

The Science of Baseball

Batting, Bats, Bat-Ball Collisions, and the Flight of the Ball

Second Edition

The Science of Baseball

A. Terry Bahill

The Science of Baseball

Batting, Bats, Bat-Ball Collisions, and the Flight of the Ball

Second Edition

A. Terry Bahill Systems and Industrial Engineering University of Arizona Tucson, AZ, USA

ISBN 978-3-030-03031-5 ISBN 978-3-030-03032-2 (eBook) https://doi.org/10.1007/978-3-030-03032-2

Library of Congress Control Number: 2018958952

1st edition: © Springer International Publishing AG 2018

2nd edition: © Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Dedicated to my always smiling, always laughing Karen

Foreword by Greg Rybarczyk

I first "met" Dr. Terry Bahill in 2005 while researching aerodynamic characteristics of batted baseballs as part of a personal project which would become the ESPN Home Run Tracker. I didn't speak to him at the time (that would come later) but rather downloaded and read many of the papers which he had posted on his website. Dr. Bahill's explanations and calculations were a great help to me at a time when my career in baseball analytics was just beginning, but as we've corresponded over the years, my admiration for his work, particularly his gift for communicating ideas, has only increased. His latest publication, *The Science of Baseball: Batting, Bats, Bat-Ball Collisions, and the Flight of the Ball* is a worthy contribution to his prodigious body of baseball research, compiled over four decades and presented with extraordinary clarity. It will serve as a valuable reference for scholarly fans, as well as baseball analysts who aspire to compete at the highest level.

Major League Baseball clubs are, as of 2018, in the midst of a revolution. The ranks of analysts employed by Major League Baseball clubs have swelled in recent years, as teams try to at least keep pace, and hopefully realize competitive advantages through the creative use of the data which is being generated and presented to teams at an unprecedented rate. Every MLB front office now employs people who scrutinize not only traditional statistics such as batting averages and home run totals, but also play-level summary metrics like pitch speed or batted-ball exit speed. The most analytically enthusiastic clubs study ball- and player-tracking data collected at rates as high as 100 data points per second, and disseminated by commercial vendors such as Baseball Info Solutions, Sport vision, Trackman, MLB Advanced Media and others. MLB's demand for new forms of baseball analysis has inspired a large and rapidly growing pool of independent analysts who conduct research via publicly available sources, hoping to earn the opportunity to offer their services as consultants to or employees of Major League front offices. More people and companies are doing more baseball-related analytical work than ever before.

Throughout my dozen years of baseball-related work, both as an individual and in my current role as an analyst with the Boston Red Sox, I've found that the best research originated with people who possessed not only thorough baseball knowledge but also a solid understanding and a proper deference to the other governing principles of the situation under study. For contract and compensation issues, these principles are those of economics; for discretionary tactical moves such as stolen base or bunt attempts, or for pitch type selection, these principles are those of game theory; for issues related to the movement of the baseball, these principles are those of physics.

Unfortunately, too often these days we see analytical work that neglects, or even runs counter to, the underlying principles, because the analyst's mastery of the relevant principles is faulty or incomplete. For some, analysis of baseball data consists of arranging it in columns and performing statistical tests on it until something "pops." I was once offered a detailed analysis that rated elite closer Koji Uehara as the 16th best pitcher on the Red Sox roster, and further opined that his devastating splitter was among the weaker individual pitches on the entire team. After I stopped laughing, I asked a few questions and learned that these dubious results could be traced to a faulty premise about the value of pitch locations. It was, essentially, a lack of understanding of one of the most important elements of pitching analysis: how to judge the results of a pitch.

More knowledgeable analysts who are familiar with the applicable principles can better detect and avoid bad data, more efficiently set up and perform the most promising statistical tests, and can more reliably interpret the results. Dr. Bahill's expert dissection of the bat–ball collision (Chaps. 1–5) and the flight of pitched and batted baseballs through the air (Chap. 7) should be read by all who wish to enhance their expertise at analysis of ball-tracking data by first understanding why the baseball moves the way it does. Complete derivations have been provided for those who wish to delve deeply into the equations, but they need not present a persistent barrier to those readers who prefer to skim the line-by-line mathematics and skip ahead to the conclusions. A prime example is the sensitivity analysis presented in Chap. 7, which describes the change in batted-ball range which follows a given change in various inputs such as batted-ball speed, batted-ball spin or air density.

Baseball analysts past, present and future are indebted to Dr. Bahill for the efforts he has made to make understanding of the complex underlying physics of baseball accessible to all at each person's chosen level of detail. His precise yet eminently accessible explanations of the physics of the bat–ball collision and the flight of the ball are more useful than ever in an era when MLBAM's Statcast system tells 30 and 100 times per second **what** has happened but leaves to the observer the task of figuring out **why** it happened (which is, of course, the key to predicting what will happen in the future, the ultimate objective of all analysts). If you wish not only to understand the game of baseball better but to contribute to the body of knowledge of the game of baseball, read this book carefully, and then read

it again. For the moment, knowledge of baseball physics can still differentiate an analyst from his or her peers but in the field of baseball analytics, no competitive advantage persists for long.

Southborough, MA, USA

Greg Rybarczyk Senior Analyst, Baseball R&D Boston Red Sox Creator of ESPN HR Tracker

P. O. BOX 481 ISLAMORADA, FLORIDA KEYS 33036

January 23, 1984

Prof. A. Terry Bahill Electrical & Computer Engineering Carnegie-Mellon University Schenley Park Pittsburgh, PA 15213

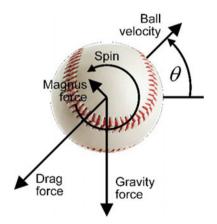
Dear Mr. Bahill:

Received your letter and have also had a chance to read your research, and I fully agree with your findings.

I always said I couldn't see a ball hit the bat except on very, very rare occasions and that was a slow pitch that I swung on at shoulder height. I cam very close to seeing the ball hit the bat on those occasions.

As to participating in your other experiments; at this time, I can't tell you that I can comply with your request.

Regarding the current theories of some of the present batting coaches (with which I absolutely disagree) to watch the ball go into the catcher's mitt - by doing that, you don't give yourself a chance to swing and open up properly. Try it yourself - look down at the plate and try to make a full swing. I hope you don't throw your back out of joint!


In any event, good luck with your projects.

Sincerely, Villaniz Ted Williams

TW/shg

Preface

Collisions between baseballs, softballs and bats are complex and therefore their models are complex. The first purpose of this book is to show how complex these collisions can be, while still being modeled using only Newton's axioms and the conservation laws of physics. This book presents models for the speed and spin of balls and bats. These models and equations for bat–ball collisions are intended for use by high school and college physics students, engineering students, the baseball analytics community and most importantly nonprofessional students of the science of baseball. Unlike models in previous books and papers, these models use only simple Newtonian axioms and the conservation laws to explain simple bat–ball collision configurations. It is hoped that this book will help readers develop an understanding of the modeling of bat–ball collisions. The second purpose of this book is to help batters select or create baseball or softball bats that would be optimal for them. The third purpose is to show what affects air density and how air density affects the flight of the ball.

Chapter 1 lays the groundwork for analyzing bat–ball collisions and previews the theme that alternative models help you understand the system.

Chapter 2 introduces nine basic configurations of bat-ball collisions using words and figures.

Chapter 3 starts developing the equations for these configurations. It starts with the simple configurations having the ball collide with the center of mass of the bat. Then it moves on to configurations that are more complex using the same equations and development. The notation developed here will be used throughout the book.

Chapter 4 is the pinnacle of this book. It contains our most comprehensive model, which is a collision at the sweet spot of the bat with spin on the pitch. It shows which parameters are the most and least important. It also has advice for selecting and modifying each person's optimal bat. Such a bat does not have its barrel end cupped out. This chapter is unique in the science of baseball literature. It is also self-contained. You need not read previous chapters to understand it. In other words, a teacher could use this chapter in a physics or engineering course and the students would only have to buy this one chapter. The BaConLaws model presented in this chapter also describes the motion of the *bat* after the collision. Many models describe the motion of the ball after the collision but few (if any) describe the motion of the bat. When you see a batter hit a ball, do you see the recoil of the bat? Can you describe it? Well, these equations do.

Chapter 5 contains four alternative models for bat–ball collisions. Their purposes are different and are they based on different fundamental principles. The Effective Mass model was created by physicists independent of the author of this book. Therefore, comparisons to it are important for validating the model of Chap. 4. The second and third models are data-based, not theory-based. They use a different approach and they use a different *type* of data. The fourth model considers friction during the collision. It is shown that this type of collision cannot be modeled thoroughly using only the conservation laws. Our modeling technique could not handle the Collision with Friction model because our technique is only good for a point in time before the collision. Chapter 4 fulfilled part of the first purpose of this book. It showed a complex configuration for which our technique did work. Chapter 5 completed the fulfillment of this purpose by showing a configuration for which our technique was too simple.

Nothing in Chaps. 1-5 is controversial. There are no unstated assumptions. Important equations have been derived with at least two techniques. In Chaps. 2-5, the equation numbers are the same. In other words, Eq. (2.3) is the same as Eq. (3.3) is the same as Eq. (4.3) and is the same Eq. (5.3). The equations in Chaps. 2-5 were derived using only Newton's axioms and the conservation laws of physics. The equations in Chap. 7 for the drag and Magnus forces are original and are based on more than Newton's axioms.

Chapter 6 summarizes Chaps. 1–5. Chapters 1–6 deal with bat–ball collisions. They solve equations in closed form. There are no approximations. Chapter 7 deals with messy real systems. It uses experimental data and gives approximations.

Chapter 7 contains derivations for equations governing the flight of the ball. It shows what affects air density and how air density affects the flight of the ball. It shows that a home run ball might go 26 feet farther in Denver than in San Francisco. It also answers the question, "Which can be thrown farther a baseball or a tennis ball?" This chapter can be read independently from the rest of the book.

Chapter 8 discusses the accuracy of baseball simulations. When the television announcer says, for example, that home run went 431.1 feet. You, our reader, will know that he should have said, that the *true* range of that home run was 430 plus or minus 30 feet.

Chapter 9 presents the vertical sweetness gradient of the baseball bat. It shows that the sweet spot of the bat is one-fifth of an inch high.

Chapter 10 tackles the differences between right-handed batters and left-handed batters. It shows that neither is better than the other. Finally, it explains that cross-dominant batters do have an advantage on some pitches. Because for non-cross-dominant batters, the blind spot of their dominate eye can obscure the bat–ball collision.

Chapter 11 summarizes the insights and wisdom of the book. Chapter 12 presents our modeling philosophy.

We need people who can explain this book to baseball managers and general managers.

Teachers might challenge their students to try finding mistakes in this book. The author will give \$25 to the first person/group to find a logical, algebraic, physics or engineering mistake in this book. Spelling, punctuation, grammar, fuzzy inconsistencies, typographical errors and broken links do not count. Send discoveries to Terry Bahill, 1622 W. Montenegro, Tucson AZ, USA 85704-1622.

Tucson, AZ, USA

A. Terry Bahill

Acknowledgements

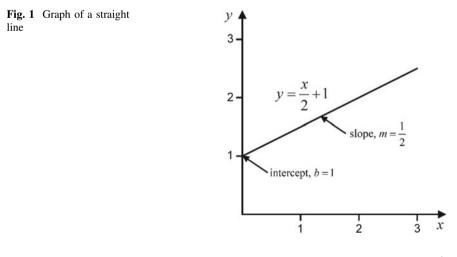
I am indebted to Al Nathan for preventing me from publishing a book with mistakes in it. Ferenc Szidarovszky ensured that the equations had no mistakes. I thank Bob Watts, Rod Cross, Bruce Gissing and Jim Close for helpful comments on the manuscript. This book is written in the first-person plural. Plural because my graduate students did all the work. Major contributions were made by Tom La Ritz, Bill Karnavas, Miguel Morna Freitas and J. Venkateswaran. Extra special thanks go to Dave Baldwin (17-year MLB pitcher with a 3.08 ERA) for inspiring my science of baseball papers.

Conflict of Interest

In the 1990s, Terry Bahill received research grants from Worth Sports Co. and Easton Sports Inc. for research on human–bat relationships. Since then he has received no money, renumeration, speaking fees, consulting contracts or research grants from any sources concerning the Science of Baseball. Bahill has no conflicts of interest regarding the content of this book.

Bahill had no preconceived notions of which models might be most appropriate for the Science of Baseball. He let the data, experiments and knowledge drive the development of this book.

Note on the Mathematics Used in This Book


Most of the mathematics in this book is simple high school algebra. If the reader prefers to just skip the equations, then my advice is to simply do so. Just read the text and you will still get a robust description of the dynamic physical interaction at work in hitting a baseball. The mathematics is there to illustrate the quantitative aspects of the phenomena described in this book.

Here is an example of a simple algebraic equation.

y = mx + b

This is the equation of a straight line. It has two variables and two constants. It says that the output variable, y, (plotted on the vertical axis in Fig. 1) is equal to the input variable, x, (plotted on the horizontal axis) multiplied by the slope, m, plus the intercept, b. A different way of writing this equation is

$$f(x) = mx + b$$

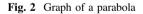
xix

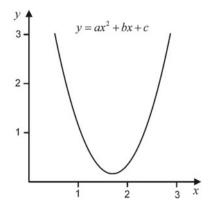
Here we have replaced y with f(x), because we want to emphasize that the equation is a function of x. The naming is that the value of the dependent variable, y, depends on the value of the independent variable, x. Sometimes there can be two independent variables, like this:

$$x = w_y y + w_z z$$

This equation states that the variable x equals some weight w_y times y plus w_z times z. To emphasize the functionality, we could write it like this:

 $f(y,z) = w_{\rm y}y + w_{\rm z}z.$


Variables and constants in equations are set in an *Italic font*. OK, here is a big hairy equation. But it isn't scary.


$$v_{\text{ball-after}} = v_{\text{ball-before}} - \frac{(v_{\text{ball-before}} - v_{\text{bat-cm-before}})(1 + CoR_{1a})m_{\text{bat}}}{m_{\text{ball}} + m_{\text{bat}}}$$

It states that the velocity of the ball after its collision with the bat is equal to the velocity of the ball before its collision plus some other stuff. That other stuff includes the difference in velocities of the bat and ball before the collision times a bunch of constants. Now, that wasn't so scary, was it?

The next step up in mathematics is calculus and differential equations. However, whenever I used such equations, I 'hid them' from the reader—except for the partial differentials that were used in sensitivity functions.

Sometimes we want to know what change in the output would result from a small change in the input. For example, we want to know, if we change the input by a small amount, say Δx , what will be the change in the output, Δy . The Greek Delta, Δ , indicates change in a quantity expressed by a variable. Using simple rules that

we look up in a table of derivatives on the Internet, we find that for this equation y = mx + b, $\frac{\Delta y}{\Delta x} = m$, the slope of the line. For small changes, we write $\frac{\Delta y}{\Delta x} = \frac{dy}{dx} = m$.

For a more complicated equation, let us consider the parabola

$$y = ax^2 + bx + c$$

shown in Fig. 2.

Once again, using rules that we look up in a table of derivatives, we find that

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 2ax + b.$

In some parts of this book, we use statistics. The following example will show the most common statistics that we use. Consider the following two sets of numbers: Set-1 = $\{3, 4, 5, 6 \text{ and } 7\}$ and Set-2 = $\{1, 3, 5, 7 \text{ and } 9\}$.

	Set 1	Set 2
		1
	3	3
	4	
	5	5
	6	
	7	7
		9
Mean	5	5
Standard deviation	1.6	3.2

Both sets of numbers have the same mean or average. Set-1 is clustered, whereas Set-2 is spread out: it has more variation. A statistic that we use to model variation is the standard deviation. We put the numbers for Set-1 and Set-2 into a calculator and it produces the standard deviations in the above table. The standard deviation (or variance) is a measure of the spread or variation in the data. It is also used to prove that two distributions are statistically different.

We will now show an example of the most complicated mathematics that appears in this book. We will start with the equation for the ball velocity after the collision, v_{1a} , Eq. (4.8).

$$v_{1a} = v_{1b} - \frac{(v_{1b} - v_{2b} - \omega_{2b}d)(1 + CoR_{2b})m_2I_2}{m_1I_2 + m_2I_2 + m_1m_2d^2}$$

The subscript **b** is for *before* the bat–ball collision and **a** is for *after* the collision. The subscript 1 is for the ball and 2 is for the bat. To do a sensitivity analysis, we need the partial derivatives of v_{1a} with respect to the variables v_{1b} and v_{2b} . To simplify let $K = (m_1I_2 + m_2I_2 + m_1m_2d^2)$ and $C = (1 + CoR_{2b})m_2I_2$ Therefore,

$$v_{1a} = v_{1b} - \frac{(v_{1b} - v_{2b} - \omega_{2b}d)C}{K}$$

The following partial derivatives of the function v_{1a} with respect to the variables v_{1b} and v_{2b} are easy to derive using a table of differentials. Substituting numerical values gives

$$\frac{\partial v_{1a}}{\partial v_{1b}} = 1 - \frac{C}{K} = 1 - 1.2 = -0.2$$
$$\frac{\partial v_{1a}}{\partial v_{2b}} = \frac{C}{K} = 1.2$$

This means that the velocity of the ball after the collision is influenced more by bat velocity before the collision than it is by ball velocity. That is the most complicated mathematics that we do in this book.

Just remember, the mathematics is there merely to prove that the text is correct. If you don't care about the proofs, then skip the equations. I wrote this book so that you can skip the equations and still understand the phenomena at hand using only the narrative description.

Contents

1	Types	of Bat–Ball Collisions	1
	1.1	Introduction	1
	1.2	Newton's Axioms	1
		1.2.1 Variables and Parameters	2
	1.3	Models for the Swing of a Bat	6
	1.4	Summary 1	1
2	Config	urations of Bat–Ball Collisions 1.	3
	2.1	Introduction	3
	2.2	Characterizing Bat–Ball Collisions 1.	3
		2.2.1 Collision Taxonomy 14	4
	2.3	Collisions at the Center of Mass 1:	5
		2.3.1 Configuration 1a 1:	5
		2.3.2 Configuration 1b	5
		2.3.3 Configuration 1c 10	6
	2.4	Collisions at the Sweet Spot 10	6
		2.4.1 Configurations 2a and 2b 1'	7
		2.4.2 Configuration 2c 18	8
		2.4.3 Configuration 2d	8
		2.4.4 Configuration 3 18	8
		2.4.5 Configuration 4 19	9
	2.5	Summary 20	0
	Referen	nces	2
3	Equati	ons for Bat–Ball Collisions	3
	3.1	Introduction	3
	3.2	Collisions at the Center of Mass 23	3
		3.2.1 Configuration 1a 22	3
		3.2.2 Configuration 1b	6
		3.2.3 Simulation Results 28	8

		3.2.4 The Coefficient of Restitution	28
	3.3	Collisions at the Sweet Spot	31
		3.3.1 Configuration 2a	31
	3.4	Spin on the Ball	43
	3.5	Summary	45
	Referen	nces	46
4	The Ba	aConLaws Model for Bat–Ball Collisions	49
-	4.1	Introduction	49
	4.2	Definition of Variables and Parameters	51
		4.2.1 Condensing the Notation for the Equations	52
	4.3	Finding Ball Velocity After the Collision	54
	4.4	Finding Bat Velocity After the Collision	57
	4.5	Alternative Derivation of Bat Velocity After the Collision	61
	4.6	Finding Bat Angular Velocity After the Collision	63
	4.7	Three Output Equations in Three Formats	64
	4.8	Adding Conservation of Energy and Finding <i>KE</i> _{lost}	66
	4.9	Adding Conservation of Angular Momentum	70
	4.10	Simulation Results	72
	4.11	Sensitivity Analysis	72
		4.11.1 Semirelative Sensitivity Functions	75
		4.11.2 Interactions	76
		4.11.3 Accuracy	85
		4.11.4 Optimizing with Commercial Software	85
	4.12	Optimizing the Bat	88
		4.12.1 Summary of Bat Selection.	93
		4.12.2 The Ideal Bat Weight	94
		4.12.3 Bat Moment of Inertia	99
		4.12.4 Modifying the Bat	99
	4.13	Outline of the BaConLaws Model Derivations	103
	4.14	Summary	105
	Referen	nces	107
5	Altern	ative Models	109
	5.1	Introduction	109
	5.2	Bat Effective Mass Model	110
	5.3	The Sliding Pin Model	115
		5.3.1 Spiral Center of Mass Model	115
		5.3.2 The Sliding Pin Model	116
		5.3.3 Moving Pivot Point Data	117
		5.3.4 Back to the Sliding Pin Model	119
		5.3.5 Coefficient of Restitution	122
		5.3.6 Condensing Equation Notation	123
		5.3.7 Ball Velocity After the Collision	127

Contents

		5.3.8 Bat Translational Velocity After the Collision	130
		5.3.9 Bat Angular Velocity After the Collision	133
		5.3.10 Conservation of Energy	134
		5.3.11 Summary: The Output Equations	135
	5.4	Differences Between the BaConLaws and Sliding Pin	
		Models	136
		5.4.1 Simulation Results	140
	5.5	Collision with Friction	142
		5.5.1 Using Newton's Axioms	143
		5.5.2 Conservation of Angular Momentum	145
	5.6	Summary	148
	Refere	ences	149
6	Synor	osis	151
	6.1	Introduction	151
	6.2	Limitations	153
	6.3	Summary	154
	Refere	ences	155
-			157
7		Ball in Flight Model Sale	157 157
	7.1	Introduction	
	7.2 7.3	Movement of the Ball in Flight	157
		Right-Hand Rules for a Spinning Ball in Flight	161
	7.4	Direction of Forces on Specific Pitches	162
	7.5	Magnitude of Forces on a Spinning Ball in Flight.7.5.1The Force of Gravity	164 165
		7.5.1 The Polce of Gravity 7.5.2 The Magnus Force	165
		7.5.2 The Magnus Porce 7.5.3 The Drag Force	169
	7.6	Sensitivity Analysis	175
	7.7	Numerical Values	177
	7.8	Effects of Air Density on a Spinning Ball in Flight	180
	7.9	Vertical Deflections of Specific Pitches	188
	7.10	Effects of Air Density on Specific Pitches	189
	7.11	Modeling Philosophy	191
	7.12	Which Can Be Thrown Farther a Baseball	
		or a Tennis Ball?	195
	7.13	Summary	202
		ences	205
0			200
8	Accur 8.1	racy of Simulations	209 209
	8.1 8.2	Simulation Inputs	209 209
	8.2 8.3	Simulation inputs	209
	8.3 8.4		217
	0.4	Batted-Ball Range	221

		8.4.1 Technical Note	221
		8.4.2 Range of the Batted Ball	221
	8.5	Other Models and Measurement Systems	222
	8.6	Causes of Inaccuracies	224
	8.7	People Want Stories	225
	8.8	Comparison of Sensitivity Analyses	225
	8.9	Accuracy of the Speed and Spin Rate of the Pitch	226
	8.10	Summary	228
	Refere	nces	228
9	The B	at's Vertical Sweetness Gradient	231
	9.1	Introduction	231
	9.2	Performance Criteria	232
	9.3	Bat–Ball Oblique Collision Model	233
	9.4	Launch Velocity, Launch Angle and Spin Rate	237
	9.5	Range, Hang Time and Ground Time	238
	9.6	Probability of Success Model	239
	9.7	Outputs of the Probability of Success Model	243
	9.8	Height of the Sweet Spot	244
	9.9	Discussion	249
	9.10	Summary	251
	Refere	nces	252
10	The A	dvantage of Eye–Hand Cross-Dominance for Baseball	
	Batter	̈́δ	253
	10.1	Modus Operandi	253
	10.2	Myth 1, Left-Handed Batters Are Better Than Right-Handed	
		Batters	256
	10.3	Myth 2, Batting Opposite Handed to the Pitcher Is an	
		Advantage	257
	10.4	Myth 3, Eye–Hand Cross-Dominance Is an Advantage for the	
		Batter	260
	10.5	Time to Contact	261
	10.6	Physiology of Tracking the Ball.	262
	10.7	The Simulated Pitch	263
	10.8	Seeing the Ball During the Collision	267
	10.9	Seeing the Bat During the Collision	268
	10.10	Tracking Eye Movements	271
	10.11	Two Tracking Strategies	273
	10.12	The Advantage of Eye-Hand Cross-Dominance	274
	10.13	Summary	275
	Refere	nces	276

Contents

11	Dénou	ement .		279
	11.1	Introduc	tion	279
	11.2	What W	Ve Were Thinking	279
	11.3	What W	Ve Wrote	281
	11.4	The Rist	ing Fastball	284
	11.5	Memory	Pless Versus Dynamic Systems	285
	Referen	nces		290
12	Genera	al Model	ing Principles	293
	12.1		tion	293
	12.2		odel?	293
		12.2.1	Purpose of Models	294
		12.2.2	Kinds of Models	295
		12.2.3	Types of Models	296
		12.2.4	Tasks in the Modeling Process	296
		12.2.5	Choose a Cute Name for Your Model	299
		12.2.6	Model-Based Design	300
		12.2.7	Data-Based Design	301
		12.2.8	Second Sourcing	301
		12.2.9	The SIMILAR Process	302
	Referen	nces		306
Ind	ex			307

About the Author

A. Terry Bahill is an Emeritus Professor of Systems Engineering and of Biomedical Engineering at the University of Arizona in Tucson. He served as a Lieutenant in the United States Navy. He received his Ph.D. in electrical engineering and computer science from the University of California, Berkeley. He is the author of eight engineering books and over two hundred and fifty papers, over one hundred of them in peer-reviewed scientific journals. Bahill has worked with dozens of high-tech companies presenting seminars on Systems Engineering, working on system development teams and helping them to describe their Systems Engineering processes. He holds a U.S. patent for the Bat ChooserTM, a system that computes the Ideal Bat WeightTM for individual baseball and softball batters. He was elected to the Omega Alpha Association, the systems engineering honor society. He received the Sandia National Laboratories Gold President's Quality Award. He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), of Raytheon Missile Systems, of the International Council on Systems Engineering (INCOSE) and of the American Association for the Advancement of Science (AAAS). He is the Founding Chair Emeritus of the INCOSE Fellows Committee. His picture is in the Baseball Hall of Fame's exhibition "Baseball as America." You can view this picture at http://sysengr.engr.arizona.edu/.

Acronyms

BA	Batting Average
BaConLaws	Baseball Conservation Laws
CoAM	Conservation of Angular Momentum
CoE	Conservation of Energy
CoM	Conservation of Momentum
CoR	Coefficient of Restitution
KE	Kinetic Energy
LHP	Left-Handed Pitcher
MLB	Major League Baseball
NCAA	National Collegiate Athletic Association
OPS	On-base Plus Slugging
RHP	Right-Handed Pitcher
SaD	Angle between Spin axis and Direction of motion
SaD Sid	Spin axis \times Direction = Spin-induced deflection
VaSa	Angle between Vertical axis and Spin axis

Fig. 1.1	1 Three models for the swing of the bat. The center of mass of the bat is represented with <i>cm</i> . The words <i>before</i> and <i>after</i>	
	stand for before and after the bat–ball collision	7
Fig. 1.2	A stationary bat involved in a free-end collision with a ball	8
Fig. 1.3	A moving bat involved in a free-end collision with a ball	8
Fig. 1.4	The BaConLaws model for a bat and a ball involved in a	
	free-end collision. The abbreviation cop stands for the center	
	of percussion, the sweet spot of the bat	9
Fig. 1.5	The Effective Mass model	9
Fig. 1.6	The Spiral Center of Mass model. Top view showing the	
	batter's cap and shoes. The red spiral is the path of the center of mass of the bat.	10
Fig. 1.7	The sliding pin model for the swing of the bat	10
Fig. 1.8	Collision with friction model	11
Fig. 2.1	Configurations 1a and 1b are head-on collisions at the center of mass (cm) of the bat. All figures in this book are for right-handed batters	15
Fig. 2.2	Configuration 1c is a collision at the center of mass	15
1 Ig. 2.2	(cm) of the bat, but vertically it is above the long axis	
	of the bat	16
Fig. 2.3	The sweet spot of the bat is centered about six inches away	
C	from the barrel end of the bat. The abbreviation cm stands for center of mass and cop is the center of percussion	17
Fig. 2.4	Configurations 2 are collisions at the sweet spot {center of	
U	percussion (cop)} of the bat	18
Fig. 2.5	Configuration 3 is a collision at the sweet spot (cop) of the	
	bat, but above the horizontal axis of the bat	19
Fig. 2.6	Configuration 4 is an oblique collision at the sweet spot	
	(cop) and above the horizontal axis of the bat	19

			٠	
Х	х	х	1	V

Fig. 3.1	Coefficients of Restitution (CoR) for major league baseballs as functions of temperature, collision speed and relative humidity. Data are from Nathan et al. (2011). The point at	
	140 mph is from Fallon and Sherwood (2000). The red line	
	shows the major league baseball rule for a collision	
	at 58 mph	31
Fig. 3.2	This figure shows v _{ball-before} , v _{bat-cm-before} , v _{ball-after}	
U	and $d_{\rm cm-ip}\omega_{\rm bat}$, which are used to define the Coefficient	
	of Restitution for configuration 2	38
Fig. 3.3	Batted-ball speed as a function of total bat speed	42
Fig. 3.4	Distribution of bat speeds for an individual batter. The	
U	standard deviation was estimated from Watts and Bahill	
	(1990/2000) Fig. 43, Bahill (2004) and unpublished data	42
Fig. 3.5	Velocity and spin of the baseball	43
Fig. 3.6	The variables and parameters $v_{\text{ball-before}}, v_{\text{bat-before}}, \omega_{\text{ball}}$,	
	$d_{\text{cm-ip}}$ and ω_{bat} that are used in the Conservation of Angular	
	Momentum equation for a bat-ball collision system.	44
Fig. 4.1	A drawing of configuration 2b for the BaConLaws model	50
Fig. 4.2	This figure shows $v_{\text{ball-before}}$, $v_{\text{ball-after}}$, ω_{ball} ,	
	$d_{\rm cm-ip}$ and $\omega_{\rm bat}$, which are used in the Conservation of	
	Angular Momentum equation for the BaConLaws model	71
Fig. 4.3	Interaction of bat mass and bat moment of inertia	83
Fig. 4.4	Total bat speed before the collision is the most important	
	variable in the BaConLaws model	88
Fig. 4.5	Direction of the batted-ball as a result of hitting the ball at	
	different places on the front surface of the bat	92
Fig. 4.6	Bat with an exaggerated flat front side. The actual size of the	
	flat surface should not be larger than the vertical sweet spot,	
	which is one-fifth of an inch high	92
Fig. 4.7	Enlarged schematic view of a bat with a flat front and	
	resulting ball trajectories	93
Fig. 4.8	Our first set of experimental bats. Photo credit	
	Richard Harding	95
Fig. 4.9	Hill's original force-velocity relationship figure. He fit the	
	following equation to his data: $(P + 14.35)(v + 1.03) =$	
	87.6 where <i>P</i> is the load in grams and <i>v</i> is the velocity in cm/s	
-	(Hill 1938)	96
Fig. 4.10	Measured bat speed (red Xs), a hyperbolic fit to these data	
	(blue dots) and the calculated batted-ball speed (black	
	triangles) for a 90 mph pitch to one of the fastest San	07
	Francisco Giants	97

Fig. 4.11	Bat speed and calculated batted-ball speed after the collision both as functions of bat weight for a 40 mph pitch to Alex, a	
	10-year-old Little League player. The dots represent the	
	average of the five swings of each bat; the vertical bars on	98
E. 4.10	each dot represent the standard deviations	98
Fig. 4.12	Analysis process and numerical values for the tapered	101
E. 4.12	R161 bat.	101
Fig. 4.13	Analysis process and numerical values for the C243 bat.	103
Fig. 4.14	Linear and angular velocities of the ball and bat	106
Fig. 4.15	Sir Francis Bacon the father of the scientific method, which is	
	based on unbiased observation and induction	107
Fig. 5.1	The Effective Mass model for bat-ball collisions	110
Fig. 5.2	The Spiral Center of Mass model of Cross (2009).	
	In this top view, the batter's head is at the intersection	
	of the x- and y-axes and his left foot is to the right	115
Fig. 5.3	Sliding Pin model for a bat pivoting about its knob	116
Fig. 5.4	Detail of a sliding pin joint	116
Fig. 5.5	Definition of CoR for the Sliding Pin model for bat-ball	
-	collisions	122
Fig. 5.6	Positions in space for a bat at two different times	139
Fig. 5.7	Model of the bat-ball collision with the addition of friction	
	between the bat and ball. The arrows show that angular	
	momenta are positive when pointing out of the page	142
Fig. 5.8	A bat-ball collision showing how much the baseball is	
	deformed during a collision. The collision lasts about one	
	millisecond. Photo Credit UMass Lowell Baseball Research	
	Center. From https://student.societyforscience.org/sites/	
	student.societyforscience.org/files/main/articles/ballbat.jpg	144
Fig. 7.1	A 90 mph (40 m/s) overhand fastball launched one-degree	
	downward with 1200 rpm of backspin	158
Fig. 7.2	An 80 mph (36 m/s) overhand curveball launched	
	two-degrees upward with 2000 rpm of topspin.	158
Fig. 7.3	Photographs of spinning balls simulating a fastball thrown	
	with (top) a four-seam grip and (bottom) a two-seam	
	grip. The balls are being rotated at 1200 rpm (20 times per	
	second). The camera exposures are about 0.25 s	160
Fig. 7.4	The angular right-hand rule (left). When the fingers are curled	
	in the direction of rotation, the thumb points in the direction	
	of the spin axis. The coordinate right-hand rule (right). If the	
	thumb points in the direction of the spin axis and the index	
	finger points in the direction of forward motion, then the	
	middle finger will point in the direction of the spin-induced	
	deflection. <i>Photographs</i> by Zach Bahill	162

	•
XXXV	V1
<i></i>	• •

Fig. 7.5	The direction of spin (circular red arrows) and the spin axes (straight black arrows) of a three-quarter arm fastball, an overhand curveball and a slider, all from the perspective of a right-handed pitcher, meaning the ball is moving into the page. VaSa is the angle between the Vertical axis and the Spin axis (VaSa). The spin axes could be labeled spin vectors, because they suggest both direction and	
	magnitude	163
Fig. 7.6	The direction of spin (circular arrows) and the spin axes (straight arrows) of an overhand fastball, an overhand	100
	curveball, a slider and a screwball thrown by a left-handed	1(2
Fig. 7.7	pitcher. The ball would be moving into the page The batter's view of a slider thrown by a right-handed pitcher: the ball is coming out of the page. The red dot alerts	163
	the batter that the pitch is a slider	164
Fig. 7.8	The forces acting on a spinning ball flying through the air	164
Fig. 7.9	A Sydney Harris (1986) cartoon, ©	
	ScienceCartoonsPlus.com, used with permission	170
Fig. 7.10		171
Fig. 7.11	circles and the line fit to the them are copies of Achenbach's original figure (1972). The green circles represent the initial ball speeds at the pitcher's release point for a 95 mph fastball and the red squares show the final ball speeds when the ball crosses the plate. The gray box is then the region for the flight	
Fig. 7.12		172
E: 7.1	home run	175
Fig. 7.13 Fig. 7.14	4 The first-base coach's view of a slider thrown by a	177
	right-handed pitcher. This illustrates the definition of the	
F : 7 1	angle SaD.	179
Fig. 7.1:	5 Air density depends on altitude, temperature, barometric pressure and relative humidity	185
Fig. 7.10		105
115. 7.10	approximation.	186
Fig. 7.1		194
Fig. 7.18	Launch speed versus weight for different sports balls. The numbers in parentheses are weight and speed. The equation for the blue line is $(weigh + 12.5) \times (speed - 24) = 1171$ where <i>weight</i> is in ounces and <i>speed</i> is in mph. These five	
	balls are similar in size. Therefore, they <i>could</i> all be thrown with an overhand motion producing backspin	196

Fig. 7.19	Simulated trajectories for balls thrown from the outfield by a Little Leaguer at various launch velocities. The launch angle is 34°, but it does not look like that on the figure, because the	
Fig. 7.20	horizontal and vertical scales are not the same Normalized lift and drag coefficients for various sports balls. From Clanet (2015) ©. <i>Annual Reviews of Fluid Mechanics</i> ,	196
	used with permission	198
Fig. 8.1	Forces acting on the ball in flight	211
Fig. 8.2	Air density depends on altitude, temperature, barometric	
	pressure and relative humidity in that order	215
Fig. 8.3	Flag behavior for wind speeds of 1–3 mph (left), 4–7 mph	016
E 0.4	(middle) and 8–12 mph (right)	216
Fig. 8.4	Drag coefficient as a function of the Reynolds number for different experimental conditions	216
Fig. 9.1	The offset between the bat and ball velocity vectors during a	210
115. 7.1	collision	232
Fig. 9.2	The bat-ball collision model comprising four interconnected	
-0. /	submodels.	233
Fig. 9.3	The bat's velocity and the ball's velocity are decomposed	
	into components normal to the collision plane and	
	components tangent to it	234
Fig. 9.4	Illustration of angles and directions. To allow room for	
	labels, this drawing is not to scale: for example, the	
	real-world angle ψ is about ten degrees but, in this	005
Fig. 9.5	illustration, it is about 15° In the left side of this figure, the ball is coming down at a	235
Fig. 9.5	ten-degree angle and the bat is being swung level. The good	
	hitting area (green) is the intersection of the bat path (blue)	
	and the ball path (red). On the right side, the ball is also	
	coming down at a ten-degree angle, however, the bat is being	
	swung upward	237
Fig. 9.6	The batting outcome depends on the vertical point of the	
	bat-ball collision	240
Fig. 9.7	The sweet spot of the bat (red area)	241
Fig. 9.8	Outfield component of the Probability of Success model	
	containing the range arc, outfield arc and defensive coverage	
	of the outfielders. The range arc is for a ball that hits the grass	242
Fig 0.0	250 feet from home plate Probability of success as a function of the collision offset,	242
Fig. 9.9	derived primarily from the data in Table 9.3	246
	derived primarily nom the data in Table 7.5	2-+0