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Preface

Wind turbines have become very popular in the landscape in recent years. Their
appearance triggered a number of discussions concerning their impact on the
environment, their efficiency, potential threat to animals, and plethora of other
subjects. For a mechanical engineer, however, wind turbines are complex machines
operating in very challenging conditions. Cost structure of operating a wind farm is
very different from a thermal plant. In a wind farm, a majority of costs must be paid
before turbines start to generate income. In other words, capital expenditures
(CAPEX) are very high and operating expenditures (OPEX) can be low, as the
energy source is free of charge. In such a situation, an uninterrupted readiness to
generate electricity is a key requirement. An engineer will say that we require high
availability. For machines with gearboxes (which make up a majority of all wind
turbines), the most vulnerable part of a wind turbine is its drivetrain, i.e., a main
bearing, a gearbox, and a generator. A single unplanned exchange of a gearbox can
cost several hundred thousand euros, and methods which can tell us whether the
gearbox is in a good shape are very important to the users.

This book explains how the technical state of a wind turbine drivetrain can be
assessed, based on the vibration analysis of its mechanical vibration. After the
introduction, Chap. 1 starts with the description of vibration signals used for
monitoring drivetrains and presents its key features. The signal processing methods,
including the advanced ones, like signal resampling and signal envelope, are
described in Chap. 2. This chapter puts great importance to the fact that turbines
generate electricity in response to the wind. It is a fundamental cause why they
work in highly varying operational conditions.

Vibration-based condition monitoring has become an important branch of the
market. There are several monitoring devices available to potential users. They vary
greatly in features and applications. Chapter 3 describes types of devices used for
condition monitoring purposes, ranging from vibration sensors, through supervisory
control and data acquisition (SCADA), to portable data analyzers and online con-
dition monitoring systems.
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Vibration analysis is a vibrant research field, in which new methods are intro-
duced to help to process vibration data more accurately. Chapters 4 and 5 constitute
the main part of this book and are dedicated to such new methods. It is accom-
panied by real case studies, in which advanced signal processing methods were
used to detect failures of gearboxes and bearings of wind turbines.

This book is intended for researchers in the field of vibration signal analysis
interested in wind turbines. It will provide them with an in-depth understanding
of the most recent research achievements in this domain. It can also be useful for
practitioners active in the field of wind turbine condition monitoring, help them in
extending their knowledge in the field, and give examples of equipment available
on the market. Finally, it will be interesting to graduate students who would like to
extend their knowledge into the field of vibration analysis. The information con-
tained in this book will also be valuable to those interested in condition monitoring
of other machines working in varying operational conditions, like airplanes, heli-
copters, vehicles, mining equipment.

Kraków, Poland Tomasz Barszcz
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Chapter 1
Introduction

1.1 Who Should Read This Book

My career path comprises sharing my time between academia and industry. I have
experienced and appreciated how much both communities are different and how
much they can learn from one another. The most important field for me is vibration
based condition monitoring of wind turbine drivetrains. This has become my main
motivation towrite a book on the topicwhich I hopewill be useful for both researchers
and practitioners.

During the past 25 years, I have come across many books on vibration signal
analysis. They present the subject frommany angles, but still I could not find any book
devoted to wind turbine drivetrains. There are hundreds of scientific papers being
published in this domain and adjacent ones. For most readers, however, it is really
time consuming to browse through all the papers and pick up the ones relevant towind
turbine drivetrains. My ambition is to fill this gap by providing basic information
about the wind turbines market and design, a comprehensive survey of currently
used vibration analysis methods and available condition monitoring systems, finally,
presenting recent research in this field.

Important aspects of condition monitoring of wind turbines are varying opera-
tional conditions of these machines. Constant wind variability causes variations in
all the process parameters, primarily the rotational speed and the generated power.
Since the rotational speed governs frequencies generated by all the drivetrain compo-
nents, the frequency spectrum is very different from this of a constant speedmachine.
A varying load is another factor changing amplitudes of vibration signals. All of it
needs to be included in efficient analysis of a wind turbine technical state.

This book is primarily intended for researchers in the field of vibration signal
analysis interested in wind turbines and it will provide them with in-depth under-
standing of the most recent research achievements in this domain. I have included

© Springer Nature Switzerland AG 2019
T. Barszcz, Vibration-Based Condition Monitoring of Wind Turbines, Applied
Condition Monitoring 14, https://doi.org/10.1007/978-3-030-05971-2_1
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2 1 Introduction

the most recent (as of February 2018) research results in the field. My main interest
was detection of gear and rolling bearing faults with vibration signals. The book con-
tains several case studies which provide additional understanding of the presented
methods.

It can also be useful for practitioners active in the field of wind turbines condition
monitoring and help them in extending their knowledge in the field. The important
part of the book is the survey about the equipment available on the market. As
this market is mature now, there is a wide variety of off-the-shelf products which
can be applied for condition based monitoring. To achieve the best possible return
on investment from the condition monitoring the key requirements toward the CM
implementation process are stressed.

Last but not least, the book will also be interesting to graduate students who
would like to extend their knowledge into the field of vibration analysis. The first
chapters include a compendium of vibration signal analysis methods starting from
basic broadband features to the advanced ones.

The information contained in this book will also be valuable to those interested
in condition monitoring of other machines working in varying operational condi-
tions, like airplanes, helicopters, vehicles, mining equipment and others. Most of the
techniques presented in the book can be quickly applied in the domains mentioned
above.

1.2 Types of Drivetrains

Wind turbine technology has been developed for centuries. Nevertheless, the wide
application ofwind power generation to a public grid has gainedmomentum since the
80s. During this time dozens of different machines converting wind energy into its
other forms have been invented, designed and tested. The complete process involves
information and experience frommanyfields of knowledge, e.g. aerodynamics,mate-
rial science,mechanical and electrical engineering.An interested reader can find facts
and data about the historical developments and physical principles in books by Hau
[1] or Burton et al. [2]. In these book the most popular design is going to be con-
sidered: a horizontal axis upwind turbine. The term “upwind” depicts a turbine in
which the main rotor is the part directed towards the wind.

A drivetrain itself consists of the following parts:

• main shaft,
• main bearing,
• gearbox (only in the gear design),
• coupling,
• generator.

There are also other mechanical components in the nacelle, though they are not
part of a drivetrain and will not be considered here. Such mechanical subsystems
are a blade pitch, a yaw and a brake. A pitch control mechanism is used in pitch
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Fig. 1.1 Drivetrain of the horizontal axis wind turbine with gearbox

controlled turbines; it is mounted in a rotor hub and continuously sets the pitch angle
of the main rotor blades. A yaw drive can change the azimuth and is used to direct the
nacelle towards the wind. A mechanical brake is used to stop a turbine. It is typically
mounted between a gearbox and a generator.

The main role of a wind turbine drivetrain is to transmit mechanical power from
a main rotor to a generator. There are two fundamental setups of mechanical trans-
mission:

• gearbox between the main rotor and the generator,
• direct drive (gearless).

The most popular design is such in which a gearbox is placed in between a rotor
and a generator. The example of the most typical setup is presented in the Fig. 1.1.
The main rotor with three blades is supported by the main bearing and transmits
torque to the planetary gear. The planetary gear input is a plate to which the main
rotor is connected. The planetary gear has three planets, with their shafts attached
to the plate. The planets roll over the stationary ring and transmit torque to the sun.
The sun shaft is the output of the planetary gear. Further, the sun drives the two-
stage parallel gear. The parallel gear has three shafts: the slow shaft connected to the
sun shaft, the intermediate shaft and the fast shaft which drives the generator. The
intermediate shaft is mounted inside the parallel gear.

A gearbox is used to increase slow rotational speed of a rotor (ca. 18 rpm) to
match the speed of a generator (ca. 1500 rpm for 50 Hz grid). Thus, a gearbox ratio
is in the range of 80–100. As presented above, the most popular design uses a one
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Fig. 1.2 Drivetrain of the direct drive wind turbine

stage planetary gear and a two stage parallel gear. Other gearbox designs are also
manufactured, e.g. a two stage planetary gear with a one stage parallel gear. There
are also gearbox designs with a three stage parallel gearing.

The main advantage of a standard design is the ability to use conventional gear-
boxes and generators which are used in other industries and manufactured by many
independent companies. Using popular components from the market results in a
relatively light and inexpensive system. Another important advantage is easy main-
tenance, both in terms of access to individual components as well as in availability
of spare parts.

The other design, less frequent, is a direct drive (gearless) wind turbine. The main
rotor is placed directly on a multi-pole generator shaft. The major problem of a
gearless wind turbine is the need of a dedicated, multi-pole generator. Next, a power
electronic frequency converter further increases frequency to match the grid. The
example of such a design is shown in the Fig. 1.2.

As the generator rotational speed is that of the main rotor, the generator requires a
high number of poles. Thus, direct drive generators have large diameters. It helps to
distinguish them from the standard design. In general, direct drivemachines require a
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Table 1.1 Basic operational parameters of the Enercon E82 E2 wind turbine

Parameter Value Unit

Tower height 78–138 m

Rotor diameter 82 m

Nominal power 2000 kW

Control type Pitch –

Gearbox None –

Rotor speed 6–18 rpm

Generator speed 6–18 rpm

Weight (nacelle, rotor and blades) Approx. 135 Mg

Table 1.2 Basic operational parameters of the Vestas V90-2 wind turbine

Parameter Value Unit

Tower height 80–125 m

Rotor diameter 90 m

Nominal power 2000 kW

Control type Pitch –

Gearbox 1 planetary + 2 parallel –

Nominal rotor speed 18 rpm

Nominal generator speed 1500 rpm

Weight (nacelle, rotor and blades) Approx. 108 Mg

dedicated generator resulting in heavier and more costly turbines. On the other hand,
its most important advantage is the increased reliability on account of a simplified
drivetrain.

Tables 1.1 and 1.2 present key parameters of two comparable 2MWwind turbines.
Please, note that the parameters given in Table 1.2 are for the 50 Hz market. For the
60 Hz market nominal generator speed for a geared type turbines is 1800 rpm.

1.3 Stall Controlled and Pitch Controlled Turbines

Another important distinction within geared wind turbines is a control type which
greatly influences generated vibration signals. The main problem to solve is how to
adjust turbine power to changing wind conditions in high winds. There are two main
design solutions to this problem: stall control and pitch control.

Stall control takes advantage of the physical phenomenon of separation of air flow
from the profile of a blade when the angle of attack is too high. In aerospace it is
very dangerous as the lift force decreases suddenly and may lead to a catastrophic
failure. In wind turbines, on the other hand, it is used to decrease generated power.
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Fig. 1.3 Example of speed profile of a stall controlled wind turbine

Such a design is very simple and does not require a control system of the blades.
Since it is not possible to achieve efficient generation in wide range of wind speeds,
stall controlled turbines have two nominal generator speeds, most often 1000 and
1500 rpm. As long as the turbine works at a given speed, the load may vary, but
the speed is almost ideally constant. It has important consequences for generated
vibration signals. Every component (as it will be shown in Sect. 1.4) generates its
own vibration pattern bound to so-called characteristic frequency which depends on
rotational speed. If the rotational speed is constant, characteristic frequencies are
constant and can be determined and analyzed by frequency spectrum. The Fig. 1.3
presents the speed profile of the stall controlled turbine. One can observe that for
several hours the turbine maintained almost perfectly constant speed of 1000 rpm.

With the increasing size and power, stall turbines have lost the market to a more
efficient pitch controlled design. Stall controlled ones can be found in the field,
but this design rarely achieves nominal power above 1 MW. For an illustration, the
Table 1.3 presents the main parameters of a stall controlled turbine.

The currently dominant model, namely the pitch control, is a design in which a
pitch angle of the main rotor blades is changed depending on wind speed. The goal is
to maintain the optimal operating conditions. Rotor blades operate at more efficient
conditions than the stall controlled ones. Therefore, pitch control turbines are more
efficient though at the cost of a complex pitch control mechanism.

As far as vibration signal analysis is concerned, continuously varying rotational
speed is a major obstacle. The characteristic frequencies mentioned above do not
represent constant frequency lines if the rotational speed is not constant. The Fig. 1.4
presents the speed profile of a pitch controlled turbine. There are periods whenwithin
only 3 min the rotational speed can vary from 820 to 1080 rpm. It is a change of


