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Preface

This book is mainly comprised of excellent presentations delivered in the 5th
Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5–7, 2017.
Biostatistics and bioinformatics have been playing a key role in statistics and
other scientific research fields in recent years. The aim of the 5th Workshop on
Biostatistics and Bioinformatics was to stimulate research, foster interaction among
researchers in field, and offer opportunities for learning and facilitating research
collaborations in the era of big data. From this successful workshop, the two editors
selected excellent presentations for this book. All the 22 chapters are peer-reviewed
and revised multiple times before the final acceptance. This book provides the most
recent advances in the field, presenting new methods and case applications at the
frontiers of biostatistics and bioinformatics research and interdisciplinary areas.
This timely book makes invaluable contributions to biostatistics and bioinformatics
and offers insights for researchers, students, and industry practitioners.

The 22 chapters are organized into 5 parts. Part I includes five chapters that
present a review of the theoretical framework in biostatistics. Part II consists of
four chapters on wavelet-based approach for complex data. Part III is composed
of six chapters that present clinical trials and statistical modeling. Part IV outlines
high-dimensional gene expression data analysis. Part V consists of four chapters
on survival analysis. We organize the chapters as self-contained units, and the
references of the chapter are at the end of the each chapter so that readers can refer to
the cited sources easily. To better understand the proposed procedures in the book,
the readers can readily request the data sets and computer programs from the two
editors. Therefore, the readers can apply these new statistical methods of the book
for their own research.

v



vi Preface

Part I: Review and Theoretical Framework in Biostatistics
(Chaps. 1–4)

The chapter “Optimal Weighted Wilcoxon–Mann–Whitney Test for Prioritized
Outcomes” reviews concepts of prioritized outcomes in a two-group randomized
clinical trial of multiple outcomes, where mortality affects the assessment of the
other follow-up outcomes. In this chapter, Matsouaka, Singhal, and Betensky
develop a weighted Wilcoxon–Mann–Whitney test procedure to analyze the data
and determine the optimal weights that maximize its power. The authors obtain the
analytical power formula for the test statistic and compare its results with those
obtained via simulation studies using a range of treatment effects on the outcomes.

In the chapter “A Selective Overview of Semiparametric Mixture of Regression
Models,” Xiang and Yao conduct a systematic overview of new semiparametric
mixture of regression models, which have been popularly used in many applications.
Recent advances and open questions are also discussed.

In the chapter “Rank-Based Empirical Likelihood for Regression Models with
Responses Missing at Random,” Bindele and Zhao consider a general regression
model with responses missing at random. From an imputed rank-based objective
function, the authors derive a rank-based estimator, and its asymptotic distribution is
established. An empirical likelihood approach is proposed based on the rank-based
objective function, from which its asymptotic distribution is established.

In the chapter “Bayesian Nonparametric Spatially Smoothed Density Estima-
tion,” Hanson, Zhou, and de Carvalho develop a Bayesian nonparametric density
estimator, which changes smoothly in space. The estimator is built using the
predictive rule from a marginalized Polya tree so that observations are spatially
weighted by their distance from the location of interest. The authors propose a
simple refinement to accommodate arbitrarily censored data and develop a test for
whether the density is spatially varying.

Part II: Wavelet-Based Approach for Complex Data
(Chaps. 5–8)

The chapter “Mammogram Diagnostics Using Robust Wavelet-Based Estimator
of Hurst Exponent” presents the robust estimation of Hurst exponent in two-
dimensional images based on non-decimated wavelet transforms. The properties
of the proposed estimators are studied both theoretically and numerically. In this
chapter, Feng, Mei, and Vidakovic show how to apply proposed methods to digitized
mammogram images, estimate Hurst exponent, and then use it as a discriminatory
descriptor to classify mammograms to benign and malignant.

In the chapter “Wavelet-Based Profile Monitoring Using Order-Thresholding
Recursive CUSUM Schemes,” Zhang, Mei, and Shi propose a novel wavelet-

http://dx.doi.org/10.1007/978-3-319-99389-8_1
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based profile monitoring procedure, which is based on the order-thresholding
transformation of recursive CUSUM statistics of multiple wavelet coefficients. The
authors carry out extensive simulation studies and a case study of tonnage profile
data, which show that proposed procedure is efficient for detecting the unknown
local changes on the profile.

In the chapter “Estimating the Confidence Interval of Evolutionary Stochastic
Process Mean from Wavelet-Based Bootstrapping,” de Medeiros and de Souza
propose to estimate the uncertainty for the evolutionary mean of a stochastic process
based on bootstrapping of wavelet coefficients. By discrete wavelet transform,
the authors apply bootstrap to estimate the confidence interval of the autocor-
relation for a time series. Moreover, these methods with few modifications are
implemented.

In the chapter “A New Wavelet-Based Approach for Mass Spectrometry Data
Classification,” Cohen, Messaoudi, and Badir propose a statistical methodology of
a reliable diagnosis for classifying mass spectrometry data with a type of cancer.
The authors go over wavelets, principal component analysis, and support vector
machines, and perform a study on low-mass SELDI spectra from patients with breast
cancer and from normal controls. The performance is evaluated with a k-fold cross
validation technique and simulation study. The performance of the proposed method
is excellent with an accurate classification of mass spectrometry.

Part III: Clinical Trials and Statistical Modeling (Chaps. 9–14)

In the chapter “Statistical Power and Bayesian Assurance in Clinical Trial Design,”
Chen and Chen propose a Bayesian assurance as an alternative to the conventional
statistical power to incorporate the uncertainties of this observed treatment effect.
In this chapter, the authors review the transition from conventional statistical power
to Bayesian assurance and discuss the computations of Bayesian assurance using a
Monte Carlo simulation-based method.

The chapter “Equivalence Tests in Subgroup Analyses” proposes that the
consistency of the treatment effect in two subgroups should be assessed using an
equivalence test called consistency test. In this chapter, Ring, Scharpenberg, Grill,
Schall, and Brannath present tests for both quantitative and binary outcome variables
and review the basic properties of these consistency tests using simulation studies.
The authors also indicate that equivalence tests can be used both to assess the
consistency of treatment effects across subgroups and to detect medically relevant
heterogeneity in treatment effects across subgroups.

In the chapter “Predicting Confidence Interval for the Proportion at the Time of
Study Planning in Small Clinical Trials,” Yu and Vexler discuss “future” confidence
interval prediction with binomial outcomes for small clinical trials and sample
size calculation, where the “future” confidence interval emphasizes the confidence
interval as a function of a random sample that is not observed at the planning

http://dx.doi.org/10.1007/978-3-319-99389-8_9
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stage of a study. The authors propose three probabilistic approaches to future
confidence interval prediction when the sample size is small. The approach based
on the expectation of the boundaries has the most desirable properties and is easy to
implement.

The chapter “Importance of Adjusting for Multi-Stage Design When Analyzing
Data from Complex Surveys” illustrates possible discrepancies in point estimates
and standard errors using 2014–2015 TUS data. In this chapter, Ha and Soulakova
show the importance of using the guidelines when analyzing complex surveys.
The authors discuss three methods: method I ignores any weighting, method II
incorporates the main weight only, and method III utilizes the main weight and
balanced repeated replications with specified replicate weights.

In the chapter “Analysis of the High School Longitudinal Study to Evaluate
Associations Among Mathematics Achievement, Mentorship and Student Partici-
pation in STEM Programs,” Murillo, Tiwari, and Affuso analyze a subsample of
the High School Longitudinal Study (2009–2013) dataset (HSLS:09). Regression
models are applied to evaluate mathematics achievement and student enrollment in
STEM major/careers based on their individual participation. Differences based on
sex, race/ethnicity, and socioeconomic status are assessed.

The chapter “Statistical Modeling for the Heart Disease Diagnosis via Multiple
Imputation” addresses a common challenge of missing data during statistical
analysis of clinic data. Missing data causes severe problems in statistical analysis
and leads to invalid conclusions. Multiple imputation is a useful strategy for
handling missing data. In the chapter, Li and Zhao apply the multiple imputation
to a public accessible heart disease dataset, which has a high missing rate, and build
a prediction model for the heart disease diagnosis.

Part IV: High-Dimensional Gene Expression Data Analysis
(Chaps. 15–18)

In the chapter “Learning Gene Regulatory Networks with High-Dimensional Het-
erogeneous Data,” Jia and Liang propose to model the heterogeneous data using a
mixture Gaussian graphical model and apply the imputation-consistency algorithm
to estimate the parameters of the mixture model and cluster the samples to different
subgroups. The proposed method is compared with an existing method for learning
mixture Gaussian graphical models as well as a few other methods for homogeneous
data, such as graphical Lasso, etc.

The chapter “Performance Evaluation of Normalization Approaches for Metage-
nomic Compositional Data on Differential Abundance Analysis” assesses nor-
malization methods for metagenomic sequence data. In this chapter, Du, An,
and Fang further study the impact of normalization on subsequent differential
abundance analysis. The authors suggest the selection of a normalization method
for metagenomic compositional data should be made on a case-by-case basis.

http://dx.doi.org/10.1007/978-3-319-99389-8_15
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The chapter “Identification of Pathway-Modulating Genes Using the Biomedical
Literature Mining” centers on an effective use of biomedical literature for the
identification of the relationships among genes. A Bayesian hierarchical model was
proposed, which allows to identify indirect relationship between genes by linking
them using the gene ontology terms. In this chapter, Yu, Nam, Couch, Lawson, and
Chung illustrate this method using the web interface GAIL. It provides the PubMed
literature mining results, along with the R package by the Bayesian hierarchical
model.

The chapter “Discriminant Analysis and Normalization Methods for Next-
Generation Sequencing Data” studies discriminating and normalization methods for
gene expression analysis with the development of high-throughput techniques. A
number of new discriminant analysis methods have been proposed to discriminate
next-generation sequencing data. In this chapter, Zhou, Wang, Zhao, and Tong
introduce three methods including the Poisson linear discriminant analysis, the
zero-inflated Poisson logistic discriminant analysis, and the negative binomial
linear discriminant analysis and further introduce several normalization methods
for processing next-generation sequencing data.

Part V: Survival Analysis (Chaps. 19–22)

In the chapter “On the Landmark Survival Model for Dynamic Prediction of Event
Occurrence Using Longitudinal Data,” Zhu, Li, and Huang demonstrate that a
joint distribution of longitudinal and survival data exists that satisfy the modeling
assumptions without additional restrictions. In addition, the authors propose an
algorithm to generate data from this joint distribution and generalize the results
to the more flexible landmark linear transformation models, which include the
landmark Cox model.

In the chapter “Nonparametric Estimation of a Cumulative Hazard Function with
Right Truncated Data,” Zhang, Jiang, Zhao, and Akcin develop the nonparametric
inference for the forward-time hazard. The authors study a family of weighted
tests for comparing the hazard function between two independent samples. The
authors analyze the data set about AIDS incubation time to illustrate the proposed
procedures.

In the chapter “Empirical Study on High-Dimensional Variable Selection and
Prediction Under Competing Risks,” Hou and Xu consider competing risk analysis
and explore statistical properties in the presence of high-dimensional predictors. The
authors study the accuracy of prediction and variable selection of existing statistical
learning methods using extensive simulation studies, including different approaches
to choosing penalty parameters in each method.

In the chapter “Nonparametric Estimation of a Cumulative Hazard Function with
Right Truncated Data,” Akcin, Zhang, and Zhao study the nonparametric inference
for the hazard rate function with right truncated data. Kernel smoothing techniques

http://dx.doi.org/10.1007/978-3-319-99389-8_19
http://dx.doi.org/10.1007/978-3-319-99389-8_22
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are used to get smoothed estimates of hazard rates. Three commonly used kernels,
uniform, Epanechnikov, and biweight kernels are applied on the AIDS data to
illustrate the proposed methods.

We are very grateful to all of people, who have supported the creation of
this book with Springer. First, we thank the authors of each chapter for their
wonderful contributions. Second, our deep gratitude goes to all the reviewers for
their dedicated reviews, which improved the quality of the book significantly.
Third, we would like to acknowledge the leadership of the organizing committee
and all the volunteers of the 5th Workshop on Biostatistics and Bioinformatics
because this book would be impossible without this workshop. Last but not least,
our sincere appreciations go to the professional support and great assistance of
Nicholas Philipson (Springer/ICSA Book Series coordinator and editorial director,
Business/Economics & Statistics), Nitza Jones-Sepulveda (associate editor) from
Springer New York, and Sindhuraj Thulasingam (Project Coordinator of Books)
from Springer Nature, which made this book published. We welcome readers’
comments on typos, errors, and improvements about the book. If there is an
exchange, please send comments and suggestions to Dr. Yichuan Zhao (email:
yichuan@gsu.edu) and Dr. Ding-Geng Chen (email: dinchen@email.unc.edu).

Atlanta, GA, USA Yichuan Zhao
Chapel Hill, NC, USA Ding-Geng Chen
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Chapter 1
Optimal Weighted
Wilcoxon–Mann–Whitney Test for
Prioritized Outcomes

Roland A. Matsouaka, Aneesh B. Singhal, and Rebecca A. Betensky

This chapter reviews keys concepts of prioritized outcomes in a two-group random-
ized clinical trial of multiple outcomes, where mortality affects the assessment of
the other follow-up outcomes. The main concepts related to prioritized endpoints
along with the different terminologies used in the literature are discussed. Then,
statistical tenets of worst-rank composite endpoints are reviewed using a combined
endpoint of mortality and a continuous outcome.

We motivate the approach using a randomized clinical trial of normobaric
oxygen therapy on patients who underwent an acute ischemic stroke where we
combine a continuous outcome with mortality into a single composite endpoint
using the worst-rank framework. We develop a weighted Wilcoxon–Mann–Whitney
test statistic to analyze the data and determine the optimal weights that maximize its
power. We provide the rationale for the weights and their relative importance in data
analysis. In addition, we derive the analytical power formula for the test statistic.
To demonstrate that the proposed power formula produces valid power estimations,
we compare its results with those obtained empirically via Monte-Carlo simulations
using a range of treatment effects on the outcomes. Finally, we illustrate the method
using data from the clinical trial of normobaric oxygen therapy.
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1.1 Introduction

In clinical trials of multifaceted diseases, multiple outcomes are usually evaluated to
estimate and compare the effects of a new active treatment over a control treatment.
Although these outcomes can be analyzed separately, they are usually combined
into a single composite endpoint to take into account the complexity of the disease
manifestations and capture different aspects of the treatment effects. Combining
outcomes has several advantages: it increases statistical precision and efficacy,
reduces considerably the number of patients needed to enroll for a given expected
treatment effect or to reach a specific statistical power, circumvents the needs for
multiple testing, and provides an overall assessment of the treatment effect.

One of the most commonly used methods for combining multiple outcomes is
the time-to-first event. For this method, only a patient’s initial event during the
trial is considered in the analysis while all of the subsequent events are ignored.
However, such a composite endpoint have serious practical limitations that often
result in misleading interpretations and poor medical decisions which are of greater
concerns. Usually, component outcomes of a composite endpoint are not equally
important or clinically relevant; they do not occur at the same frequency and are
not similarly impacted by the treatment. More than often, treatment effects and
significant statistical analyses are driven by components of lesser importance. As
such, they do not provide a more comprehensive perspective of the disease burden
that is realistic, congruent with clinical judgment or aligned with the perceptions
and expectations of patients and their caregivers.

This is illustrated in many cardiovascular disease trials where mortality remains
the major outcome of interest which, fortunately, is often less frequent and tends
to occur later in a trial (see, for instance, the relative perceived clinical severity
of typical components of composite endpoints considered in recent cardiovascular
trials given in Fig. 1.1). In a clinical trial of “death or heart failure hospitalization”
(whichever comes first), for example, a patient may experience multiple heart failure
hospitalizations and eventually die. Clearly, a patient who has a minor heart attack
after 1 week of follow-up but remain event-free subsequently for several consecutive
years should not be considered as having a worse outcome compared to another
patient in the trial who dies after 2 months of follow-up.

Therefore, standard statistical analyses based on these time-to-first outcome
event where subsequent events are ignored may skew the assessment of the
treatment effect, lead to biased results, and poorly reflect the true burden of
the patient’s disease experience (Anker and Mcmurray 2012; Anker et al. 2016;
Ferreira-González et al. 2007b; Freemantle et al. 2003; Lubsen and Kirwan 2002;
Prieto-Merino et al. 2013; Freemantle et al. 2003; Heddle and Cook 2011; Claggett
et al. 2013; Brown et al. 2016). Moreover, the composite endpoint of time-to-first
event are not applicable when the component outcomes are on different scales, such
as a mixture of discrete, continuous, time-to-event, and quality-of-life outcomes
(Felker et al. 2008; Tyler et al. 2011; Bebu and Lachin 2015).
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Fig. 1.1 Relative severity of cardiovascular disease outcomes (from death onward out of the
spiral). Acronyms: MI: myocardial infarction; HF: heart failure (used with permission from
Armstrong and Westerhout (2017))

Despite these serious limitations, analyses of composite endpoints are ubiquitous
in a large number of clinical research areas including cardiovascular disease
(Lisa and James 1997; Bakal et al. 2012b,a, 2015; Neaton et al. 2005; Follmann
et al. 1992; Brittain et al. 1997; Felker et al. 2008), infectious diseases (Neaton
et al. 1994; Finkelstein and Schoenfeld 1999; Follmann et al. 2007), oncology
(Freemantle et al. 2003), nephrology (Hariharan et al. 2003; Li et al. 2001),
neurology and psychiatry (Davis et al. 2003), health services, autoimmune disease,
dermatology (Kaufman et al. 1998), respiratory (Spencer et al. 2007), rheumatoid
arthritis, limb ischemia (Subherwal et al. 2012), orthopedics (DeCoster et al. 1999),
urology, anesthesia, migraines, obstetrics, and gynecology (Ross 2007; Wen et al.
2017)—even though their limitations and unsatisfactory characteristics are widely
recognized and genuinely mentioned in most publications (Manja et al. 2017; Zhang
et al. 1997; Anker et al. 2016; Tyler et al. 2011; Cordoba et al. 2010; Rowan et al.
2008; Prieto-Merino et al. 2013).

Several alternative methods have been proposed to combine multiple outcomes
while taking into account their clinical priority (Lisa and James 1997; Bakal
et al. 2015; Neaton et al. 2005; Follmann et al. 1992; Brittain et al. 1997; Felker
et al. 2008). Among them are the methods based on prioritized outcomes where
component outcomes are prioritized and ordered—following a specific, prespecified



6 R. A. Matsouaka et al.

hierarchy and with respect to their clinical importance—from the most severe (e.g.,
mortality) to the least severe one (or more favorable). Usually, the clinical questions
of interest dictate the choice and order of the prioritized endpoints. Treatment
comparison requires pairwise comparisons of patients’ outcomes, where each pair
comprise one patient from one treatment group (e.g., active treatment) and another
patient from the alternative treatment group (e.g., control treatment). The statistical
underpinnings of these methods are based on ranks. These ranks are used to draw
inference as to whether a randomly selected patient in the active treatment will
have, on average, a better overall composite endpoint compared to a randomly
selected patient in the control treatment group by using the Wilcoxon–Mann–
Whitney (WMW) test statistic. These methods, which are considered as part of
the global rank approaches (Huang et al. 2008; Ramchandani et al. 2016), can be
classified into two distinct categories based on the decision rules that dictate how to
proceed from one outcome to a subsequent outcome on the hierarchy of outcomes.

On the one hand, we have the proportion in favor of treatment (PFT) of Buyse
(2010) (also known as the win difference Luo et al. 2017) and the win ratio (WR)
introduced by Pocock et al. (2011), which follow the ideas from Moyé et al.
(1992) and Finkelstein and Schoenfeld (1999). In these methods, pairwise outcome
comparisons between patients from the active and control treatment groups are
conducted, starting from the most severe outcome. For each pairwise comparison,
the patient with a better outcome is declared a winner. If it is not possible to
determine the winner (e.g., comparison inconclusive or indeterminate) on the most
severe outcome, the two patients are then compared on the second most severe
outcome, and so forth. Finally, each patient score is recorded as a win (better
outcome in the pairwise comparison), a loss (worse outcome), or a tie (when unable
to declare a winner after exhausting all available outcomes).

The PFT is defined as the difference between the proportions of wins in the active
and control treatment groups. The null hypothesis of no difference between the
treatment groups corresponds to a PFT that is equal to 0, while a positive (resp.,
negative) value demonstrates that the active treatment is better (worse) than the
control treatment. Similarly, the WR is the ratio of the proportion of wins in the
active treatment over the proportion of wins in the control treatment. Under the null
hypothesis, the WR is equal to 1. It is greater (resp., less) than 1 when the active
treatment is beneficial (disadvantageous) compared to the control treatment.

On the other hand, we have the worst-rank score analysis—based on the original
idea of Gould (1980) and O’Brien (1984). For this method, patients are placed
into “buckets” (to use the analogy from Subherwal et al. 2012) on the hierarchy
of component outcomes. In other words, each patient is categorized based on her or
his worst personally experienced outcome. All the patients who have experienced
the worst outcome (e.g., those who died) are assigned to the lowest-ranked bucket,
patients who did not experience the worst outcome, but the second worst outcome
are placed in the second lowest-ranked bucket, and so forth. Finally, depending on
the predetermined choice of the component outcomes, patients with the less severe
outcome or who did not experience any of the component outcomes are assigned to
the highest-ranked bucket (Lachin 1999; Matsouaka and Betensky 2015; Matsouaka
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et al. 2016). Then, every patient in the active treatment group is compared to every
patient in the control treatment group to determine whether the actively treated
patient’s outcome is better than or the same as the outcome of the patient in the
control treatment.

The final result is determined by the buckets the compared patients belong to and
by their respective outcomes. If the pair of patients is from the same bucket, they are
compared by the magnitude of their outcome measures or by their first times to the
event (whichever characterizes the bucket), where the longer the time-to-event the
better (e.g., later death will be considered better compared to earlier death). If the
two patients belong to two different buckets, the patient in the higher-ranked bucket
is considered to have a better outcome than the patient in the lower-ranked bucket.
Therefore, at the end of the process, all patients are ranked.

Despite the seemingly resemblance between the WR (or the PFT) and the worst-
rank score analysis, there are stark clinical and statistical methodological differences
between them. Therefore, the choice of one method versus the other must be
motivated by the clinical questions of interest and should be predetermined before
any analysis. This choice must not be merely dictated by the convenience to pick a
method that provides the most significant results. Unlike the win ratio where the
focus is put first on the worst outcome and where the next consecutive ranked
outcomes (or events experienced by patients) are leveraged only to break ties, with
the worst-rank score analysis the first most important step is to place patients in
buckets, depending on the worst outcome or event they have personally experienced.
Pairwise comparison of patients in one group versus the other is done within and
between buckets. When the outcomes of patients from the same bucket are tied, the
patients are declared similar and are ranked accordingly. No further comparison is
needed. Likewise, when patients are from two different buckets, the patient in the
higher-ranked bucket is always considered to have a better outcome.

In practice, the win ratio (or the proportion in favor of the treatment) is used in
randomized trials where the most severe outcome is the main outcome of interest.
In those trials, it is anticipated that a good percentage of patients will have the most
severe outcome, which justify the a priori set to such an outcome. For instance,
Pocock et al. (2011) reanalyzed the EMPHASIS-HF data to compare eplerenone
against placebo in 2737 patients with NYHA class II heart failure and an ejection
fraction less than 35% who were recruited at 278 centers in 29 countries. 1364
patients were randomly assigned to eplerenone and 1373 to placebo and the median
follow-up time was 21 months. Pairs of patients from eplerenone and placebo were
compared first on cardiovascular (CV) death and, if it was not possible to determine
who had a CV death before the other, it was then determined who had a heart
failure hospitalization first. Overall, there were a total of 147 deaths (10.8%) in the
eplerenone group and 185 (13.5%) in the placebo group attributed to cardiovascular
causes. Of the patients receiving eplerenone, 164 (12.0%) were hospitalized for
heart failure, as compared with 253 patients (18.4%) receiving placebo.

The worst-rank score analysis is mostly used in trials where the most severe
outcome is not the primary outcome. Usually, it is expected that a small percentage
of patients will experience the most severe outcome. Therefore, it is mostly used in
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settings where the primary interest lies on a nonterminal (nonfatal) outcome, but for
which analyses of the observed data are complicated due to the presence of missing
observations due to death.

Felker and Maisel (2010) proposed the use of worst-rank score analysis in a
hypothetical study of a phase II acute heart failure trial. They suggested a global
rank score analysis of 200 patients with 101 patients in the active treatment group
and 99 in the placebo group. Patients were compared for in-hospital mortality (4%
patients in each group), lack of dyspnea improvement at 24 h (44% patients in active
treatment group and 54% in the placebo group), detectable troponin or an increase
in troponin by 25% during index hospitalization (7 and 5%, respectively), creatinine
increase by more than 0.3 mg/dl (7% and 10%), and finally on change in pro-BNP
from randomization to discharge. In another example, Lachin (1999) reexamined a
clinical trial of the effect of vesnarinone versus placebo on patients with congestive
heart failure and used a worse-rank score analysis of exercise time after 12 weeks
of treatment after treatment and death (Feldman et al. 1991). Of the 80 patients
randomized (40 in each group), six died before week 12 with five of them in the
placebo group.

In this chapter, we consider the worst-rank score analysis and present a frame-
work that allows us to weight the components of a worst-rank (composite) endpoint
by relying uniquely on the data at hand. Matsouaka and Betensky studied the
statistical properties of the worst-rank analyses based on the (ordinary) Wilcoxon–
Mann–Whitney (WMW) test. They considered both tied worst-rank scores (all
patients who died are assigned a fixed score) and untied worst-rank scores (where
patients who died are ranked based on their time to the death, with the longer time
to death the better) in the ranking of the components of the composite outcomes
(Matsouaka and Betensky 2015).

For this chapter, we focus on the untied worst-rank score analyses. We assume
that we have a data set where we can identify approximately well the time-to-
death for each patient who died during the follow-up time. Although, one can
easily adapt our method and result in the context of a tied worst-rank analysis. The
current framework extends the worst-rank analysis of Matsouaka and Betensky by
providing a weighted test statistic where its corresponding weights are optimal in
the sense that they maximize the power of the test under a particular alternative
hypothesis. We explore the statistical properties of the optimal weighted WMW test
on a worst-rank composite endpoint, looking at the null hypothesis of no difference
between treatment against a unidirectional alternative hypothesis that the treatment
has a favorable effect on the components of the worst-rank composite endpoints or
it is at least as effective as the control treatment.

To anchor the framework in the context of worst-rank score analysis, we use, as
an example, a randomized clinical trial of acute ischemic stroke conducted at the
Massachusetts General Hospital in Boston, Massachusetts. In this trial, a total of
85 patients who had acute ischemic stroke were randomly assigned to either room
air (control therapy) or normobaric oxygen therapy (NBO), administered for 8 h.
Then, the patients were assessed serially for clinical function scores including the
National Institutes of Health stroke scale (NIHSS) score—a function rating scale


