANU SOCKETSceveeerecerrrer e 9

The How and Why of SOCKEt EVENTSccccvevirviriererrrirrere s sessessesnes 11
HaNAIiNG EVENTS.......ccviererieierrerere s s s se s s sae s e e e saesae e s e saesae s snesaesasssssesnesaeses 12

An Event LoOp With SEIECT ...t 13
Event-Driven Clients and SEIVEIS........cooorerrrnereree s ssens 15
NON-DIOCKING /0 ..t 18
KNOWing WHEn 10 STOP ..covccereeeirecrressressssse s nssns 18
TracKing STALe.......ccoveirririree s 19
State Makes Programs COMPIEXcccvevrrerierierenessensesessssessessessesssssssessessesssssssessesssssssessesees 23
Managing Complexity with Transports and ProtoCoIScccveevrvrreriernnensensesessssessesessesessesseses 23
Reactors: Working with TranSports.........ccuincnnninnnc e ns 24

TABLE OF CONTENTS

Transports: Working With ProtoColS..........ccccvvrieniininsnn s s e sessesssesaessenns 25
Playing Ping-Pong with Protocols and TranSports........cccccvvnnnnnsnsensesesssessessessssessessens 26
Clients and Servers with Protocols and TranSports.......c..cccecvvnrennsnsnennsnsese s senensens 31
Twisted and Reactors, Protocols, and TranSPOrtS........ccccvvrrererrerrenseesersessesssesessessesssesenens 33

The Value of Event-Driven Programmingcocuecevresemnsessnsessssessssssssssessssessssssssssssssssssssssssssnses 33

Twisted and the Real World.............cocovmnns s 36

EVENTS N TIME ... e 41
Repeated Events With LOOPINGCAIL.........ccccvvverrerrererenserereressessessessesessessessessssessessessssessessees 44

Event Interfaces with zope.interface..........ccovvnvnininncnc 46

Flow Control in Event-Driven Programs..........cccoueerenernserensesesssessssesessessssssessssssessssssssssssssesenns 49

Flow Control in Twisted with Producers and CONSUMETS..........ccccervnrnenesenesnsesensesessesessssesenns 50
LTS LT o (00 LT SRS 51
00 T 1T LT £ R 54
T LN o 00 [T N 57

11T 111 T SRS 57

Chapter 2: An Introduction to Asynchronous Programming with Twisted 59

Event Handlers and COmMPOSITIONcccccviiniinin s se s s saes 59

What Is Asynchronous Programming?........c.ccecvueeesesesnsessssmsses 63

Placeholders for FULUIE VAIUES ... s snes 63

Asynchronous Exception Handling.........ccccvvvveninininni s sse s e ssessesssessessenns 66

An Introduction to Twisted’s DEfErred...........ccoverrrnnrninerene s 4l
072072 4l
Errbacks and FailUIES........ccoeoereerrer s 73
COmMPOSING DEEITEUSccceveerereererese e 76

Generators and INliNECaIIDACKS ... 80
=1 PP 80
T [T 81
10 PR 84
Asynchronous Programming with inlineCallDacksc.ccorverrneneresernsesessenesenesessesessenens 85

TABLE OF CONTENTS

Coroutings iN PYINON.......ccoe v s s s r e e s s sa e naesae s s nne s 88
Coroutines With Yield from ... e 88
Coroutines async and awail ..o 90

AWAITING DETEITEUSceceeeeereeereree s 95

Coroutines to Deferreds with ensSureDEferredc.ouovrenresrnnesnes s 97

MUIIPIEXING DETEITEUS.....cccerereertr et se e s ae e e nnn 99

LTS ([0 0 T=] (=T (=T 102

£ 1134 7 106

Chapter 3: Applications with treq and Klein..........ccuuvemrmnssssnnnnnssssssnssssssssssssssssnns 109

LT T s T TSR 109

FEed AQQregation..........ccvucrrrerneserese s 110

INEFOAUCING TrEQ .eveeeerrecriee s e nr s 111

INTrOAUCING KIBIN......cveteerere sttt s s s s ae s e e s aesae st e e s e nne e 115
KIEIN and DEfEITEUSccoveerircerceree s 117
Klein Templates with Plating ... 118

A First Draft of Feed AgQregation..........couivrinininnsnsnnese s sssssssessessens 121

Test-Driven Development with KIein and treq.........ccoovcvvnininnninnninnsnene s 128
Running Test on an Installable Projectcccouvrnvvnnennnesessse s sennes 128
Testing Klein With STUDTIEQcovvviererrrrrr e e 131
Testing treq With KIBIN.......cccvevririennrsirsere s sre e e s ssssssesaesnes 140
Logging With tWiSted.I0gger.....ccceveririere et 143
Running Twisted Applications with twist...........cccovvvrinirincr e, 149

£ 10T 7 TS 154

Part 2: Projects....cccuuseemmmmmsssssmsnmmmssssssssnmmsssssssssnnssssssssnssnssssssnsnnessssssnnnnsnssnns 155
Chapter 4: Twisted in DOCKE......ccucceurrmsssnnmmsssssnnnmssssssnsmssssssnssssssssnsssssssnnsessssnnnnss 157

INEFO 10 DOCKEN ... ————— 157
L0041 1T 3O 157
CONAINET IMAQES ...ccveeerreerirerere e e s e st e e b e e s e e senae e e 158
RUNC and CONTAINEITccoveeereerecree e 159

vii

TABLE OF CONTENTS

0 1 S 159
REOISIIY .o e e r e nn 160
BUIL ...ttt s 160
MUlti-Stage BUIILccoereeerircrereser e 161
PYtNON 0N DOCKETcoviererierrenessese e sse s s se s s e e s s sss e s e ssessessssesnessssssnsnnesnees 163
Deployment OPLIONSccccevererieriere s e p s s e e 163
FUIT BNV ...ttt bbb 163
VIFUBIBNV .. 169

o G 170
31T o B0 410 OSSPSR 172
ONE Big BAJ.....coveeerreeriririreser s e 172
Copying Wheels Between STagesScuccceverernnerenennnese s e sssss s sessssssssssssnses 172
Copying Environment BetWeen STages........ccvvrrererririennninnenseresss s s sessessessessssessessees 173
Copying the Pex Executable BEtWEeN STAgESccvvvvierererrerserernsessese s sessessessessssessessees 173
Automation With DOCKEIPYcccvirierenisinsine s s ss s e s srssr s enes 173
TWISEEA ON DOCKET.......eeueereeerererersenerreesesesesse e see e s se e sesse e ses e sse e sse e sesse e ssssessenesessessnsenens 174
ENTRYPOINT @nd PID T ... ss e e sssssssnsnenes 174
CUSTOM PIUGINS.....citireerriesinessse s s r s nne e nr s 174
0] 0 0O 175

£ 1134 7R 178
Chapter 5: Using Twisted as @ WSGI Server........cccurmmrmsmmmsssnsssssssssssssssssssssssnnssssas 179
INtrOdUCEION 10 WSGI ... 179
PEP .ottt e R 180
RAW EXAMPIC.....ceecirieiecte s r e s e r e s e s n e neeaenan e 181
Reference IMplementation ... s 183
WEDOD EXAMPIE....cruerreirieriererreserseressesassessessessessssessessessessssessessesssssssessessessssessessessensssessesaes 185
Pyramid EXAMPIE.......ccocriiiinire s s e s 186
GEtting STAMEU.o ——————————— 187
WSGH SEIVEN......coueereeerercserre e se e se s e e se e e e e e s e e nnnnens 188
FINGING COUE......coviierreerieirre e pe e 191

viil

TABLE OF CONTENTS

DEfaUIt Path........cooveiceceeeeceeeee e s 191
PYTHONPATH ..ottt sssssns s 192

T (1 01) S 192
WRY TWISTEAeveereeerescsere e s s nr e n e nne s 192
Production vs. DEVEIOPMENL........c.cccvirieriinininine e s 192

L PP 194
Server Name INAICALION..........ccocevriecsn s 195

B3] 2L Te 1 S 197
RESOUICE MOUEL........ceeeeeee e 197
a1 £33 - 1S 198
Combining Static Files With WSGL............ccocoormrnnrinnis e 200
BUilt-In SCheduled TaSKScccvirrinernesrneserese s s ssa s 203
CoNtrol CRANNEIS ..o s 206
Strategies for USing MUIIPIE COIESccvrerererrersereresssserersessssessessessessssessessessssessessessessssessesses 208
LT Lo 7 1T T 208
Opening Socket in Shared MOdE ... s 210
OthEr OPLIONS.......cccrere e bbb e s 213
Dynamic ConfigUIation.........coucceeeseninernsesnesese s 214
A/B Testable PYramit APP......cocrrrerennninseresessssessessessssessessessessssessessessessssessessessssssssssesaes 214
Custom Plugin With AMPcoeviirirerenrrserrere e s s ssesse e ssesaessssessessesssssssesnees 216
{011 o (0 = O 219

BT 1] 11 1= OSSOSO 221
Chapter 6: Tahoe-LAFS: The Least-Authority File Systemccccirnssnnnnnnnsssnnnnns 223
HOW TAN0E-LAFS WOIKScoviiriiriniriee st sss e se s e s ssssesssssssssssssessesenns 224
SYSIEM ArCRITECIUNE......evec e e nen 227
HOW [t USES TWISTEA......ceiiccririiree s s e 229
Problems We've RUN INTO ... 230
Daemonization TOOIS..........ccorecrerererenerrere e 231
Internal FileNOde INTErfaces........coccorercrrrerrerer e 232
Front-End Protocol INtegration............cccuveevnenninmnnssssessss s sssss s sessesenns 233

TABLE OF CONTENTS

The WED Front EN ... s s s sessssssnssens 234
File Types, Content-Type, /NAME/ ... s sseses 237
SAVING 10 DISK...viieiiririerinsire et s e p e e b e e nne s 238
RANGE HEBAUETSceeeeereecr e 238
Error Conversion on the Return Side ... e 240
Rendering Ul Elements: NeVOW TEMPIALESccvcevvverierernnensensene s e e ssesassessessesaes 241

The FTP FrONt ENG......cccooeiiiiiinineense s s s s s s sn s 242

LI IS o (011 = T T 248

Backward-Incompatible TWisted APIS.........cccovcrirrnnnrn e snens 248

£ S 251

RETBIBINCES ... et 251

Chapter 7: Magic WOrmHhoIeccusseesssssnsssssnsssssnssssansssssnsssssnnssssnsssssnnssssnnssssnnssssns 253

L LU U LT 254

HOW [EWOTKS ... e 255

Network Protocols, Transfer Latency, Client Compatibility..........cccceceerieiririrninnicnncccvnceen 257
Network Protocols and Client Compatibilityccccovreenrreneresrrererese e 258

e VT 111 (1 S 260
Persistent DAtabasecovvevvenmrinnmnnssnesn s s 262

Transit Client: Cancelable Deferreds..........c.cvnnn s 262

TranSit REIAY SEIVETcccvuevieierierere s s sssse s s sse st s s e sae s e e s e ssesaesa s e s e saesaesesnesaesaesae e ssesaeses 265

Wormhole Client ArChIitECIUNEcovvrriiccrirr s 267

Deferreds vs State Machines, One-Shot ODSEIVErcccvvvverervrrere s 268

0NE-SNOt ODSEIVELS......coveerereerereerese s se s e e s e s e e s e se s e s re e e e e s 27

Promises/Futures VS. DEferredsS.........cucvmerrenerenmsrssesesesese s se s e senns 272

Eventual-Send, Synchronous TeSTING........ccuuererinernsesnessnese s sessesenns 275

Asynchronous Testing With DEfErreds.........uuvvrieriernnrreniene e ssesessessessens 277

Synchronous Testing With DEfErredsccvvvvvrrrrierinnersrsere s se e ssssessesaes 278
Synchronous Testing and Eventual Send...........cccvvererrecnnccnne s 281

£ 10T 17 283

RETBIBINCESc et 283

TABLE OF CONTENTS

Chapter 8: Push Data to Browsers and Micro-services with WebSocket............. 285
WHY WEDSOCKEL? ...ttt ettt e st sesne e 285
WebSocket and TWISTEA........cocccerererecrr e 286
Raw WebSocket, from Python t0 PYthon ... 288
Raw WebSocket, Between Python and JavaScripl...........ccccvvnininnnininnsssenesesessensennens 292
More Powerful WebSocket with WAMP............ccccoinm s 294
£ 11134 R 303

Chapter 9: Applications with asyncio and Twisted.........ccuscmrrrsssnnnnrsssssnnsssssnnnns 305
(] 004100 OO 305
Lo (0] 1 306

VT 1 00 o OSSR 307
GUILEIINES ...veereeeesseesree e s s e s R e e e e e R p e e e r s 308
Case Study: A Proxy with aiohttp and treq........ccccverirnninininnsr e 312
£ 11134 7R 316

Chapter 10: Buildbot and Twisted..........ccuscmmsmmmsanmssanmssnsssssmssasssssssssnsssassssssssansssans 317

History of BUIldDOtcccoiiiirr e s 317
The Evolution of Buildbot’s ASync PYthon..........c.eeeeereceeeererre s 318
Migrating SYNChroNOUS APIS..........ccoeerreerereerese s 321
ASYNC BUIIA STEPS....veerererrrreserresesesessssese s e e srs s s e s s ssa s sessessssssessssessnsssssanens 322

BUIIADOT'S COUEcovvviriririsissce s 323
ASYNC ULIITIES cvuvrereereerersereresseserseressesaeses e ssessess s e ssessesaesas e ssesaesassessessesaesssnessesasssssssessesaes 323
DEDOUNCE ... e 323
ASYINC SBIVICES ..ecueruerreiriressese st s s se s r s e b e e s b e e e e bR e b e e R e R e e e e R nnan 324
LRU CACNEcecrerecereeeriecresese e sesse e ses e e s e s e ses s ssssesss e sessssssssssssssesensssssssssssnnes 326
EVENTUAL........eoeeeeeecteee e e nr s 327
Interfacing with Synchronous Code..........ccoucrvvrnennisnnsse s 327
L0 I 1T 0O 328
(=T 0 |12 (SO 329
00T (- TS 332
Concurrent Access t0 Shared RESOUICEScccoerererrererersereresesseeresesessese e sesesessssessenes 333

TABLE OF CONTENTS

Yield as @ CONCUITENCY BAITIENccverueverrerrererresessesessessssessessessessssessessessesssssssessesssssssessesses 333
Thread-Pool Functions Should Not Mutate Statecccccorenrrerrnc s 334
DETEITEULOCKS ..covvueerrierreerrssesessese e sesrs e e e s e e sr s sa s e nna e 336
-1 1] oS 336
2L 338
SUMIMAIY ..ttt e e s R e e e e e b e e e e R e R e e e e e Re e Re b e e e e e Re R e e e e e aenrs 338
Chapter 11: Twisted and HTTP/2.......ccccunemmnmmssssnnnmmssssssnsssssssssssssssssssssssssssssssssnnnss 339
101 (0T 1T 0 o T 339
DESIGN GOAISvcuereeeerreeriee s e 341
SeamIess INTEGratioN........cccvverrire e nae 341
Most-Optimized Behavior by Default............ccoverreerneesrererere e 343
Separating Concerns and Reusing COdec.cccvvermrinerinsennesensse s sessanes 343
Implementation CONCEINScccvvrierernserreresssserse e ss s s ssessssessessessssessessesasssssessessesssssnsesaens 344
What Is a Connection Anyway? The Value of Standard Interfaces...........ccocoeeervernccnencnens 345
MultipleXing and Priority.........ccovrereresesnsessssesssesesssse s ssssesssss s s sessssesssssssssssessnses 348
BaACKPIESSUIE....ccveieirerie et re s s e s sa e s s b e s s e e b s b s e e e b e s ae e e e e e s nesaenanans 355
Backpressure in TWIStedccccvvininicniennsnne e e s 356
Backpressure in HTTP/2 ... s st sas s ssesnes 359
Current Status and FUtUure EXPanSioncocvevvererenensensesessssessesesssssssessessessssessessessssessessesses 362
31111117 o RS 363
Chapter 12: Twisted and Django Channelsccccuseemnrnssssnnnmmsssssnnsssssssssssssssnnns 365
L C 0T 1T 0 o 365
Channels BUilding BIOCKS..........ccouaermseressenmsrenesessesssssessssesessesesssssssssesesssssssssssssssssssssssssssssssssenns 367
Message Brokers and QUELESccccvueverrerierrerensersesessessssessessesessessessessssessessessessssessessesssssssessens 368
Distributed Multi-Layer Systems in TWiStedcccoucvrierrenrnsrncrre s 369
Current Status and Future EXPanSion ... sessesesssssssessesnes 371
BT 111 T o OSSR 371
Correction to: Expert Twisted: Event-Driven and Asynchronous
Programming with Pythonccccccciinnemmmnnnssnnmmmssssmmssssssmmsssssssmssssssssssssssens C1
1T = 373

About the Authors

Mark Williams works on Twisted. At eBay and PayPal, he worked on high-performance
Python web services (over a billion requests a day!), application and information
security, and porting enterprise, Java-only libraries to Python.

Cory Benfield is an open source Python developer heavily involved in the Python HTTP
community. He's a Requests core contributor, a urllib3 core contributor, and the lead
maintainer of the Hyper Project, a collection of HTTP and HTTP/2 tools for Python. For
his sins, he also helps out with the Python Cryptographic Authority on PyOpenSSL.

Brian Warner is a security engineer and software developer, having worked at Mozilla
on Firefox Sync, the Add-On SDK, and Persona. He is co-founder of the Tahoe-LAFS
distributed secure filesystem, and develops secure storage and communication tools.

Moshe Zadka has been part of the open source community since 1995, made his first
core Python contributions in 1998, and is a founding member of the Twisted open
source project. He also loves to teach Twisted and Python, having given tutorials at
several conferences as well as regularly blogging.

Dustin Mitchell has contributed to Buildbot and is a member of the TaskCluster team
at Mozilla, having also worked on the Release Engineering, Release Operations, and
Infrastructure teams.

Kevin Samuel has been a Dev and trainer since Python 2.4 and has been putting

his skills to work in East Europe, North America, Asia, and West Africa. He has been
working closely with the Crossbar.io team and is an active member of the French Python
community.

Pierre Tardy is a continuous integration specialist with Renault Software Labs, and he is
currently the lead committer for Buildbot.

xiii

About the Technical Reviewers

Julian Berman is a New York-based software developer and
open source contributor. He is the author of the jsonschema
Python library, an occasional contributor to the Twisted
ecosystem, and an active member of the Python community.

Shawn Shojaie lives in the clement chaparral of California's Bay Area, where he works
as a back-end software engineer. He has worked at Intel, NetApp, and now SimpleLegal,
where he happily builds web-based applications for legal services. He spends weekdays
writing Django and tuning PostgreSQL, and his weekends contributing to open source
projects like django-pylint, occasionally editing technical essays. Find out more at him at

shawnshojaie.com.

Tom Most is a software engineer in the telecommunications industry. He is a Twisted
committer with 10 years of experience of applying Twisted to web services, client
libraries, and command-line applications. He is the maintainer of Afkak, the Twisted
Kafka client. He can be found online at freecog.net and reached at twm@freecog.net.

Acknowledgments

Thanks to my wife, Jennifer Zadka, without whose support I could not have done it.
Thanks to my parents, Yaacov and Pnina Zadka, who taught me how to learn.
Thanks to my advisor, Yael Karshon, for teaching me how to write.

Thanks to Mahmoud Hashemi, for inspiration and encouragement.

Thanks to Mark Williams, for always being there for me.

Thanks to Glyph Lefkowitz, for teaching me things about Python, about programming,
and about being a good person.

—Moshe Zadka

Thanks to Mahmoud Hashemi and David Karapetyan for their feedback. Thanks to
Annie for putting up with me while I wrote

—Mark Williams

The original version of this book was revised. A correction to this book is available at
https://doi.org/10.1007/978-1-4842-3742-7_13

xvii

https://doi.org/10.1007/978-1-4842-3742-7_13

Introduction

Twisted has recently celebrated its sweet sixteen birthday. It has been around for a
while; and in that time, it grew to be a powerful library. In that time, some interesting
applications have been built on top of it. In that time, many of us learned a lot about how
to use Twisted well, how to think about networking code, and how to architect event-
based programs.

After going through the introductory materials that we have on the Twisted site,

a common thing to hear is “What now? How can I learn more about Twisted?” The
usual way we answered that question is with a question: “What do you want to do with
Twisted?” This book shows how to do interesting things with Twisted.

Each of the contributors to this book has done slightly different things with Twisted
and learned different lessons. We are excited to present all of these lessons, with the
goals of making them common knowledge in the community.

Enjoy!

Xix

PART 1

Foundations

CHAPTER 1

An Introduction to
Event-Driven
Programming with Twisted

Twisted is a powerful, well-tested, and mature concurrent networking library and
framework. As we'll see in this book, many projects and individuals have used it to great
effect for more than a decade.

At the same time, Twisted is large, complicated, and old. Its lexicon teems with
strange names, like “reactor,” “protocol,” “endpoint,” and “Deferred.” These describe a
philosophy and architecture that have baffled both newcomers and old hands with years
of Python experience.

Two fundamental programming paradigms inform Twisted’s pantheon of APIs:
event-driven programming and asynchronous programming. The rise of JavaScript
and the introduction of asyncio into the Python standard library have brought both
further into the mainstream, but neither paradigm dominates Python programming
so completely that merely knowing the language makes them familiar. They remain
specialized topics reserved for intermediate or advanced programmers.

This chapter and the next introduce the motivations behind event-driven and
asynchronous programming, and then show how Twisted employs these paradigms.
They lay the foundation for later chapters that explore real-world Twisted programs.

We’ll begin by exploring the nature of event-driven programming outside of the
context of Twisted. Once we have a sense of what defines event-driven programming,
we'll see how Twisted provides software abstractions that help developers write clear
and effective event-driven programs. We'll also stop along the way to learn about
some of the unique parts of those abstractions, like interfaces, and explore how they’re
documented on Twisted’s website.

© Mark Williams, Cory Benfield, Brian Warner, Moshe Zadka, Dustin Mitchell, Kevin Samuel, Pierre Tardy 2019
M. Williams et al., Expert Twisted, https://doi.org/10.1007/978-1-4842-3742-7_1

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

By the end of this chapter you’'ll know Twisted terminology: protocols, transports,
reactors, consumers, and producers. These concepts form the foundation of Twisted’s
approach to event-driven programming, and knowing them is essential to writing useful
software with Twisted.

A Note About Python Versions

Twisted itself supports Python 2 and 3, so all code examples in this chapter are written
to work on both Python 2 and 3. Python 3 is the future, but part of Twisted’s strength is
its rich history of protocol implementations; for that reason, it’s important that you're
comfortable with code that runs on Python 2, even if you never write it.

What Is Event-Driven Programming?

An event is something that causes an event-driven program to perform an action.
This broad definition allows many programs to be understood as event-driven;
consider, for example, a simple program that prints either Hello or World!
depending on user input:

import sys
line = sys.stdin.readline().strip()
if line == "h":

print("Hello")
else:
print("World")

The availability of a line of input over standard input is an event. Our program
pauses on sys.stdin.readline(), which asks the operating system to allow the user to
input a complete line. Until one is received, our program can make no progress. When
the operating system receives input, and Python’s internals determine it’s a line, sys.
stdin.readline() resumes our program by returning that data to it. This resumption
is the event that drives our program forward. Even this simple program, then, can be
understood as an eveni-driven one.

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

Multiple Events

A program that receives a single event and then exits doesn’t benefit from an event-
driven approach. Programs in which more than one thing can happen at a time,
however, are more naturally organized around events. A graphical user interface implies
just such a program: at any moment, a user might click a button, select an item from a
menu, scroll through a text widget, and so on.

Here’s a version of our previous program with a Tkinter GUIL:

from six.moves import tkinter
from six.moves.tkinter import scrolledtext

class Application(tkinter.Frame):
def init (self, root):
super (Application,self). init (root)

self.pack()
self.helloButton = tkinter.Button(self,
text="Say Hello",
command=self.sayHello)
self.worldButton = tkinter.Button(self,

text="Say World",
command=self.sayWorld)
self.output = scrolledtext.ScrolledText(master=self)
self.helloButton.pack(side="top")
self.worldButton.pack(side="top")
self.output.pack(side="top")
def outputlLine(self, text):
self.output.insert(tkinter.INSERT, text+ '\n')
def sayHello(self):
self.outputLine("Hello")
def sayWorld(self):
self.outputLine("World")

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

Application(tkinter.Tk()).mainloop()

This version of our program presents the user with two buttons, either of which can
generate an independent click event. This differs from our previous program, where only
sys.stdin.readline could generate the single “line ready” event.

We cope with the possible occurrence of either button’s event by associating event
handlers with each one. Tkinter buttons accept a callable command to invoke when they
are clicked. When the button labeled “Say Hello” generates a click event, that event
drives our program to call Application.sayHello as shown in Figure 1-1. This, in turn,
outputs a line consisting of Hello to a scrollable text widget. The same process applies to
the button labeled “Say Hello” and Application.sayWorld.

Say Hello '
Say World

>

Hello
Hello
Hello
World
World
World
Hello
Hello

Figure 1-1. Our Tkinter GUI application after a series of clicks of “Say Hello” and
“Say World”

tkinter.Frame’s mainloop method, which our Application class inherits, waits
until a button bound to it generates an event and then runs the associated event handler.
After each event handler has run, tkinter.Frame.mainloop again begins waiting for new
events. A loop that monitors event sources and dispatches their associated handlers is
typical of event-driven programs, and is known as an event loop.

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

These concepts are the core of event-driven programming:

1. Eventsrepresent that something has occurred and to which the
program should react. In both our examples, events correspond
naturally to program input, but as we'll see, they can represent
anything that causes our program to perform some action.

2. Event handlers constitute the program’s reactions to events.
Sometimes an event’s handler just consists of a sequence of
code, as in our sys.stdin.readline example, but more often
it’s encapsulated by a function or method, as in our tkinter
example.

3. An event loop waits for events and invokes the event handler
associated with each. Not all event-driven programs have an event
loop; our sys.stdin.readline example did not because it only
responds to a single event. However, most resemble our tkinter
example in that they process many events before finally exiting.
These kinds of programs use an event loop.

Multiplexing and Demultiplexing

The way event loops wait for events affects the way we write event-driven programs, so
we must take a closer look at them. Consider our tkinter example and its two buttons;
the event loop inside mainloop must wait until the user has clicked at least one button.
A naive implementation might look like this:

def mainloop(self):
while self.running:
ready = [button for button in self.buttons if button.hasEvent()]
if ready:
self.dispatchButtonEventHandlers(ready)

mainloop continually polls each button for a new event, dispatching event handlers
only for those that have an event ready. When no events are ready, the program makes
no progress because no action has been taken that requires a response. An event-driven
program must suspend its execution during these periods of inactivity.

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

The while loop in our mainloop example suspends its program until one of the
buttons has been clicked and sayHello or sayWorld should run. Unless the user is
supernaturally fast with a mouse, this loop spends most of its time checking buttons that
haven’t been clicked. This is known as a busy wait because the program is actively busy
waiting.

A busy wait like this pauses a program’s overall execution until one of its event
sources reports an event, and so it suffices as a mechanism to pause an event loop.

The inner list comprehension that powers our implementation’s busy wait asks
a critical question: Has anything happened? The answer comes from the ready
variable, which contains all buttons that have been clicked in a single place. The
truthiness of ready decides the answer to the event loop’s question: when ready is
empty and thus falsey, no buttons have been clicked and so nothing has happened.
When it’s truthy, however, at least one has been clicked, and so something has
happened.

The list comprehension that constructs ready coalesces many separate inputs
into one. This is known as multiplexing, while the inverse process of separating
different inputs out from a single coalesced input is known as demultiplexing.

The list comprehension multiplexes our buttons into ready while the
dispatchButtonEventHandlers method demultiplexes them out by invoking each
event’s handler.

We can now refine our understanding of event loops by precisely describing how
they wait for events:

e An event loop waits for events by multiplexing their sources into a
single input. When that input indicates that events have occurred, the
event loop demultiplexes it into its constituent inputs and invokes the
event handler associated with each.

Our mainloop multiplexer wastes most of its time polling buttons that haven'’t
been clicked. Not all multiplexers are so inefficient. tkinter.Frame.mainloop’s
actual implementation employs a similar multiplexer that polls all widgets unless the
operating system provides more efficient primitives. To improve its efficiency, mainloop’s
multiplexer exploits the insight that computers can check a GUI's widgets faster than a
person can interact with them, and inserts a sleep call that pauses the entire program
for several milliseconds. This allows the program to spend part of its busy-wait loop
passively rather than actively do nothing, saving CPU time and energy at the expense of
negligible latency.

8

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

While Twisted can integrate with graphical user interfaces, and in fact has special
support for tkinter, it is at its heart a networking engine. Sockets, not buttons, are the
fundamental object in networking, and operating systems expose efficient primitives for
multiplexing socket events. Twisted’s event loop uses these primitives to wait for events.
To understand Twisted’s approach to event-driven programming, we must understand
the interaction between these sockets and these multiplexing networking primitives.

The select Multiplexer
Its History, Its Siblings, and Its Purpose

Almost all modern operating systems support the select multiplexer. select gets its
name from its ability to take a list of sockets and “select” only those that have events
ready to be handled.

select was born in 1983, when computers were capable of far less. Consequently, its
interface prevents it from operating at maximum efficiency, especially when multiplexing
a large number of sockets. Each operating system family provides its own, more efficient
multiplexer, such as BSD’s kqueue and Linux’s epoll, but no two interoperate. Luckily
their principles are similar enough to select that we can generalize their behavior from
select’s. We'll use select to explore how these socket multiplexers behave.

select and Sockets

The code that follows omits error handling and will break on many edge cases that occur
in practice. It is intended only as a teaching tool. Do not use it in real applications.
Use Twisted instead. Twisted strives to correctly handle errors and edge cases; that’s
part of why its implementation is so complicated.

With that disclaimer out of the way, let’s begin an interactive Python session and
create sockets for select to multiplex:

>>> import socket

>>> listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
>>> listener.bind(('127.0.0.1", 0))

>>> listener.listen(1)

>>> client = socket.create connection(listener.getsockname())
>>> server, _ = listener.accept()

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

A full explanation of the socket API is beyond the scope of this book. Indeed, we
expect that the parts we discuss will lead you to prefer Twisted! The preceding code,
however, contains more fundamental concepts than irrelevant details:

1. listener - This socket can accept incoming connections. It is an
internet (socket.AF_INET) and TCP (socket.SOCK_STREAM) socket
accessible by clients on the internal, local-only network interface
(which conventionally has an address of 127.0.0.1) and on a port
randomly assigned by the operating system (0). This listener can
perform the setup necessary for one incoming connection and
enqueue it until we're reading for it (1isten(1)).

2. client - This socket is an outgoing connection. Python'’s socket.
create_connection function accepts a (host, port) tuple
representing the listening socket to which to connect and returns
a socket connected to it. Because our listening socket is in the
same process and named listener, we can retrieve its host and
port with the listener.getsockname().

3. server - The server’s incoming connection. Once client has
connected to our host and port, we must accept the connection
from listener’s queue of length 1. listener.accept returns a
(socket, address) tuple; we only need the socket, so we discard
the address. A real program might log the address or use it to track
connection metrics. The listening queue, which we set to 1 via the
socket’s 1isten method, holds this socket for us before we call
accept and allows create_connection to return.

client and server are two ends of the same TCP connection. An established TCP
connection has no concept of “client” and “server”; our client socket has the same
privileges to read, write, or close the connection as our server:

>>> data = b"xyz"

>>> client.sendall(data)

>>> server.recv(1024) == data
True

>>> server.sendall(data)

>>> client.recv(1024) == data
True

10

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

The How and Why of Socket Events

Under the hood, the operating system maintains read and write buffers for each TCP

socket to account for network unreliability and clients and servers that read and write

at different speeds. If server became temporarily unable to receive data, the b"xyz"

we passed client.sendall would remain in its write buffer until server again became

active. Similarly, if we were too busy to call client.recv to receive the b"xyz" server.

sendall sent, client's read buffer would hold onto it until we got around to receiving

it. The number that we pass recv represents the maximum data we’re willing to remove

from the read buffer. If the read buffer has less than the maximum, as it does in our

example, recv will remove all the data from the buffer and return it.

Our sockets’ bidirectionality implies two possible events:

1.

A readable event, which means the socket has something available
for us. A connected server socket generates this event when

data has landed in the socket’s receive buffer, so that calling

recv after a readable event will immediately return that data.

A disconnection is represented by recving no data. By convention,
a listening socket generates this event when we can accept a new
connection.

A writable event, which means space is available in the socket’s
write buffer. This is a subtle point: as long as the socket receives
acknowledgment from the server for the data it’s transmistted
across the network faster than we add it to the send buffer, it
remains writable.

select’s interface reflects these possible events. It accepts up to four arguments:

1.

2.

a sequence of sockets to monitor for readable events;
a sequence of sockets to monitor for writable events;

a sequence of sockets to monitor for “exceptional events.” In our
examples, no exceptional events will occur, so we will always pass

an empty list here;

An optional timeout. This is the number of seconds select will
wait for one of the monitor sockets to generate an event. Omitting

this argument will cause select to wait forever.

11

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED
We can ask select about the events our sockets have just generated:

>>> import select

>>> maybeReadable = [listener, client, server]

>>> maybeWritable = [client, server]

>>> readable, writable, = select.select(maybeReadable, maybeWritable, [], 0)
>>> readable

[]

>>> writable == maybeWritable and writable == [client, server]

True

We instruct select not to wait for any new events by providing a timeout of 0. As
explained above, our client and server sockets might be readable or writable, while
our listener, which can only accept incoming connections, can only be readable.

If we had omitted the timeout, select would pause our program until one of the
sockets it monitored became readable or writable. This suspension of execution is
analogous to the multiplexing busy-wait that polled all buttons in our naive mainloop
implementation above.

Invoking select multiplexes sockets more efficiently than a busy wait because
the operating system will only resume our program when at least one event has been
generated; inside the kernel an event loop, not unlike our select, waits for events from
the network hardware and dispatches them to our application.

Handling Events

select returns a tuple with three lists, in the same order as its arguments. Iterating
over each returned list demultiplexes select’s return value. None of our sockets have
generated readable events, even though we’ve written data to both client and server;
our preceding calls to recv emptied their read buffers, and no new connections have
arrived for 1istener since we accepted server. Both client and server have generated
a writable event, however, because there’s space available in their send buffers.

Sending data from client to server causes server to generate a readable event, so
select places it in the readables list:

>>> client.sendall(b'xyz")

>>> readable, writable, = select.select(maybeReadable, maybeWritable, [], 0)
>>> readable == [server]

True

12

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

The writable list, interestingly, once again contains our client and server sockets:

>>> writable == maybeWritable and writable == [client, server]
True

If we called select again, our server socket would again be in readable and our
client and server sockets again in writable. The reason is simple: as long as data
remains in a socket’s read buffer, it will continuously generate a readable event, and as
long as space remains in a socket’s write buffer, it will generate a writable event. We can
confirm this by recving the data client sent to server and calling select again for new
events:

>>> server.recv(1024) == b'xyz'
True
>>> readable, writable, = select.select(maybeReadable, maybeWritable,

[1, 0)

>>> readable

[]

>>> writable == maybeWritable and writable == [client, server]
True

Emptying server’s read buffer has caused it to stop generating readable events, and
client and server continue to generate writable events because there’s still space in
their write buffers.

An Event Loop with select

We now know how select multiplexes sockets:

1. Different sockets generate readable or writable events to indicate
that an event-driven program should accept incoming data or
connections, or write outgoing data.

2. select multiplexes sockets by monitoring them for readable
or writable events, pausing the program until at least one is
generated or the optional timeout has elapsed.

3. Sockets continue generating readable and writable events until
the circumstances that led to those events changes: a socket
with readable data emits readable events until its read buffer

13

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

is emptied; a listening socket emits readable events until all
incoming connections have been accepted; and a writable socket
emits writable events until its write buffer is filled.

With this knowledge, we can sketch an event loop around select:
import select

class Reactor(object):
def init (self):
self. readers = {}
self. writers = {}
def addReader(self, readable, handler):
self. readers[readable] = handler
def addWriter(self, writable, handler):
self. writers[writable] = handler
def removeReader(self, readable):
self. readers.pop(readable,None)
def removeWriter(self, writable):
self. writers.pop(writable,None)
def run(self):
while self. readers or self. writers:
r, w, = select.select(list(self. readers), list
(self. writers), [])
for readable in r:
self. readers[readable](self, readable)
for writable in w:
if writable in self. writers:
self. writers[writable](self, writable)

We call our event loop a reactor because it reacts to socket events. We can request
our Reactor call readable event handlers on sockets with addReader and writable event
handlers with addWriter. Event handlers accept two arguments: the reactor itself and
the socket that generated the event.

The loop inside the run method multiplexes our sockets with select, then
demultiplexes the result between sockets that have generated a read event and sockets
that have generated a write event. The event handlers for each readable socket run
first. Then, the event loop checks that each writable socket is still registered as a writer

14

CHAPTER 1 AN INTRODUCTION TO EVENT-DRIVEN PROGRAMMING WITH TWISTED

before running its event handler. This check is necessary because closed connections
are represented as read events, so a read handler run immediately prior might remove a
closed socket from the readers and writers. By the time its writable event handler runs,
the closed socket would be removed from the _writers dictionary.

Event-Driven Clients and Servers

This simple event loop suffices for implementing a client that continually writes data to a
server. We'll begin with the event handlers:

def accept(reactor, listener):
server, = listener.accept()
reactor.addReader(server, read)

def read(reactor, sock):
data = sock.recv(1024)
if data:
print("Server received", len(data),"bytes.")
else:
sock.close()
print("Server closed.")
reactor.removeReader (sock)

DATA=[b"*", b"*"]

def write(reactor, sock):
sock.sendall(b"".join(DATA))
print("Client wrote", len(DATA)," bytes.")
DATA. extend (DATA)

The accept function handles a readable event on a listening socket by accepting the
incoming connection and requesting the reactor monitor it for readable events. These
are handled by the read function.

The read function handles a readable event on a socket by attempting to receive
a fixed amount of data from the socket’s receive buffer. The length of any received
data is printed - remember, the amount passed to recv represents an upper bound on
the number of bytes returned. If no data is received on a socket that has generated a
readable event, then the other side of the connection has closed its socket, and the read

15

