Beginning
Functional JavaScript

Uncover the Concepts of Functional
Programming with EcmaScript 8

Second Edition

Anto Aravinth
Srikanth Machiraju

Beginning Functional
JavaScript
Uncover the Concepts of

Functional Programming
with EcmaScript 8

Second Edition

Anto Aravinth
Srikanth Machiraju

Apress’

Beginning Functional JavaScript

Anto Aravinth Srikanth Machiraju
Chennai, Tamil Nadu, India Hyderabad, Andhra Pradesh, India
ISBN-13 (pbk): 978-1-4842-4086-1 ISBN-13 (electronic): 978-1-4842-4087-8

https://doi.org/10.1007/978-1-4842-4087-8
Library of Congress Control Number: 2018964615

Copyright © Anto Aravinth, Srikanth Machiraju 2018, corrected publication 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, log os,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karakal

Development Editor: Matthew Moodie

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4087-8

Table of Contents

About the AULNOLS......ccouremeiimmennsmrsnsssrrsensssrrsnsssrrsnnssssssnnssssssnnnsssnnnns Xi

About the Technical REVIEWETccuusrrrrsssmmmmssssssssssssssnnnssssssssssssssnnnns Xiii

Acknowledgments.......cccccummssssssmmssnmmmmmsssssssssssssssssssssssssssnnsssssssssssnnnnnns XV
Introduction.........ccccinsmmmnnmmmmnsnns s ————————— Xvii
Chapter 1: Functional Programming in Simple Terms........cccccesmrressssnns 1
What Is Functional Programming? Why Does It Matter?..........ccccovvevnrenerenernnnes 2
Referential TranSPArENCYccvvverrerserersesersersessessssessessessessssessessessssessessessessssessesses 5
Imperative, Declarative, ADSTraction..........cccccevevercrcrsene e 7
Functional Programming Benefitscccocvmvnnnenninsnnsesnesess s 8
LT =3 T (0] N 8
Pure Functions Lead to Testable Code...........counumrrmmnnnmnssnnssssesesessssnnas 9
Reasonable COde. ..o s s 11
T |] I 0T 12
Cachable.........occr e —————————— 14
Pipelines and COMPOSADIEcccceevrrverceriernrirrerere s se e snes 16

A Pure Function Is a Mathematical FUNCLiON ... 17
What We Are GOiNg 10 BUIldcccceeeereeeerrerereser e 18
Is JavaScript a Functional Programming Language?........cccceeevrvvnverierenensensenens 19

£ 1] 4= 7 20

iii

TABLE OF CONTENTS

Chapter 2: Fundamentals of JavaScript Functions.........ccucemrrisssnnnnas 21
ECMAScript: A Bit Of HiSTOrY......ccceeereeecercereere e 22
Creating and Executing FUNCHIONScccccvvcvnenmniese e 23

First FUNCLION.....cccccciccce s s 24
SHCE MOUEcovrceree e s 26
Return Statement Is Optional ..o 28
Multiple Statement FUNCLIONS ..o 28
FUNCLION AFQUMENTS ..o s 30
ES5 Functions Are Valid in ES6 and ADOVEcocueevnrenerenernsesessessssesenennes 30
Setting Up OUr PrOJECT......c.evvvirrerie et ne s ss e s sse e snesnes 30
1T CF= LI T=] (1o 31
Our First Functional Approach to the Loop Problem.........cccccvvvvrinviniennne. 33
T 0] 0 0] 36
T 0111 010 R 36
Running the Code Using Babel-NOdeccccvvrierennsnienensnensense e sessenaennes 37
Creating Script in NPM ..o e 38
Running the Source Code from Git.........c.ccoevvrvrierinnnsninens e 39
131 4= 7 40

Chapter 3: Higher Order FUnctions...........cccccussemsmsssnsmsssnsssssnsssssnnsnnsns 41

Understanding Dataccovvevnenennnennesnesessse e 42
Understanding JavaScript Data TYPeSc.cucvvrerernnernsessssesesssesessessssssessnnes 42
Storing @ FUNCHIONcccceericrrese e 43
Passing @ FUNCHONccoccvievncerese e 44
Returning @ FUNCHION ... 45

iv

TABLE OF CONTENTS

Abstraction and Higher Order FUNCHIONS.......ccvvvvverevnveniensese s sessesessens 47
Abstraction Definitions ... 48
Abstraction via Higher Order FUNCLIONS..........cccvvevevenensenseresensenesesessenenaens 48

Higher Order Functions in the Real World.............cccrnnininininnncne e 53
EVErY FUNCHON ... s 53
SOME FUNCHON ... 55
SO FUNCLION ..o 56

SUMMANY....ceiiierriseee s s n e e e e 61

Chapter 4: Closures and Higher Order Functionscuccussssssansssnns 63

Understanding ClOSUIEScvvverrerieressererseresssssssessessessssessessesssssssessessesssssssessens 64
What Are CIOSUIES?ueueueeereresrssssse s e s e s sssssssessssssssssssens 64
Remembering Where [t IS BOrn..........cocovvvveriivncnsn e 67
Revisiting SOrtBy FUNCTION.........cccccerrirrinrc s 69

Higher Order Functions in the Real World (Continued).........c.ccooeevvrierienniniennens 70
1AP FUNCHION.......cice e 70
UNAFY FUNCHION......o e e 72
ONCE FUNCLION ... 74
MEMOIZE FUNCHIONceeecrerceeree e 75
ASSIGN FUNCLION ... e 78

SUMMANY....eiieircsere e s e r e e 80

Chapter 5: Being Functional on Arrays........cccsmsesmsssmssssmssssssssssssssas 81

Working Functionally on Arrays ... sessessssssessessessssssesaessens 82
1 o S 82
I e ———————— 87

Chaining Operations.........cccovvirnrinnn e s 88
(10T (i 7o 90

TABLE OF CONTENTS

Reducing FUNCLIONcocvvriienerrcer s s s 95
reduce FUNCHION........cccoiiritr s 95
ZIPPING AITAYS ..oveveiecirese st ss s s a s e b e e s p e e s nnas 102
| 8 511102 1 o R 105
SUMMANY....ctirierrnesrsese e e e e ne e nr e 108
Chapter 6: Currying and Partial Application...........ccusccmmrnssnnnnnsssanns 109
A Few Notes on Terminology........ccccuvererinnnneniensnsensesessessesssessessessesssesesenns 110
UNAry FUNCLIONocueiiriire et s 110
Binary FUNCLIONcocviiiecrcr e 110
Variadic FUNCHIONSccoviinnier s 110
CUITYING oottt b e bbb e s ae e e nne s 112
CUrrying USE CASESccvrrvereriinnnninese s e s e s e ssessessssessesnesnes 114

A logger Function: Using CUrryingcccocvvnreriennsnsnsesiesssessessessssssessessens 116
REVISIE CUITY ..ottt s sn e sn s snen 117
Back to logger FUNCLION...........ccocviiiini e nnens 122
CUITYING INACLION...c.veueerrcerreser e e e 123
Finding @ Number in Array Contents..........ccoouevnnenrenesnsesessesesesesssesesseens 124
SQUATING AN AMTAY ...veueerreereeeresese s se s se s ssssssesssssssanssennes 124
DAt FIOW ..o 125
Partial ApPlICALION........ccceevrier s nens 125
Implementing partial FUNCLIONccccvvivrininine e 127
Currying vs. Partial Applicationccccocevvvnvnieninnnsrre e seseenes 130
11T 1117 o OO 130

TABLE OF CONTENTS

Chapter 7: Composition and Pipelines........ccccussemmnmsssssnnsssssssnsssssssnns 133
Composition in GENEral TEIMScccvrerrerereneree e 134
UNiX PRIlOSOPRNY ... 134
Functional CompPOSItioNccccvvvninninrn s 137
Revisiting map,filterccovvvrninncsrss e 137
COMPOSE FUNCHIONcveiiiriere e 139
Playing with the compose FUNCLION.........c.ccocevvrenieriernsersere e essens 140
curry and partial to the RESCUEccccvvevrererrerrerener s sese s sse s 142
compose Many FUNCHIONS........covvvvvrenennsenene s sese s sss e sse s s 146
Pipelines and SEQUENCE.........cccereererereree e 148
IMplementing PiPe......ccovirrirre s ———— 149
0dds 0n COMPOSILION.......cccecererererererrrerr s see s 150
The Pipeling Operator ... e 151
Debugging Using the tap FUNCLiONccoovcvvninccncn e 154
10T 111 T o SR 155
Chapter 8: Fun with FUNctors..........ccccimnsemmmmnssssnnnmnsssssnsssssssssnsssssnns 157
What IS @ FUNCIOI? ... 158
Functor IS @ CONTAINET ..o s 158
IMPIEeMENtiNg MAPccovcrer s 161
MAYBE ... —————— 163
Implementing MayBe...........cccurinnnninn e 163
SIMPIE USE CASES.....cccerieirerern e ss s s s 165
Real-World USE CASESccocreermeerereerseeresesessese s sessesessesessesesesesessenens 168

vii

TABLE OF CONTENTS

Either FUNCLO ... 173
Implementing Either ... 174
Reddit Example Either VErsion...........ccccuvvvercnvnnnneninsenses e ssesses s 176

Word of Caution: Pointed FUNCLOFccooerreerrerereere e 179

SUMMANY ...t e e nr e 180

Chapter 9: Monads in Depthccoccccmininemmmmmssssnnnmnnsssnmmmsssssnmmnn. 181

Getting Reddit Comments for Our Search QUErY.......cccceevvvrnvernenenieserenenens 182

THE ProDIBM ... 183
Implementation of the First Step.......ccccvvvrvririsncnrr e, 185
Merging Reddit CallScccuvririnnsninennsnene e sesesnens 189
Problem of Nested/Many mapscccviernnnnnnnnnsnne s ssssessessens 194

Solving the Problem Via join ... 196
join Implementation...........cccvecrnsernesn s ———— 196
chain Implementation...........ccccoovninininnnr i ————— 200

SUMMAIY . veiteirierere e s e s s srese e e s e sse s s e se s e saesaese e e saesaesaesessesaesaesseennessess 203

Chapter 10: Pause, Resume, and Async with Generators.........c...e... 205

Async Code and ItS ProbIemcoooorenrenerecrrcseee e 206
L0272 T 5 | 206

GENErators 107 ..o e 209
Creating GeNerators..........cuvresenesesnsssssse s ssnnes 209
Caveats 0Of GENEIratOrsSccuvrereresernsesrsse s sranes 210
Vield KEYWOId.........cccerieerenerese s e sesss s sesss s 211
done Property of GENEratorccovveeerenernsesnsesessse s 214
Passing Data t0 GENErators...........ccovveverenernsesessesesssessssesese s sessesessenens 216

viii

TABLE OF CONTENTS

Using Generators to Handle ASync CallS ... 219
Generators for ASync: A SIMple CaSeccccevverernnnssssesessssssssesesesssssseaes 219
Generators for Async: A Real-World Case.........c.cooureeneneresessnsnssesesessssneas 226

Async Functions in ECMASCHipt 2017 ... 230
0] 1 TS 230
T 1 T 231
ASYNC ...ttt e e e ne 231
Chaining CallDACKScccvirierererirsirene s 233
Error Handling in ASYNC CallScccvvrinnincnsssinsese e s s 236
Async Functions Transpiled to Generatorsccccccvvviennininsesnnsensensennens 237

SUMMANY....ceireeriresesese s s s s s s nen e s 239

Chapter 11: Building a React-Like Library..........ccosnsssnnnnmnsssannnssssanns 241

IMMUEADITIEY ..o 242

Building a Simple ReduX LiDrary..........ccocoeerrernnenerenesnsesesesesesesesesesseseseenes 245

Building a Framework Like HYPerApp......ccccvvvermenesnsessssesesesesssesesesessssessnns 251
VIrtUAl DOM......cuouiicrcr st 252
UK e ———————————————— 254
JS FIAIE......cvcececicicecere e 255
CreateACHIONScoveeereserr s 261
(31T 1 [T SR PTSTRR 262
PaLCR .o 263
UPAALE ... —————————— 264
MEIGE ...t 265
22T 101 TSRS 266

SUMMAIY.c.ueitetrerere et s s e e s e s sae s e e e s aesaesae e e e e aesae e e e naenaees 268

ix

TABLE OF CONTENTS

Chapter 12: Testing and Closing Thoughtscccccussennninsssnnnnnssssnns 269
INErOdUCHION.......cccerr s ———— 270
TYPES OF TESHING ...eveecrrceree e 272
BDD QN0 TDD.....ccrreucerecrresssesssess e s sesaes 273
JavaScript Test Frameworks........c.ccoovcvvrennnnnncnesssissese s sessesnes 274

Testing Using MOCacccrinnininnernsne s s se s ssesnens 275
Mocking USing SiNON........cccccvvrniinnsnne s ssessssessessens 283
Testing With JASMINE........cccvcerrerercrser e se e naeens 287
COUE COVEIAGRcuevrrererrarerrsesessesesseesessesessese e e srs e ssssesse e ssssssessesessesessssssenns 290
31 (o R 291
Unit Testing Library Code ..o 294
CloSing TROUGNES......cceeerrierrcsr s e 296
SUMMAIY.c.veitetrierere s s e e s s s e e s e s s sre e e e s aesaesee e s e eaesae s e e naesaees 297
Correction to: Fun with Functors...........cccnsmmimmnmmnnmnsmssmssmsmsmen. C1
INA@X..iiiersiesrsmsnrs s s s ———— 299

About the Authors

Anto Aravinth has been in the software
industry for more than six years. He has
developed many systems that are written in
the latest technologies. Anto has knowledge

of the fundamentals of JavaScript and how it
works and has trained many people. Anto is
also does OSS in his free time and loves to play

table tennis.

Srikanth Machiraju has over ten years of
experience as a developer, architect, technical
trainer, and community speaker. He is
currently working as Senior Consultant with
Microsoft Hyderabad, leading a team of 100
developers and quality analysts developing
an advanced cloud-based platform for

a tech giant in the oil industry. With an

aim to be an enterprise architect who can
design hyperscale modern applications with

intelligence, he constantly learns and shares
modern application development tactics using cutting-edge platforms and
technologies. Prior to Microsoft, he worked with BrainScale as Corporate
Trainer and Senior Technical Analyst on application design, development,

ABOUT THE AUTHORS

and migrations using Azure. He is a tech-savvy developer who is
passionate about embracing new technologies and sharing his learning via
blog and community engagements. He has also authored the “Learning
Windows Server Containers” and “Developing Bots with Microsoft Bot
Framework,” blogs at https://vishwanathsrikanth.wordpress.com. He
runs his own YouTube channel called “Tech Talk with Sriks” and is active
on LinkedIn at https://www.linkedin.com/in/vishsrik/.

xii

https://vishwanathsrikanth.wordpress.com/
https://www.linkedin.com/in/vishsrik/

About the Technical Reviewer

W 9 Sakib Shaikh has been working as a Tech
Lead with a large scientific publisher, with
more than ten years of experience as a full
stack developer with JavaScript technologies
on front-end and back-end systems. He has
been reviewing technical books and articles
for the past few years and contributes to the
developer community as a trainer, blogger,

and mentor.

xiii

Acknowledgments

Iremember the first code that I wrote for Juspay Systems in my first job

as an intern. Coding was fun for me; at times it is challenging, too. Now
with six years of software experience, I want to make sure I pass on all the
knowledge I have to the community. I love teaching people. I love to share
my thoughts with the community to get feedback. That’s exactly the reason
I'm writing a second edition of this book.

I have to acknowledge few people who have been standing right next
to me in all phases of my life: my late father Belgin Rayen, mother Susila,
Kishore (brother-in-law), Ramya (sibling), and Joshuwa (my new little
nephew). They have been supportive and pushed me harder to achieve
my goals. I want to say thanks to Divya and the technical reviewer of this
book, as they did a wonderful job. Luckily, I have a wonderful coauthor in
Srikanth, who did an amazing job as well.

Finally, I want to give special thanks to Bianaca, Deepak, Vishal, Arun,
Vishwapriya, and Shabala, who have added joy to my life.

Please reach out to me at anto.aravinth.cse@gmail.com with any
feedback.

—Anto Aravinth

I'would like to thank Apress for providing me a second opportunity to
author. I would also like to thank my family, especially my dear wife Sonia
Madan and my four-month-old son Reyansh for supporting me throughout
this stint. I'm always reachable at Vishwanath.srikanth@gmail. com for any
feedback or questions.

—Srikanth Machiraju

Introduction

The second edition of a book is always special. When I wrote the first
edition, I had about two years of IT experience. The book received positive
as well as negative responses. I always wanted to work on the negative
responses to make the content better and make the book worth the price.
In the meantime, JavaScript evolved a great deal. Many ground-breaking
changes were added into the language. The Web is full of JavaScript, and
imagine a world without the Web. Hard, right?

This second edition is a much improved version that teaches the
fundamentals of functional programming in JavaScript. We have added
much new content in this second edition; for example, we will be building
a library for building web applications using functional concepts, and
we have added sections on testing as well. We have rewritten the book to
match the latest ES8 syntax with many samples of async, await patterns,
and a lot more!

We assure you that you will gain a lot of knowledge from this book and at
the same time you will have fun while running the examples. Start reading.

xvii

CHAPTER 1

Functional
Programming in
Simple Terms

The first rule of functions is that they should be small. The second
rule of functions is that they should be smaller than that.

—Robert C. Martin

Welcome to the functional programming world, a world that has only
functions, living happily without any outside world dependencies,
without states, and without mutations—forever. Functional programming
is a buzzword these days. You might have heard about this term within
your team or in a local group meeting. If you're already aware of what
that means, great. For those who don’t know the term, don’t worry. This
chapter is designed to introduce you to functional terms in simple English.
We are going to begin this chapter by asking a simple question: What
is a function in mathematics? Later, we are going to create a function
in JavaScript with a simple example using our function definition. The
chapter ends by explaining the benefits that functional programming
provides to developers.

© Anto Aravinth, Srikanth Machiraju 2018 1
A. Aravinth and S. Machiraju, Beginning Functional JavaScript,
https://doi.org/10.1007/978-1-4842-4087-8_1

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

What Is Functional Programming? Why
Does It Matter?

Before we begin to explore what functional programming means, we have
to answer another question: What is a function in mathematics? A function
in mathematics can be written like this:

=Y

The statement can be read as “A function f, which takes X as its
argument, and returns the output ¥.” Xand Y can be any number, for
instance. That’s a very simple definition. There are key takeaways in the
definition, though:

e Afunction must always take an argument.
e A function must always return a value.

o A function should act only on its receiving arguments
(i.e., X), not the outside world.

o Foragiven X, there will be only one Y.

You might be wondering why we presented the definition of function
in mathematics rather than in JavaScript. Did you? That'’s a great question.
The answer is pretty simple: Functional programming techniques are
heavily based on mathematical functions and their ideas. Hold your
breath, though; we are not going to teach you functional programming in
mathematics, but rather use JavaScript. Throughout the book, however, we
will be seeing the ideas of mathematical functions and how they are used
to help understand functional programming.

With that definition in place, we are going to see the examples of
functions in JavaScript. Imagine we have to write a function that does
tax calculations. How are you going to do this in JavaScript? We can
implement such a function as shown in Listing 1-1.

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

Listing 1-1. Calculate Tax Function

var percentValue = 5;

var calculateTax = (value) => { return value/100 * (100 +

percentValue) }

The calculateTax function does exactly what we want to do. You can
call this function with the value, which will return the calculated tax value
in the console. It looks neat, doesn’t it? Let’s pause for a moment and
analyze this function with respect to our mathematical definition. One of
the key points of our mathematical function term is that the function logic
shouldn’t depend on the outside world. In our calculateTax function,
we have made the function depend on the global variable percentValue.
Thus this function we have created can’t be called as a real function in a
mathematical sense. Let’s fix that.

The fix is very straightforward: We have to just move the percentValue
as our function argument, as shown in Listing 1-2.

Listing 1-2. Rewritten calculateTax Function

var calculateTax = (value, percentValue) => { return value/100 *
(100 + percentValue) }

Now our calculateTax function can be called as a real function. What
have we gained, though? We have just eliminated global variable access
inside our calculateTax function. Removing global variable access inside
a function makes it easy for testing. (We will talk about the functional
programming benefits later in this chapter.)

Now we have shown the relationship between the math function and
our JavaScript function. With this simple exercise, we can define functional
programming in simple technical terms. Functional programming is a
paradigm in which we will be creating functions that are going to work out
their logic by depending only on their input. This ensures that a function,

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

when called multiple times, is going to return the same result. The function
also won'’t change any data in the outside world, leading to a cachable and
testable code base.

FUNCTIONS VS. METHODS IN JAVASCRIPT

We have talked about the word function a lot in this text. Before we move on,
we want to make sure you understand the difference between functions and
methods in JavaScript.

Simply put, a function is a piece of code that can be called by its name. It can
be used to pass arguments that it can operate on and return values optionally.

A method is a piece of code that must be called by its name that is associated
with an object.

Listing 1-3 and Listing 1-4 provide quick examples of a function and a
method.
Listing 1-3. A Simple Function

var simple = (a) => {return a} // A simple function
simple(5) //called by its name

Listing 1-4. A Simple Method

var obj = {simple : (a) => {return a} }
obj.simple(5) //called by its name along with its associated
object

There are two more important characteristics of functional
programming that are missing in the definition. We discuss them in detail
in the upcoming sections before we dive into the benefits of functional

programming.

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

Referential Transparency

With our definition of function, we have made a statement that all the
functions are going to return the same value for the same input. This
property of a function is called a referential transparency. A simple
example is shown in Listing 1-5.

Listing 1-5. Referential Transparency Example
var identity = (i) => { return i }

In Listing 1-5, we have defined a simple function called identity.
This function is going to return whatever you're passing as its input; that
is, if you're passing 5, it’s going to return the value 5 (i.e., the function just
acts as a mirror or identity). Note that our function operates only on the
incoming argument i, and there is no global reference inside our function
(remember in Listing 1-2, we removed percentValue from global access
and made it an incoming argument). This function satisfies the conditions
of a referential transparency. Now imagine this function is used between
other function calls like this:

sum(4,5) + identity(1)

With our referential transparency definition, we can convert that
statement into this:

sum(4,5) + 1

Now this process is called a substitution model as you can directly
substitute the result of the function as is (mainly because the function
doesn’t depend on other global variables for its logic) with its value.

This leads to parallel code and caching. Imagine that with this model,
you can easily run the given function with multiple threads without even
the need to synchronize. Why? The reason for synchronizing comes from
the fact that threads shouldn’t act on global data when running parallel.

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

Functions that obey referential transparency are going to depend only
on inputs from their argument; hence threads are free to run without any
locking mechanism.

Because the function is going to return the same value for the given
input, we can, in fact cache it. For example, imagine there is a function
called factorial, which calculates the factorial of the given number.
Factorial takes the input as its argument for which the factorial needs
to be calculated. We know the factorial of 5 is going to be 120. What if
the user calls the factorial of 5 a second time? If the factorial function
obeys referential transparency, we know that the result is going to be
120 as before (and it only depends on the input argument). With this
characteristic in mind, we can cache the values of our factorial function.
Thus if factorial is called for a second time with the input as 5, we can
return the cached value instead of calculating it once again.

Here you can see how a simple idea helps in parallel code and
cachable code. We will be writing a function in our library for caching the
function results later in the chapter.

REFERENTIAL TRANSPARENCY IS A PHILOSOPHY

Referential transparency is a term that came from analytic philosophy
(https://en.wikipedia.org/wiki/Analytical philosophy). This
branch of philosophy deals with natural language semantics and its meanings.
Here the word referential or referent means the thing to which the expression
refers. A context in a sentence is referentially transparent if replacing a term in
that context with another term that refers to the same entity doesn’t alter the
meaning.

That’s exactly how we have been defining referential transparency here. We
have replaced the value of the function without affecting the context.

https://en.wikipedia.org/wiki/Analytical_philosophy

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

Imperative, Declarative, Abstraction

Functional programming is also about being declarative and writing
abstracted code. We need to understand these two terms before we
proceed further. We all know and have worked on an imperative paradigm.
We'll take a problem and see how to solve it in an imperative and
declarative fashion.

Suppose you have a list or array and want to iterate through the array
and print it to the console. The code might look like Listing 1-6.

Listing 1-6. Iterating over the Array Imperative Approach

var array = [1,2,3]
for(i=0;i<array.length;i++)
console.log(array[i]) //prints 1, 2, 3

It works fine. In this approach to solve our problem, though, we are
telling exactly “how” we need to do it. For example, we have written
an implicit for loop with an index calculation of the array length and
printing the items. We will stop here. What was the task here? Print the
array elements, right? It looks like we are telling the compiler what to do,
however. In this case, we are telling the compiler, “Get array length, loop
our array, get each element of the array using the index, and so on.” We call
it an imperative solution. Imperative programming is all about telling the
compiler how to do things.

We will now switch to the other side of the coin, declarative
programming. In declarative programming, we are going to tell what the
compiler needs to do rather than how. The “how” parts are abstracted
into common functions (these functions are called higher order functions,
which we cover in the upcoming chapters). Now we can use the built-in
forEach function to iterate the array and print it, as shown in Listing 1-7.

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS
Listing 1-7. Iterating over the Array Declarative Approach

var array = [1,2,3]
array.forEach((element) => console.log(element))
//prints 1, 2, 3

Listing 1-7 does print exactly the same output as Listing 1-5. Here,
though, we have removed the “how” parts like “Get array length, loop our
array, get each element of an array using an index, and so on.” We have
used an abstracted function, which takes care of the “how” part, leaving us,
the developers, to worry about our problem at hand (the “what” part). We
will be creating these built-in functions throughout the book.

Functional programming is about creating functions in an abstracted
way that can be reused by other parts of the code. Now we have a solid
understanding of what functional programming is; with this in mind, we

can explore the benefits of functional programming.

Functional Programming Benefits

We have seen the definition of functional programming and a very simple
example of a function in JavaScript. We now have to answer a simple
question: What are the benefits of functional programming? This section
helps you see the huge benefits that functional programming offers us.
Most of the benefits of functional programming come from writing pure
functions. So before we see the benefits of functional programming, we
need to know what a pure function is.

Pure Functions

With our definition in place, we can define what is meant by pure
functions. Pure functions are the functions that return the same output for
the given input. Take the example in Listing 1-8.

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS
Listing 1-8. A Simple Pure Function
var double = (value) => value * 2;

This function double is a pure function because given an input, it is
always going to return the same output. You can try it yourself. Calling the
double function with input 5 always gives the result as 10. Pure functions
obey referential transparency. Thus we can replace double(5) with 10,
without any hesitations.

So what’s the big deal about pure functions? They provide many
benefits, which we discuss next.

Pure Functions Lead to Testable Code

Functions that are not pure have side effects. Take our previous tax
calculation example from Listing 1-1:

var percentValue = 5;

var calculateTax = (value) => { return value/100 * (100 +
percentValue) } //depends on external environment percentValue
variable

The function calculateTax is not a pure function, mainly because for
calculating its logic it depends on the external environment. The function
works, but it is very difficult to test. Let’s see the reason for this.

Imagine we are planning to run a test for our calculateTax function
three times for three different tax calculations. We set up the environment
like this:

calculateTax(5) === 5.25
calculateTax(6) === 6.3

calculateTax(7) === 7.3500000000000005

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

The entire test passed. However, because our original calculateTax
function depends on the external environment variable percentValue,
things can go wrong. Imagine the external environment is changing the
percentValue variable while you are running the same test cases:

calculateTax(5) === 5.25

// percentValue is changed by other function to 2
calculateTax(6) === 6.3 //will the test pass?

// percentValue is changed by other function to 0
calculateTax(7) === 7.3500000000000005 //will the test pass or
throw exception?

As you can see here, the function is very hard to test. We can easily fix
the issue, though, by removing the external environment dependency from
our function, leading the code to this:

var calculateTax = (value, percentValue) => { return value/100
* (100 + percentValue) }

Now you can test this function without any pain. Before we close
this section, we need to mention an important property about pure
functions: Pure functions also shouldn’t mutate any external environment
variables. In other words, the pure function shouldn’t depend on any
external variables (as shown in the example) and also change any external
variables. We'll now take a quick look what we mean by changing any
external variables. For example, consider the code in Listing 1-9.

Listing 1-9. badFunction Example

var global = "globalValue"
var badFunction = (value) => { global = "changed";
return value * 2 }

10

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

When the badFunction function is called it changes the global variable
global to the value changed. Is it something to worry about? Yes. Imagine
another function that depends on the global variable for its business logic.
Thus, calling badFunction affects other functions’ behavior. Functions of
this nature (i.e., functions that have side effects) make the code base hard
to test. Apart from testing, these side effects will make the system behavior
very hard to predict in the case of debugging.

So we have seen with a simple example how a pure function can help
us in easily testing the code. Now we'll look at other benefits we get out of
pure functions: reasonable code.

Reasonable Code

As developers we should be good at reasoning about the code or a
function. By creating and using pure functions we can achieve that very
simply. To make this point clearer, we are going to use a simple example of
function double (from Listing 1-8):

var double = (value) => value * 2

Looking at this function name, we can easily reason that this function
doubles the given number and nothing else. In fact, using our referential
transparency concept, we can easily go ahead and replace the double
function call with the corresponding result. Developers spend most of their
time reading others’ code. Having a function with side effects in your code
base makes it hard for other developers in your team to read. Code bases
with pure functions are easy to read, understand, and test. Remember that
a function (regardless of whether it is a pure function) must always have a
meaningful name. For example, you can’t name the function double as dd
given what it does.

11

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

SMALL MIND GAME

We are just replacing the function with a value, as if we know the result
without seeing its implementation. That’s a great improvement in your thinking
process about functions. We are substituting the function value as if that’s the
result it will return.

To give your mind a quick exercise, see this reasoning ability with our in-built
Math.max function.

Given the function call:
Math.max(3,4,5,6)
What will be the result?

Did you see the implementation of max to give the result? No, right? Why?
The answer to that question is Math.max is a pure function. Now have a cup
of coffee; you have done a great job!

Parallel Code

Pure functions allow us to run the code in parallel. As a pure function is

not going to change any of its environments, this means we do not need

to worry about synchronizing at all. Of course JavaScript doesn’t have

real threads to run the functions in parallel, but what if your project uses

WebWorkers for running multiple things in parallel? Or a server-side code

in a node environment that runs the function in parallel?

12

For example, imagine we have the code given in Listing 1-10.

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

Listing 1-10. Impure Functions

let global = "something"

let function1i = (input) => {
// works on input
//changes global
global = "somethingElse"

}
let function2 = () => {
if(global === "something")
{
//business logic
}
}

What if we need to run both function1 and function2 in parallel?
Imagine thread one (T-1) picks functioni to run and thread two (T-2)
picks function2 to run. Now both threads are ready to run and here comes
the problem. What if T-1 runs before T-2? Because both function1 and
function2 depend on the global variable global, running these functions
in parallel causes undesirable effects. Now change these functions into a
pure function as explained in Listing 1-11.

Listing 1-11. Pure Functions

let function1 = (input,global) => {
// works on input
//changes global
global = "somethingElse"

13

CHAPTER 1 FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

let function2 = (global) => {
if(global === "something")
{

//business logic

Here we have moved the global variable as arguments for both the
functions, making them pure. Now we can run both functions in parallel
without any issues. Because the functions don’t depend on an external
environment (global variable), we aren’t worried about thread execution
order as with Listing 1-10.

This section shows us how pure functions help our code to run in
parallel without any problems.

Cachable

Because the pure function is going to always return the same output

for the given input, we can cache the function outputs. To make this
more concrete, we provide a simple example. Imagine we have a
function that does time-consuming calculations. We name this function
longRunningFunction:

var longRunningFunction = (ip) => { //do long running tasks and
return }

If the longRunningFunction function is a pure function, then we know
that for the given inpuyt, it is going to return the same output. With that
point in mind, why do we need to call the function again with its input
multiple times? Can’t we just replace the function call with the function’s
previous result? (Again note here how we are using the referential
transparency concept, thus replacing the function with the previous result

14

