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Introduction

The second edition of a book is always special. When I wrote the first
edition, I had about two years of IT experience. The book received positive
as well as negative responses. I always wanted to work on the negative
responses to make the content better and make the book worth the price.
In the meantime, JavaScript evolved a great deal. Many ground-breaking
changes were added into the language. The Web is full of JavaScript, and
imagine a world without the Web. Hard, right?

This second edition is a much improved version that teaches the
fundamentals of functional programming in JavaScript. We have added
much new content in this second edition; for example, we will be building
a library for building web applications using functional concepts, and
we have added sections on testing as well. We have rewritten the book to
match the latest ES8 syntax with many samples of async, await patterns,
and a lot more!

We assure you that you will gain a lot of knowledge from this book and at
the same time you will have fun while running the examples. Start reading.
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CHAPTER 1

Functional
Programming in
Simple Terms

The first rule of functions is that they should be small. The second
rule of functions is that they should be smaller than that.

—Robert C. Martin

Welcome to the functional programming world, a world that has only
functions, living happily without any outside world dependencies,
without states, and without mutations—forever. Functional programming
is a buzzword these days. You might have heard about this term within
your team or in a local group meeting. If you're already aware of what
that means, great. For those who don’t know the term, don’t worry. This
chapter is designed to introduce you to functional terms in simple English.
We are going to begin this chapter by asking a simple question: What
is a function in mathematics? Later, we are going to create a function
in JavaScript with a simple example using our function definition. The
chapter ends by explaining the benefits that functional programming
provides to developers.

© Anto Aravinth, Srikanth Machiraju 2018 1
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CHAPTER 1  FUNCTIONAL PROGRAMMING IN SIMPLE TERMS

What Is Functional Programming? Why
Does It Matter?

Before we begin to explore what functional programming means, we have
to answer another question: What is a function in mathematics? A function
in mathematics can be written like this:

=Y

The statement can be read as “A function f, which takes X as its
argument, and returns the output ¥.” Xand Y can be any number, for
instance. That’s a very simple definition. There are key takeaways in the
definition, though:

e Afunction must always take an argument.
e A function must always return a value.

o A function should act only on its receiving arguments
(i.e., X), not the outside world.

o Foragiven X, there will be only one Y.

You might be wondering why we presented the definition of function
in mathematics rather than in JavaScript. Did you? That'’s a great question.
The answer is pretty simple: Functional programming techniques are
heavily based on mathematical functions and their ideas. Hold your
breath, though; we are not going to teach you functional programming in
mathematics, but rather use JavaScript. Throughout the book, however, we
will be seeing the ideas of mathematical functions and how they are used
to help understand functional programming.

With that definition in place, we are going to see the examples of
functions in JavaScript. Imagine we have to write a function that does
tax calculations. How are you going to do this in JavaScript? We can
implement such a function as shown in Listing 1-1.
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Listing 1-1. Calculate Tax Function

var percentValue = 5;

var calculateTax = (value) => { return value/100 * (100 +

percentValue) }

The calculateTax function does exactly what we want to do. You can
call this function with the value, which will return the calculated tax value
in the console. It looks neat, doesn’t it? Let’s pause for a moment and
analyze this function with respect to our mathematical definition. One of
the key points of our mathematical function term is that the function logic
shouldn’t depend on the outside world. In our calculateTax function,
we have made the function depend on the global variable percentValue.
Thus this function we have created can’t be called as a real function in a
mathematical sense. Let’s fix that.

The fix is very straightforward: We have to just move the percentValue
as our function argument, as shown in Listing 1-2.

Listing 1-2. Rewritten calculateTax Function

var calculateTax = (value, percentValue) => { return value/100 *
(100 + percentValue) }

Now our calculateTax function can be called as a real function. What
have we gained, though? We have just eliminated global variable access
inside our calculateTax function. Removing global variable access inside
a function makes it easy for testing. (We will talk about the functional
programming benefits later in this chapter.)

Now we have shown the relationship between the math function and
our JavaScript function. With this simple exercise, we can define functional
programming in simple technical terms. Functional programming is a
paradigm in which we will be creating functions that are going to work out
their logic by depending only on their input. This ensures that a function,
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when called multiple times, is going to return the same result. The function
also won'’t change any data in the outside world, leading to a cachable and
testable code base.

FUNCTIONS VS. METHODS IN JAVASCRIPT

We have talked about the word function a lot in this text. Before we move on,
we want to make sure you understand the difference between functions and
methods in JavaScript.

Simply put, a function is a piece of code that can be called by its name. It can
be used to pass arguments that it can operate on and return values optionally.

A method is a piece of code that must be called by its name that is associated
with an object.

Listing 1-3 and Listing 1-4 provide quick examples of a function and a
method.
Listing 1-3. A Simple Function

var simple = (a) => {return a} // A simple function
simple(5) //called by its name

Listing 1-4. A Simple Method

var obj = {simple : (a) => {return a} }
obj.simple(5) //called by its name along with its associated
object

There are two more important characteristics of functional
programming that are missing in the definition. We discuss them in detail
in the upcoming sections before we dive into the benefits of functional

programming.
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Referential Transparency

With our definition of function, we have made a statement that all the
functions are going to return the same value for the same input. This
property of a function is called a referential transparency. A simple
example is shown in Listing 1-5.

Listing 1-5. Referential Transparency Example
var identity = (i) => { return i }

In Listing 1-5, we have defined a simple function called identity.
This function is going to return whatever you're passing as its input; that
is, if you're passing 5, it’s going to return the value 5 (i.e., the function just
acts as a mirror or identity). Note that our function operates only on the
incoming argument i, and there is no global reference inside our function
(remember in Listing 1-2, we removed percentValue from global access
and made it an incoming argument). This function satisfies the conditions
of a referential transparency. Now imagine this function is used between
other function calls like this:

sum(4,5) + identity(1)

With our referential transparency definition, we can convert that
statement into this:

sum(4,5) + 1

Now this process is called a substitution model as you can directly
substitute the result of the function as is (mainly because the function
doesn’t depend on other global variables for its logic) with its value.

This leads to parallel code and caching. Imagine that with this model,
you can easily run the given function with multiple threads without even
the need to synchronize. Why? The reason for synchronizing comes from
the fact that threads shouldn’t act on global data when running parallel.
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Functions that obey referential transparency are going to depend only
on inputs from their argument; hence threads are free to run without any
locking mechanism.

Because the function is going to return the same value for the given
input, we can, in fact cache it. For example, imagine there is a function
called factorial, which calculates the factorial of the given number.
Factorial takes the input as its argument for which the factorial needs
to be calculated. We know the factorial of 5 is going to be 120. What if
the user calls the factorial of 5 a second time? If the factorial function
obeys referential transparency, we know that the result is going to be
120 as before (and it only depends on the input argument). With this
characteristic in mind, we can cache the values of our factorial function.
Thus if factorial is called for a second time with the input as 5, we can
return the cached value instead of calculating it once again.

Here you can see how a simple idea helps in parallel code and
cachable code. We will be writing a function in our library for caching the
function results later in the chapter.

REFERENTIAL TRANSPARENCY IS A PHILOSOPHY

Referential transparency is a term that came from analytic philosophy
(https://en.wikipedia.org/wiki/Analytical philosophy). This
branch of philosophy deals with natural language semantics and its meanings.
Here the word referential or referent means the thing to which the expression
refers. A context in a sentence is referentially transparent if replacing a term in
that context with another term that refers to the same entity doesn’t alter the
meaning.

That’s exactly how we have been defining referential transparency here. We
have replaced the value of the function without affecting the context.
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Imperative, Declarative, Abstraction

Functional programming is also about being declarative and writing
abstracted code. We need to understand these two terms before we
proceed further. We all know and have worked on an imperative paradigm.
We'll take a problem and see how to solve it in an imperative and
declarative fashion.

Suppose you have a list or array and want to iterate through the array
and print it to the console. The code might look like Listing 1-6.

Listing 1-6. Iterating over the Array Imperative Approach

var array = [1,2,3]
for(i=0;i<array.length;i++)
console.log(array[i]) //prints 1, 2, 3

It works fine. In this approach to solve our problem, though, we are
telling exactly “how” we need to do it. For example, we have written
an implicit for loop with an index calculation of the array length and
printing the items. We will stop here. What was the task here? Print the
array elements, right? It looks like we are telling the compiler what to do,
however. In this case, we are telling the compiler, “Get array length, loop
our array, get each element of the array using the index, and so on.” We call
it an imperative solution. Imperative programming is all about telling the
compiler how to do things.

We will now switch to the other side of the coin, declarative
programming. In declarative programming, we are going to tell what the
compiler needs to do rather than how. The “how” parts are abstracted
into common functions (these functions are called higher order functions,
which we cover in the upcoming chapters). Now we can use the built-in
forEach function to iterate the array and print it, as shown in Listing 1-7.
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Listing 1-7. Iterating over the Array Declarative Approach

var array = [1,2,3]
array.forEach((element) => console.log(element))
//prints 1, 2, 3

Listing 1-7 does print exactly the same output as Listing 1-5. Here,
though, we have removed the “how” parts like “Get array length, loop our
array, get each element of an array using an index, and so on.” We have
used an abstracted function, which takes care of the “how” part, leaving us,
the developers, to worry about our problem at hand (the “what” part). We
will be creating these built-in functions throughout the book.

Functional programming is about creating functions in an abstracted
way that can be reused by other parts of the code. Now we have a solid
understanding of what functional programming is; with this in mind, we

can explore the benefits of functional programming.

Functional Programming Benefits

We have seen the definition of functional programming and a very simple
example of a function in JavaScript. We now have to answer a simple
question: What are the benefits of functional programming? This section
helps you see the huge benefits that functional programming offers us.
Most of the benefits of functional programming come from writing pure
functions. So before we see the benefits of functional programming, we
need to know what a pure function is.

Pure Functions

With our definition in place, we can define what is meant by pure
functions. Pure functions are the functions that return the same output for
the given input. Take the example in Listing 1-8.
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Listing 1-8. A Simple Pure Function
var double = (value) => value * 2;

This function double is a pure function because given an input, it is
always going to return the same output. You can try it yourself. Calling the
double function with input 5 always gives the result as 10. Pure functions
obey referential transparency. Thus we can replace double(5) with 10,
without any hesitations.

So what’s the big deal about pure functions? They provide many
benefits, which we discuss next.

Pure Functions Lead to Testable Code

Functions that are not pure have side effects. Take our previous tax
calculation example from Listing 1-1:

var percentValue = 5;

var calculateTax = (value) => { return value/100 * (100 +
percentValue) } //depends on external environment percentValue
variable

The function calculateTax is not a pure function, mainly because for
calculating its logic it depends on the external environment. The function
works, but it is very difficult to test. Let’s see the reason for this.

Imagine we are planning to run a test for our calculateTax function
three times for three different tax calculations. We set up the environment
like this:

calculateTax(5) === 5.25
calculateTax(6) === 6.3

calculateTax(7) === 7.3500000000000005
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The entire test passed. However, because our original calculateTax
function depends on the external environment variable percentValue,
things can go wrong. Imagine the external environment is changing the
percentValue variable while you are running the same test cases:

calculateTax(5) === 5.25

// percentValue is changed by other function to 2
calculateTax(6) === 6.3 //will the test pass?

// percentValue is changed by other function to 0
calculateTax(7) === 7.3500000000000005 //will the test pass or
throw exception?

As you can see here, the function is very hard to test. We can easily fix
the issue, though, by removing the external environment dependency from
our function, leading the code to this:

var calculateTax = (value, percentValue) => { return value/100
* (100 + percentValue) }

Now you can test this function without any pain. Before we close
this section, we need to mention an important property about pure
functions: Pure functions also shouldn’t mutate any external environment
variables. In other words, the pure function shouldn’t depend on any
external variables (as shown in the example) and also change any external
variables. We'll now take a quick look what we mean by changing any
external variables. For example, consider the code in Listing 1-9.

Listing 1-9. badFunction Example

var global = "globalValue"
var badFunction = (value) => { global = "changed";
return value * 2 }

10
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When the badFunction function is called it changes the global variable
global to the value changed. Is it something to worry about? Yes. Imagine
another function that depends on the global variable for its business logic.
Thus, calling badFunction affects other functions’ behavior. Functions of
this nature (i.e., functions that have side effects) make the code base hard
to test. Apart from testing, these side effects will make the system behavior
very hard to predict in the case of debugging.

So we have seen with a simple example how a pure function can help
us in easily testing the code. Now we'll look at other benefits we get out of
pure functions: reasonable code.

Reasonable Code

As developers we should be good at reasoning about the code or a
function. By creating and using pure functions we can achieve that very
simply. To make this point clearer, we are going to use a simple example of
function double (from Listing 1-8):

var double = (value) => value * 2

Looking at this function name, we can easily reason that this function
doubles the given number and nothing else. In fact, using our referential
transparency concept, we can easily go ahead and replace the double
function call with the corresponding result. Developers spend most of their
time reading others’ code. Having a function with side effects in your code
base makes it hard for other developers in your team to read. Code bases
with pure functions are easy to read, understand, and test. Remember that
a function (regardless of whether it is a pure function) must always have a
meaningful name. For example, you can’t name the function double as dd
given what it does.

11
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SMALL MIND GAME

We are just replacing the function with a value, as if we know the result
without seeing its implementation. That’s a great improvement in your thinking
process about functions. We are substituting the function value as if that’s the
result it will return.

To give your mind a quick exercise, see this reasoning ability with our in-built
Math.max function.

Given the function call:
Math.max(3,4,5,6)
What will be the result?

Did you see the implementation of max to give the result? No, right? Why?
The answer to that question is Math.max is a pure function. Now have a cup
of coffee; you have done a great job!

Parallel Code

Pure functions allow us to run the code in parallel. As a pure function is

not going to change any of its environments, this means we do not need

to worry about synchronizing at all. Of course JavaScript doesn’t have

real threads to run the functions in parallel, but what if your project uses

WebWorkers for running multiple things in parallel? Or a server-side code

in a node environment that runs the function in parallel?

12

For example, imagine we have the code given in Listing 1-10.
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Listing 1-10. Impure Functions

let global = "something"

let function1i = (input) => {
// works on input
//changes global
global = "somethingElse"

}
let function2 = () => {
if(global === "something")
{
//business logic
}
}

What if we need to run both function1 and function2 in parallel?
Imagine thread one (T-1) picks functioni to run and thread two (T-2)
picks function2 to run. Now both threads are ready to run and here comes
the problem. What if T-1 runs before T-2? Because both function1 and
function2 depend on the global variable global, running these functions
in parallel causes undesirable effects. Now change these functions into a
pure function as explained in Listing 1-11.

Listing 1-11. Pure Functions

let function1 = (input,global) => {
// works on input
//changes global
global = "somethingElse"

13
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let function2 = (global) => {
if(global === "something")
{

//business logic

Here we have moved the global variable as arguments for both the
functions, making them pure. Now we can run both functions in parallel
without any issues. Because the functions don’t depend on an external
environment (global variable), we aren’t worried about thread execution
order as with Listing 1-10.

This section shows us how pure functions help our code to run in
parallel without any problems.

Cachable

Because the pure function is going to always return the same output

for the given input, we can cache the function outputs. To make this
more concrete, we provide a simple example. Imagine we have a
function that does time-consuming calculations. We name this function
longRunningFunction:

var longRunningFunction = (ip) => { //do long running tasks and
return }

If the longRunningFunction function is a pure function, then we know
that for the given inpuyt, it is going to return the same output. With that
point in mind, why do we need to call the function again with its input
multiple times? Can’t we just replace the function call with the function’s
previous result? (Again note here how we are using the referential
transparency concept, thus replacing the function with the previous result
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