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Preface

Amajor goal in mathematics as well as in physics has been and still is to understand
the geometry of space and time. Developments in both subjects have fruitfully
influenced each other over the history of science. The formulation of general
relativity by Einstein would not have been possible without the concepts of (semi-)
Riemannian geometry that had emerged with the visionary ideas of Riemann in the
previous century. Conversely, ideas from general relativity influenced mathematical
research and the study of Einstein’s equation is one of today’s major topics in
geometric analysis.

Similarly, the development of more recent areas of theoretical physics, such
as string theory, is deeply connected to the study of geometric problems in
mathematics, such as the study of metrics of special holonomy. It turned out that
geometric flows are also of great importance in the interplay between mathematics
and physics; e.g., the Riemann Penrose inequality has been shown by Huisken and
Ilmanen using the inverse mean curvature flow.

This volume is based on a summer school and workshop entitled “Geometric
flows and the geometry of space-time” held at the University of Hamburg in
September 2016. The aim of this event was to provide a forum where physicists
and mathematicians can exchange ideas and where graduate students and young
researchers get the opportunity to learn about recent developments at the intersection
of mathematics and physics.

It brought together around 60 participants with mathematical and physical
backgrounds. The speakers were Lars Andersson, Helga Baum, Spiros Cotsakis, Pau
Figueras, Gary Gibbons,Mark Haskins, Jason Lotay, Thomas Leistner, Jan Metzger,
and Oliver C. Schnürer.

Out of these 10 speakers, 7 gave two talks where the first one was more of an
introductory nature and the other one was more focused on actual research. These
talks covered a broad variety of topics, ranging from special holonomy metrics to
various concepts of mass in general relativity and the numerical and analytic study
of black hole space-times.

Moreover, three of the speakers gave minicourses where each of them had a total
length of 180min. One minicourse was more of a physical nature and was held
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vi Preface

by Gary Gibbons about the theory of black holes. The other two lecture courses
were more of a mathematical nature. One course was held by Oliver C. Schnürer
about geometric flows and focused in particular on mean curvature flow. The other
course held by Helga Baum was about special holonomy and parallel spinors in
Lorentzian geometry. In addition, we had two related talks about Cauchy problems
for Lorentzian manifolds of special holonomy by Thomas Leistner.

This volume consists of two articles. The first is based on the mathematical
lecture course by Oliver C. Schnürer and the second on the mathematical lecture
course by Helga Baum extended by results presented in the lectures by Thomas
Leistner.

Another volume based on the third lecture course about the theory of black holes
is planned. The papers are written for graduate students and researchers with a
general background in geometry and in the theory of partial differential equations,
who want to get acquainted with these central subjects of modern geometry. We
hope this volume will be helpful and inspiring.

Hamburg, Germany Vicente Cortés
July 2018 Klaus Kröncke

Jan Louis



Contents

Lorentzian Geometry: Holonomy, Spinors, and Cauchy Problems . . . . . . . . 1
Helga Baum and Thomas Leistner

Geometric Flow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Oliver C. Schnürer

vii



Lorentzian Geometry: Holonomy,
Spinors, and Cauchy Problems

Helga Baum and Thomas Leistner

Contents

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Lorentzian Holonomy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Basics on Holonomy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Holonomy Groups of Lorentzian Manifolds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Lorentzian Spin Geometry: Curvature and Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Spin Structures and Spinor Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Curvature and Holonomy of Lorentzian Manifolds with Parallel Spinors . . . . . . . . . . . . 25

5 Constraint Equations for Special Lorentzian Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1 Constraint Equations for Recurrent and Parallel Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Constraint Equations for Parallel Spinor Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 The Cauchy Problem for the Vacuum Einstein Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1 The Constraint Conditions for the Vacuum Einstein Equations . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Results from PDE Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 The Vacuum Einstein Equations as Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 The Vacuum Einstein Equations as Symmetric Hyperbolic System. . . . . . . . . . . . . . . . . . . 49

7 Cauchy Problems for Lorentzian Special Holonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.1 Evolution Equations for a Parallel Lightlike Vector Field in the Analytic Setting . . . . 56
7.2 The Cauchy Problem for a Parallel Lightlike Vector Field as a Symmetric

Hyperbolic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Cauchy Problem for Parallel Lightlike Spinors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Geometric Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.1 Applications to Lorentzian Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Applications to Spinor Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

H. Baum (�)
Humboldt University Berlin, Department of Mathematics, Berlin, Germany
e-mail: baum@mathematik.hu-berlin.de

T. Leistner (�)
School of Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia
e-mail: thomas.leistner@adelaide.edu.au

© Springer Nature Switzerland AG 2018
V. Cortés et al. (eds.), Geometric Flows and the Geometry of Space-time, Tutorials,
Schools, and Workshops in the Mathematical Sciences,
https://doi.org/10.1007/978-3-030-01126-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01126-0_1&domain=pdf
mailto:baum@mathematik.hu-berlin.de
mailto:thomas.leistner@adelaide.edu.au
https://doi.org/10.1007/978-3-030-01126-0_1


2 H. Baum and T. Leistner

Abstract This review is based on lectures given by the authors during the Summer
School Geometric Flows and the Geometry of Space-Time at the University of
Hamburg, September 19–23, 2016. In the first part we describe the algebraic
classification of connected Lorentzian holonomy groups. In particular, we specify
the holonomy groups of locally indecomposable Lorentzian spin manifolds with a
parallel spinor field. In the second part we explain new methods for the construction
of globally hyperbolic Lorentzian manifolds with special holonomy based on the
solution of certain Cauchy problems for PDEs that are imposed by the existence of a
parallel lightlike vector field or a parallel lightlike spinor field with initial conditions
on a spacelike hypersurface. Thereby, we derive a second order evolution equation
of Cauchy-Kowalevski type that can be solved in the analytic setting as well as an
appropriate first order quasilinear hyperbolic system that yields a solution in the
smooth case.

1 Introduction

This review is based on lectures given by the authors during the Summer School
Geometric Flows and the Geometry of Space-Time at the University of Hamburg,
September 19–23, 2016. In these lectures we described at one hand the algebraic
classification of connected Lorentzian holonomy groups and explained at the other
hand new methods for the construction of Lorentzian manifolds with special
holonomy based on the solution of appropriate Cauchy problems with initial
conditions on a spacelike hypersurface.

The holonomy group of a semi-Riemannian manifold (M, g) is the group of
parallel transports along all curves that are closed at a fixed point x ∈ M . It is a Lie
subgroup of the group of all orthogonal transformations of (TxM, gx), its connected
component is isomorphic to the holonomy group of the universal semi-Riemannian
covering of (M, g).

The concept of holonomy was probably first successfully applied in differential
geometry by E. Cartan [31–33], who used it to classify symmetric spaces. Since
then, it has proved to be a very important concept. In particular, it allows to describe
parallel sections in geometric vector bundles over (M, g)—such as tangent, tensor
or spinor bundles—as holonomy invariant objects and therefore by purely algebraic
tools. Moreover, geometric properties like curvature properties can be read off if the
holonomy group is special, i.e., a proper subgroup of O(TxM, gx). One of the impor-
tant consequences of the holonomy notion is its application to the ‘classification’
of special geometries that are compatible with Riemannian geometry. For each of
these geometries an own branch of differential geometry has developed, for example
Kähler geometry (holonomy U(m)), geometry of Calabi-Yau manifolds (SU(m)),
hyper-Kähler geometry (Sp(k)), quaternionic Kähler geometry (Sp(k) · Sp(1)), or
the exceptional geometry of G2-manifolds or of Spin(7)-manifolds. In physics there
is much interest in semi-Riemannian manifolds with special holonomy, since they
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often allow to construct spaces with additional supersymmetries (Killing spinors).
The development of holonomy theory has a long history. We refer for details to
[22, 25, 26, 51].

The irreducible holonomy representations of simply connected semi-Riemannian
manifolds were classified by M. Berger in the 1950s [19, 20]. Since any holonomy
representation of a Riemannian manifold splits into irreducible subrepresentations,
Berger’s results yield the classification of the connected holonomy groups of
Riemannian manifolds. The situation in Lorentzian geometry is more difficult. The
only connected irreducible Lorentzian holonomy group is the group SO0(1, n− 1).
Hence, if a connected Lorentzian holonomy group is a proper subgroup of
SO0(1, n − 1), then it acts decomposable or it acts indecomposable but non-
irreducible, i.e., it admits an invariant degenerate subspace.

The holonomy groups of 4-dimensional Lorentzian manifolds were classified by
physicists working in General Relativity [49, 72, 73]. The general dimension was
long time ignored. Due to the development of supergravity and string theory in
the last decades physicists as well as mathematicians became more interested in
higher dimensional Lorentzian geometry. The search for special supersymmetries
required the classification of holonomy groups in higher dimension. In the beginning
of the 1990s, L. Berard-Bergery and his students began a systematic study of
Lorentzian holonomy groups. They discovered many special features of Lorentzian
holonomy. Their groundbreaking paper [18] on the algebraic structure of subgroups
H ⊂ SO0(1, n − 1) acting with a degenerate invariant subspace was the starting
point for the classification. The second author [60, 61] completed the classification
of the connected Lorentzian holonomy groups by the full description of the structure
of such H ⊂ SO(1, n − 1) which can appear as holonomy groups. It remained to
show that any of the groups in this holonomy list can be realised by a Lorentzian
metric. Many realisations were known before but some cases were still open until
A. Galaev [44] finally found a realisation for all of the groups.

In the first part of this review we describe these results in more detail. In Sect. 2
we first recall some basic notions of Lorentzian geometry in order to clarify the
conventions. For all fundamental differential geometric concepts such as Levi-Civita
connection, Lie derivative, etc. we refer to [68]. In Sect. 3 we give a short introduc-
tion to holonomy theory of semi-Riemannian manifolds and recall the classification
of connected holonomy groups of Riemannian manifolds. Afterwards we explain
the classification of connected holonomy groups of Lorentzian manifolds. Special
holonomy groups always appear if the manifold is spin and admits a non-trivial
parallel spinor field. For this reason we consider in Sect. 4 the relation between
holonomy groups and parallel spinor fields. In particular, we discuss the properties
of the Ricci curvature of Lorentzian spin manifolds with a parallel spinor field
and describe the indecomposable Lorentzian holonomy groups which allow parallel
spinors.

In the second part of the review we explain new approaches to construct globally
hyperbolic Lorentzian manifolds with special holonomy by solving appropriate
Cauchy problems with initial conditions along a spacelike hypersurface based on
recent results in [16, 65] and [62], see also [17] for related results. We focus on
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the case of Lorentzian manifolds which admit non-trivial lightlike parallel vector
fields or non-trivial lightlike parallel spinor fields. In both cases the holonomy
representation is of special form, it admits an invariant degenerate subspace. At
first, in Sect. 5 we derive the necessary constraint conditions, which lightlike
parallel vector and spinor fields impose on spacelike hypersurfaces. In the vector
field case, the local geometry of Riemannian manifolds satisfying these constraint
conditions is completely described. In the spinor field case, the constraint conditions
can be expressed as the existence of an so-called imaginary W -Killing spinor of
a special algebraic type, where W is the Weingarten operator of the spacelike
hypersurface. As an application of the solutions of the Cauchy problem described
in Sect. 7 we obtain a local classification of Riemannian manifolds with imaginary
W -Killing spinors of this algebraic type (Sect. 8). It is natural to ask whether the
constraint conditions for Riemannian manifolds (Σ, h) described in Sect. 5 are
not only necessary but also sufficient for (Σ, h) being a Cauchy hypersurface in
a Lorentzian manifold with a lightlike parallel vector or spinor field. By studying
certain Cauchy problems for PDEs that are induced by the existence of lightlike
parallel vector and spinor fields, we show in Sect. 7 that this is indeed the case. Since
the methods for the existence of a solution are in part analogous to the approach for
the vacuum Einstein equation, we give in Sect. 6 a short review of the approaches
for the Einstein equation. After deriving the constraint equations we first describe
the vacuum Einstein equation as a second order evolution equation for a family
of Riemannian metrics that is of Cauchy-Kowalevski form, that can be solved in
the real-analytic setting. Afterwards we explain the method of hyperbolic reduction
which allows to consider the vacuum Einstein equation as symmetric hyperbolic
system and solve it in the smooth setting. In Sect. 7 we derive in a similar way an
evolution equation of Cauchy-Kowalevski type for a parallel lightlike vector field
in the analytic setting as well as an appropriate symmetric hyperbolic system which
can be solved in the smooth case. Finally we show, that in both cases the solution
admits a parallel lightlike spinor field if, in addition, the contraint conditions for
parallel spinors on the initial hypersurface are satisfied.

2 Basic Notions

Let (Mn, g) be an n-dimensional manifold1 with a metric g of signature (p, q),
where p denotes the number of −1 and q the number of +1 in the normal form of
the metric g. We call (M, g) Riemannian manifold if p = 0, Lorentzian manifold if
p = 1 < n and pseudo-Riemannian manifold if 1 ≤ p < n . If we do not want to
specify the signature we use the term semi-Riemannian manifold.

Contrary to the Riemannian case, not every manifold admits a Lorentzian metric.
There is a topological obstruction (see [68, Chapter 5, Proposition 37] for a proof):

1We assume all manifolds to be smooth, connected and without boundary.
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Theorem 1 LetM be a manifold of dimension n ≥ 2. Then there exists a Lorentzian
metric on M if and only if M is non-compact or M is compact with vanishing Euler
characteristic.

Now, let (M, g) be a Lorentzian manifold.

Definition 1 A tangent vector v ∈ TxM is called

• timelike, if gx(v, v) < 0,
• spacelike, if gx(v, v) > 0 or v = 0,
• lightlike, if gx(v, v) = 0 and v �= 0,
• causal, if v is timelike or lightlike.

Correspondingly, a vector field X is called timelike, spacelike, etc., if X(x) is
timelike, spacelike, etc., for all x ∈ M . A a smooth curve γ : I → M is called
timelike, spacelike, etc., if all its tangent vectors γ ′(t) are timelike, spacelike, etc.,
for all t ∈ I .

Definition 2 Let (M, g) be a Lorentzian manifold. A vector field ξ on M is called
time-orientation if g(ξ, ξ) = −1. If there exists a time-orientation ξ on (M, g),
(M, g) is called time-orientable.

A time-oriented Lorentzian manifold is also called spacetime. A time-orientation
ξ on a Lorentzian manifold (M, g) singles out one of the two time-cones τ±(x) in
any point x ∈ M in a smooth way, where τ+(x) and τ−(x) denote the connected
components of {v ∈ TxM | gx(v, v) < 0}. A causal vector field X on M is called
future-directed, if g(X, ξ) < 0, i.e. X(x) and ξ(x) belong to the same time-cone.

In the following we will denote by ∇g the Levi-Civita connection of (M, g), i.e.
the unique metric and torsion free covariant derivative on (M, g). Our convention
for the curvature tensor Rg ∈ Γ (Λ2T ∗M ⊗ End(T M)), and Rg ∈ Γ (Λ2T ∗M ⊗
Λ2T ∗M) is the following:

Rg(X, Y )Z := ∇g

X∇g

Y Z −∇g

Y∇g

XZ − ∇g

[X,Y ]Z,

Rg(X, Y, Z, W) := g(Rg(X, Y )Z, W).

The curvature tensor satisfies the first and second Bianchi-identities,

Rg(X, Y )Z + Rg(Y, Z)X + Rg(Z, X)Y = 0,

∇g
XRg(Y, Z, U, V )+∇g

Y Rg(Z, X, U, V )+ ∇g
ZRg(X, Y, U, V ) = 0.

Then the Ricci tensor Ricg and the scalar curvature scalg of (M, g) are given by

Ricg(X, Y ) := trg Rg(X, ·, ·, Y ), scalg := trgRicg.

The second Bianchi identity for Rg implies

d scalg = 2divg(Ricg), (1)


