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me enthusiastic about a problem in symplectic geometry which involved the

use of the so-called spin-c Dirac operator. Back in Berkeley, where I had

spent a sabbatical semester!, I tried to understand the basic facts about this

operator: its definition, the main theorems about it, and their proofs. This

book is an outgrowth of the notes in which I worked this out. For me this

was a great learning experience because of the many beautiful mathematical

structures which are involved.

I thank the Editorial Board of Birkhauser, especially Haim Brezis, for sug­

gesting the publication of these notes as a book. I am also very grateful for

the suggestions by the referees, which have led to substantial improvements

in the presentation. Finally I would like to express special thanks to Ann

Kostant for her help and her prodding me, in her charming way, into the right

direction.

J.J. Duistermaat

Utrecht, October 16,1995.
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Chapter 1

Introduction

1.1 The Holomorphic Lefschetz Fixed Point For­

mula

Let M be an almost complex manifold of real dimension 2n, provided with

a Hermitian structure. Furthermore, let L be a complex vector bundle over

M, provided with a Hermitian connection. We also assume that ]{*, the dual

bundle of the so-called canonical line bundle ]{ of M, is provided with a

Hermitian connection. We write E for the direct sum over q of the bundles

of (0, q)-forms; in it we have the subbundle E+ and E-, where the sum is

over the even q and odd q, respectively. Write rand r± for the space of

smooth sections of E ® Land E± ® L, respectively. From these data, one

can construct a first order partial differential operator D, the spin-c Dirac

operator mentioned in the title of this book, which acts on r. The restriction

D+ of D to r+ maps into r- , and the restriction D- of D to r- maps into

r+. If M is compact, then the fact that D is elliptic implies that the kernel

N± of D± is finite-dimensional, and the difference dim N+ - dim N- is

equal to the index of D+.

The Atiyah-Singer index theorem applied to this case [7, Theorem (4.3)]

1
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2 Chapter 1. Introduction

expresses this index as the integral over M of a characteristic class in the

De Rham cohomology of M, equal to the product of the Todd class of the

tangent bundle of M, viewed as a complex vector bundle over M, and the

Chern character of L. These characteristic classes are given by polynomial

expressions in the curvature forms of the given bundles. If M is a complex

analytic manifold, then the index ofD+ is equal to the Riemann-Roch number

of M, and the integral formula generalizes the one which Hirzebruch [39]

obtained for complex projective algebraic varieties.

If , is a bundle automorphism of L which leaves all the given structures

invariant, then it induces an operator in r which commutes with D, and one

can form the virtual character

(1.1)

Under the assumption that the fixed point set M' of , in M locally is a

smooth almost complex submanifold and that the action of , in the normal

bundle is nondegenerate, the equivariant index theorem of Atiyah-Segal and

Atiyah-Singer expresses the virtual character as the sum over the connected

components F of lVI', of similar characteristic classes of the F's. In the

complex analytic case, this is called the holonl0rphic Lefschetz fixed point

formula, cf. Atiyah and Singer [7, Theorem (4.6)]. In the case of isolated

fixed points, it is due to Atiyah and Bott [5, Theorem 4.12].

1.2 The Heat Kernel

The operator Q+ == D- 0 D+ maps r+ to r+, and Q- == D+ 0 D- maps

r- to r-. Each of the operators Q+ and Q- is equal to a Laplace operator,

plus a zero order part which involves curvature terms. The corresponding

heat diffusion operators e-t Q± are integral operators with a smooth integral

kernel K±(t, x, y), t > 0, x, Y E M. Along the diagonal x == y, and for
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t 10, these kernels have an asymptotic expansion of the form

00

K±(t, X, x) rv t-n L tk Kt(x).
k=O

3

(1.2)

In this asymptotic expansion, each of the coefficients Kk(x)± is given by a

universal polynomial expression in a finite part of the Taylor expansion of

the geometric data at the point x.

It was observed by McKean and Singer [57, p. 61] that

indexD+ = JM tracec K;(x) - tracec K;;(x) dx, (1.3)

and they asked the question if not, by some fantastic cancellation, the higher

order derivatives in the expression for K~ (x) cancel, to give that the integrand

in (1.3) is equal to a characteristic differential form whose cohomology

class is equal to the one of the index theorem. This would give a direct

analytic proof of the index theorem, with the advantage of having a local

interpretation of the integrand. Actually, in [57] the question is asked for the

Euler characteristic of M, but it obviously can be generalized to arbitrary

index problems.

1.3 The Results

It turned out that, also in the presence of an automorphism " the fantastic

cancellation indeed takes place. See Theorem 11.1 and Theorem 12.1. In

the complex analytic case, the result is referred to as a local holomorphic

Lefschetz fixed point forn1ula. It is the purpose of this book, to explain both

all the ingredients in the formula, and how the answer comes about. In it, we

will apply the methods of Berline, Getzler and Vergne [9, Ch. 1-6], and show

how these work in the case of the spin-c Dirac operator. (For the comparison:

our L is their W, the letter W is the classical notation of Hirzebruch [39]. We

have chosen the letter L, because of the connotation of a "linear system".)
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For the index, the result is due to Patodi [64] in the Kahler case, with

another proof by Gilkey [28], who in [31] extended the result to almost

complex manifolds. In the presence of an automorphism" the local formula

had been obtained by Patodi [65] under the assumption that the connected

components of the fixed point set M' of , in M are Kahler manifolds. A

proof for general almost complex manifolds has been indicated by Kawasaki

[45, pp. 156-158]. One can also obtain the result in this general setting as

a consequence of the local Lefschetz formula for the spinor Dirac operator

of Berline and Vergne [11], cf. [9, Theorem 6.11]. That is, by using the

comparison (6.20) between the bundle E of (0, q)-forms and the spinor

bundle S, and observing that it suffices to work locally, where spin structures

always exist.

The local formula is particularly suited for the generalization of the Lef­

schetz formula to compact orbifolds, which we will explain in Chapter 14. I

learned this from the proof of Kawasaki [45] for the Riemann-Roch number.

For arbitrary elliptic operators on compact orbifolds, the Lefschetz formula

has been obtained by Vergne [73]. She used the theory of transversally el­

liptic operators of Atiyah [2], as Kawasaki [46] did in his proof of the index

formula for orbifolds. The use of the local formula avoids the use of the

commutative algebra of [2], which may make it more accessible to analysts.

Strictly speaking, this work contains no new results. However, the spin-c

Dirac operator is a very important special case among the general Dirac-type

operators. As described above, it came originally from the study of complex

analytic manifolds. On the other hand, every symplectic manifold (phase

space in classical mechanics) also carries an almost complex structure and

hence a corresponding spin-c Dirac operator. We will discuss the application

of the theory to this case in Chapter 15. As a third application, we mention

that recently the Seiberg-Witten theory, an Sl gauge theory which uses the

spin-c Dirac operator, has led to striking progress in the differential topology

of four-dimensional compact oriented manifolds. Here one works with spin­

e Dirac operators which are defined in terms of spin-c structures which do not
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necessarily come from an almost complex structure. See the Remark in front

of Lemma 5.5. For an exposition of Seiberg-Witten theory see for instance

Eichhorn and Friedrich [26] or Morgan [61]. The importance of the spin-c

Dirac operator makes it worthwhile to work out the beautiful constructions

of [9] for this special kind of Dirac operator.

A large part of the exposition has a wider scope than just the spin-c

Dirac operator. For instance, Chapter 8 is an exposition of the asymptotic

expansion of heat kernels for generalized Laplace operators, following [9,

Ch. 2]. Chapters 9 and 10, on the Berline-Vergne theory of heat kernels on

principal bundles, are also written for more general operators than only the

spin-c Dirac operator. The point of this theory is, that it gives an explanation

for the similarity between the factor det l-~-R , which appears in the index

formula, and the Jacobian of the exponential mapping from a Lie algebra

to the Lie group. (Here R denotes curvature.) Lemma 9.5 and Lemma 9.6

form the starting point of this explanation. Although in general we tried to

keep our notations close to our main reference [9], we apologize that at some

points we ended up with a different choice.

Finally, in Chapter 13 the formulas of Theorem 11.1 and Theorem 12.1

are translated into the language of characteristic classes, in which the for­

mulas of Hirzebruch and Atiyah-Singer originally were phrased. We use the

occasion to explain, in Chapter 16, the Weil homomorphism in its natural

setting of equivariant differential forms in the presence of an action of a Lie

group, and under the assumption that the action admits a connection form.

I am very grateful to Victor Guillemin for arousing my interest in the

subject, in connection with the question how the Riemann-Roch number

of a reduced phase space for a torus action is related to multiplicities of

intermediate phase spaces. And I apologize for spending so much time on

writing up this text, instead of "adorning the dendrites". Finally I would like

to thank the Department of Mathematics of DC Berkeley, for providing me

with an ideal environment to work on this.



Chapter 2

The Dolbeault-Dirac Operator

In this chapter we set the stage, by introducing complex and almost struc­

tures, the Dolbeault complex and Hermitian structures. The holomorphic

Lefschetz number, defined as the alternating sum of the trace of the auto­

morphism acting on the cohomology of the sheaf of holomorphic sections,

will be expressed in terms of a selfadjoint operator, which is built out of the

Dolbeault operator and its adjoint; the Dolbeault-Dirac operator in the title

of this chapter. This material is very well-known but, also in order to fix

the notations, we have taken our time for the description of these structures.

Just for convenience, we will assume that all objects are smooth (infinitely

differentiable).

2.1 The Dolbeault Complex

Let M be a manifold ofeven dimension 2n, provided with an almost complex

structure J. That is, for each x E M, Jx is a real linear transformation in

Tx M such that Jx
2 == -1. A real linear mapping A from Tx M to a complex

vector space V is called complex linear and complex antilinear with respect

7
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8 Chapter 2. The Dolbeault-Dirac Operator

to the complex structure Jx in Tx M, if

A (Jx(v)) == i A(v), v E Tx M

and

A (Jx(v)) == -i A(v), v E Tx M,

(2.1)

(2.2)

respectively.

The space of complex linear and complex antilinear forms (V == C)

on Tx M is denoted by T~ M(l, 0) and T~ M(O' 1), respectively. With this

notation, the space of complex linear and antilinear mappings from Tx M to

V becomes equal to T~ M(l,O) 0 V and T~ M(O' 1) ® V, respectively. One

has the complementary projections

and

7r(1,0) : ~ r-7 ~(1,0) :== ~ (~- i~ 0 Jx ), (2.3)

(2.4)

from T* M ® C onto T* M(l,O) along T* M(O' 1) and from T* M ® C onto
x x x' x

T~ M(O' 1) along T~ M(l, 0), respectively.

A complex-valued function f on M is called complex-differentiable or

complex-analytic, or holomorphic, if, for every x E M, dfx is complex

linear. If [) == 7r(0,1) 0 d denotes the operator d followed by the projection

(2.4), then this condition is equivalent to the differential equation af == O.

One also writes f) == 7r(1,0) 0 d, so that d == f) + [) on functions, and f) f == df

if and only if f is holomorphic.

Let p, q, r E Z?O, with P + q == r. A complex-valued antisymmetric

r-linear form on T x M is called of type (p, q), if it is equal to a finite sum of

forms a 1\ {3, where a E AP T; M(l,O) and {3 E Aq T; M(O' 1). The space of

forms of type (p, q) is denoted by T~ M(p, q). The point is that

ArT* M 0 C == ~ T* M(p,q)
x Q7 x ,

p, q,p+q==r

(2.5)
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so we have the projection 'lfp,q from AT T; M @ C onto T; M(p,q) along the

sum of the other components. An L-valued version is obtained by tensoring

T; M(p,q) with Lx. A (p, q)-form wx on T x M, which depends smoothly on

x E M, is called a (p, q)-form on M. The space of (p, q)-forms on M is

denoted by O(p,q)(M).

In particular we will be interested in the case p == 0, for which we will

use the following abbreviation throughout:

E~ :== T; M(O, q) == Aq T; M(O' 1), E~ == C. (2.6)

Note that E'l: = 0 if q > n, and dime E'l: = ( ; ) if 0 ::; q ::; n. We will

write

n

Ex :== EBE~,
q=O

E+ == Eeven == ~ Eq
x x 'l7 x'

even q

E; == E~dd == EB E~.
odd q

(2.7)

(2.8)

(2.9)

With the exterior product of forms and the splitting in E: and E;, Ex

is a supercommutative superalgebra over C. (See [9, Section 1.3] for the

definition of such algebras.)

The Ex, x EM, form a complex vector bundle E over M with subbundles

E+ == UxEM E; and E- == UXEM E;. The space of sections of E, E+ and

E- is equal to the direct sum of the spaces [2(0, q), where q runs over all the

even and the odd integers 0 :s; q :s; n, respectively.

In Chapter 5 we will introduce the spin-c Dirac operator, which will be

used in the general case of an almost complex structure. In order to motivate

its definition and to understand its relation to complex analysis, we assume

in the remainder of this chapter that M is a complex analytic manifold. This

means that around every x E M there is a system of local coordinates in
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which J is equal to the standard complex structure of Cn
. This is equivalent

to the condition that, at every x EM, there exist n holomorphic functions Zj

in a neighborhood of x in M, such that the dZj at x are linearly independent

over C.

In such coordinates Zj, each (p, q)-form is of the form

W == L WJ,K dZJ /\ dzK ,

J,K

(2.10)

where J and K runs over the set of strictly increasing sequences J == (ji)f==l
and K == (k i );==l' respectively, each WJ,K is a complex-valued function, and

dzJ == dZj1 /\ dZj2 /\ /\ dzjp ,

dZ
K

== dZk1 /\ dZk2 /\ /\ dzkq •

(2.11)

(2.12)

From this we see that dw is the sum of a (p+1, q) -form and a (p, q+1)-form.

Or, one again has d == a+ 8, if one writes

and

a == 7f(p+l, q) 0 d

[) == 7f(p, q+l) 0 d

(2.13)

(2.14)

on (p, q)-forms.

This implies that for each (0, I)-form w, 7f(2,0) dw == O. For a general

almost complex structure J, it need no longer be true that d == 8 + 8.
For each x E M, one has the antisymmetric bilinear mapping [J, J]x from

T x M x T x M to T x M, which is defined by

[J, J](v, w) == [Jv, Jw] - J [Jv, w] - J [v, Jw] - [v, w],

for any vector fields v and w in M. Using the formula

(dw)(v, w) == vw(w) - ww(v) - W ([v, w]),

(2.15)

(2.16)
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one gets for each (0, I)-form w that

dw(v - i Jv, W - i Jw) == w ([J, J](v, w)).

11

So the condition that 7r(2,O) dw == 0 for every (0, I)-form w is equivalent

to the condition that [J, J] == O. The theorem ofNewlander and Nirenberg

now says that an almost complex manifold (M, J) is complex analytic if and

only if [J, J] == O. This theorem is already valid if the first order derivatives

of J are Holder-continuous. Cf. Newlander and Nirenberg [62], Hormander

[41], Malgrange [55].

We continue the discussion of complex analytic manifolds. Identifying

the types in 0 == d2 == f)2 + f)[) + [)f) + [)2 on Q(p,q)-forms, one sees that

f)2 == 0, f) a+ af) == 0, and [)2 == O. In particular, the operator 8 defines a

complex

(2.17)

called the Dolbeault complex. On the sheaves of locally defined forms, this

sequence is exact, and one gets the theorem of Dolbeault that

(2.18)

where the right hand side denotes the q-th cohomology group of the sheaf

(] (O(p,ol) of halamorphic (p, O)-forms over M. See for instance Griffiths

and Harris [33, p. 45]. If M is compact, then the ellipticity of the complex

yields that the spaces in the left hand side are finite-dimensional. We will

mainly be interested in the case that p == O.

A holomorphic vector bundle Lover M is defined as a complex vec­

tor bundle over M for which the retrivializations are given by elements

of GL(l, C) which depend holomorphically on the base point. (Here l ==
dime Lx.) All the above remains valid for L-valued (p, q)-forms, that is, the

sections of the vector bundle
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In particular, we have the "twisted Dolbeault complex" defined by

a(O,q) : Eq @ L ~ Eq+l @ L,

and the corresponding cohomology groups

ker8(O,q)/range8(O,q-l) ~Hq(M, O(L)) , (2.19)

(2.20)

(2.21)

the q-th cohomology group of the sheaf O(L) of holomorphic sections of L

over M.

If M is a compact complex analytic manifold, then an important quantity

is the Riemann-Roch nunlber
n

RR(M, L) :== L(-l)q dime Hq (M, O(L)).
q=O

More generally, if 1 is a complex analytic automorphism of L, then 1 acts

on 0 (L), and one can define its holomorphic Lefschetz number
n

X(1) == XM,L(1) :== L(-1)qtracee1IHQ(M,O(L»·
q=O

This is a generalization because XM,L (l) == RR(M, L).

If L is a holomorphic complex line bundle over M for which K* @ L is

positive, then Kodaira's vanishing theorem says that Hq (M, O(L)) == 0 for

every q > 0, cf. (6.34). If the latter is the case, the holomomorphic Lefschetz

number is equal to the trace of the action of 1 on the space HO (M, O(L))
of all holomorphic sections of Lover M, and the Riemann-Roch number is

equal to the dimension of that space.

2.2 The Dolbeault-Dirac Operator

In order to define adjoints, we now introduce Hermitian structures hand hL

in the tangent bundle T M of M and the fibers of L, respectively. For each

x E M, hx is a complex-valued bilinear form on T x M, such that

hx (v, v) > 0 if vETx M, v i= 0, (2.22)
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and

13

hx (Jx(v), w) == i hx(v, w) == -hx (v, Jx(w)) , v, w E Tx M. (2.23)

Similarly with hx and Tx M replaced by h~ and Lx, respectively.

It follows that the real part (3 == Re h of h is a Riemannian structure in M,

and Jx is antisymmetric with respect to (3x. Furthermore, the imaginary part

(J == 1m h is a nowhere degenerate two-form in M, and Jx is infinitesimally

symplectic for (Jx. Finally,

(3(v, w) == (J (lv, w) (2.24)

shows that choosing two of the three structures J, (3, (J determines the third.

In order to get a Hermitian structure in E, we begin by observing that

(2.25)

is a complex linear isomorphism from T x M onto T; M(O,l). Using this

isomorphism, we transplant the Hermitian structure of T M to a Hermitian

structure h(O,l) in T* M(O' 1). That is, h(O,l) is determined by the condition

that, if ej, 1 S j S n, is a unitary local frame in T M for h, then Ej :== h ej

forms a unitary local frame in T* M(O' 1) for h(O, 1). It is dual to the frame ej,

in the sense that (ej, Ek) == bjk.
The Hermitian structure h(O,q) on Eq == T* M(O,q) can now be defined by

the conditon that the EK form a unitary local frame in Eq, if for each strictly

increasing sequence K == (k i )i=l we write

(2.26)

The Hermitian structure hE on the direct sum E of the Eq is defined by

requiring the summands to be mutually orthogonal. And the Hermitian

structure hE@L on E 0 L by the condition that if ej and lk are unitary local

frames in E and L, respectively, then the ej 0 lk form a unitary local frame

in E 0 L.


