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Foreword by Greg Rybarczyk

I first “met” Dr. Terry Bahill in 2005 while researching aerodynamic characteristics
of batted baseballs as part of a personal project which would become the ESPN
Home Run Tracker. I didn’t speak to him at the time (that would come later) but
rather downloaded and read many of the papers which he had posted on his website.
Dr. Bahill’s explanations and calculations were a great help to me at a time when
my career in baseball analytics was just beginning, but as we’ve corresponded over
the years, my admiration for his work, particularly his gift for communicating ideas,
has only increased. His latest publication, The Science of Baseball: Batting, Bats,
Bat-Ball Collisions, and the Flight of the Ball is a worthy contribution to his
prodigious body of baseball research, compiled over four decades and presented
with extraordinary clarity. It will serve as a valuable reference for scholarly fans, as
well as baseball analysts who aspire to compete at the highest level.

Major League Baseball clubs are, as of 2018, in the midst of a revolution. The
ranks of analysts employed by Major League Baseball clubs have swelled in recent
years, as teams try to at least keep pace, and hopefully realize competitive
advantages through the creative use of the data which is being generated and
presented to teams at an unprecedented rate. Every MLB front office now employs
people who scrutinize not only traditional statistics such as batting averages and
home run totals, but also play-level summary metrics like pitch speed or batted-ball
exit speed. The most analytically enthusiastic clubs study ball- and player-tracking
data collected at rates as high as 100 data points per second, and disseminated by
commercial vendors such as Baseball Info Solutions, Sport vision, Trackman, MLB
Advanced Media and others. MLB’s demand for new forms of baseball analysis has
inspired a large and rapidly growing pool of independent analysts who conduct
research via publicly available sources, hoping to earn the opportunity to offer their
services as consultants to or employees of Major League front offices. More people
and companies are doing more baseball-related analytical work than ever before.
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Throughout my dozen years of baseball-related work, both as an individual and
in my current role as an analyst with the Boston Red Sox, I’ve found that the best
research originated with people who possessed not only thorough baseball
knowledge but also a solid understanding and a proper deference to the other
governing principles of the situation under study. For contract and compensation
issues, these principles are those of economics; for discretionary tactical moves
such as stolen base or bunt attempts, or for pitch type selection, these principles are
those of game theory; for issues related to the movement of the baseball, these
principles are those of physics.

Unfortunately, too often these days we see analytical work that neglects, or even
runs counter to, the underlying principles, because the analyst’s mastery of the
relevant principles is faulty or incomplete. For some, analysis of baseball data
consists of arranging it in columns and performing statistical tests on it until
something “pops.” I was once offered a detailed analysis that rated elite closer Koji
Uehara as the 16th best pitcher on the Red Sox roster, and further opined that his
devastating splitter was among the weaker individual pitches on the entire team.
After I stopped laughing, I asked a few questions and learned that these dubious
results could be traced to a faulty premise about the value of pitch locations. It was,
essentially, a lack of understanding of one of the most important elements of
pitching analysis: how to judge the results of a pitch.

More knowledgeable analysts who are familiar with the applicable principles can
better detect and avoid bad data, more efficiently set up and perform the most
promising statistical tests, and can more reliably interpret the results. Dr. Bahill’s
expert dissection of the bat–ball collision (Chaps. 1–5) and the flight of pitched and
batted baseballs through the air (Chap. 7) should be read by all who wish to
enhance their expertise at analysis of ball-tracking data by first understanding why
the baseball moves the way it does. Complete derivations have been provided for
those who wish to delve deeply into the equations, but they need not present a
persistent barrier to those readers who prefer to skim the line-by-line mathematics
and skip ahead to the conclusions. A prime example is the sensitivity analysis
presented in Chap. 7, which describes the change in batted-ball range which follows
a given change in various inputs such as batted-ball speed, batted-ball spin or air
density.

Baseball analysts past, present and future are indebted to Dr. Bahill for the
efforts he has made to make understanding of the complex underlying physics of
baseball accessible to all at each person’s chosen level of detail. His precise yet
eminently accessible explanations of the physics of the bat–ball collision and the
flight of the ball are more useful than ever in an era when MLBAM’s Statcast
system tells 30 and 100 times per second what has happened but leaves to the
observer the task of figuring out why it happened (which is, of course, the key to
predicting what will happen in the future, the ultimate objective of all analysts). If
you wish not only to understand the game of baseball better but to contribute to the
body of knowledge of the game of baseball, read this book carefully, and then read
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it again. For the moment, knowledge of baseball physics can still differentiate an
analyst from his or her peers but in the field of baseball analytics, no competitive
advantage persists for long.

Southborough, MA, USA Greg Rybarczyk
Senior Analyst, Baseball R&D

Boston Red Sox
Creator of ESPN HR Tracker
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Preface

Collisions between baseballs, softballs and bats are complex and therefore their
models are complex. The first purpose of this book is to show how complex these
collisions can be, while still being modeled using only Newton’s axioms and the
conservation laws of physics. This book presents models for the speed and spin of
balls and bats. These models and equations for bat–ball collisions are intended for
use by high school and college physics students, engineering students, the baseball
analytics community and most importantly nonprofessional students of the science
of baseball. Unlike models in previous books and papers, these models use only
simple Newtonian axioms and the conservation laws to explain simple bat–ball
collision configurations. It is hoped that this book will help readers develop an
understanding of the modeling of bat–ball collisions. The second purpose of this
book is to help batters select or create baseball or softball bats that would be optimal
for them. The third purpose is to show what affects air density and how air density
affects the flight of the ball.
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Chapter 1 lays the groundwork for analyzing bat–ball collisions and previews
the theme that alternative models help you understand the system.

Chapter 2 introduces nine basic configurations of bat–ball collisions using words
and figures.

Chapter 3 starts developing the equations for these configurations. It starts with
the simple configurations having the ball collide with the center of mass of the bat.
Then it moves on to configurations that are more complex using the same equations
and development. The notation developed here will be used throughout the book.

Chapter 4 is the pinnacle of this book. It contains our most comprehensive
model, which is a collision at the sweet spot of the bat with spin on the pitch. It
shows which parameters are the most and least important. It also has advice for
selecting and modifying each person’s optimal bat. Such a bat does not have its
barrel end cupped out. This chapter is unique in the science of baseball literature. It
is also self-contained. You need not read previous chapters to understand it. In other
words, a teacher could use this chapter in a physics or engineering course and the
students would only have to buy this one chapter. The BaConLaws model presented
in this chapter also describes the motion of the bat after the collision. Many models
describe the motion of the ball after the collision but few (if any) describe the
motion of the bat. When you see a batter hit a ball, do you see the recoil of the bat?
Can you describe it? Well, these equations do.

Chapter 5 contains four alternative models for bat–ball collisions. Their purposes
are different and are they based on different fundamental principles. The Effective
Mass model was created by physicists independent of the author of this book.
Therefore, comparisons to it are important for validating the model of Chap. 4. The
second and third models are data-based, not theory-based. They use a different
approach and they use a different type of data. The fourth model considers friction
during the collision. It is shown that this type of collision cannot be modeled
thoroughly using only the conservation laws. Our modeling technique could not
handle the Collision with Friction model because our technique is only good for a
point in time before the collision and a point after the collision: it cannot handle
behavior during the collision. Chapter 4 fulfilled part of the first purpose of this
book. It showed a complex configuration for which our technique did work.
Chapter 5 completed the fulfillment of this purpose by showing a configuration for
which our technique was too simple.

Nothing in Chaps. 1–5 is controversial. There are no unstated assumptions.
Important equations have been derived with at least two techniques. In Chaps. 2–5,
the equation numbers are the same. In other words, Eq. (2.3) is the same as Eq. (3.3)
is the same as Eq. (4.3) and is the same Eq. (5.3). The equations in Chaps. 2–5 were
derived using only Newton’s axioms and the conservation laws of physics. The
equations in Chap. 7 for the drag and Magnus forces are original and are based on
more than Newton’s’ axioms.

Chapter 6 summarizes Chaps. 1–5. Chapters 1–6 deal with bat–ball collisions.
They solve equations in closed form. There are no approximations. Chapter 7 deals
with messy real systems. It uses experimental data and gives approximations.
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Chapter 7 contains derivations for equations governing the flight of the ball. It
shows what affects air density and how air density affects the flight of the ball. It
shows that a home run ball might go 26 feet farther in Denver than in San
Francisco. It also answers the question, “Which can be thrown farther a baseball or
a tennis ball?” This chapter can be read independently from the rest of the book.

Chapter 8 discusses the accuracy of baseball simulations. When the television
announcer says, for example, that home run went 431.1 feet. You, our reader, will
know that he should have said, that the true range of that home run was 430 plus or
minus 30 feet.

Chapter 9 presents the vertical sweetness gradient of the baseball bat. It shows
that the sweet spot of the bat is one-fifth of an inch high.

Chapter 10 tackles the differences between right-handed batters and left-handed
batters. It shows that neither is better than the other. Finally, it explains that
cross-dominant batters do have an advantage on some pitches. Because for
non-cross-dominant batters, the blind spot of their dominate eye can obscure the
bat–ball collision.

Chapter 11 summarizes the insights and wisdom of the book. Chapter 12 presents
our modeling philosophy.

We need people who can explain this book to baseball managers and general
managers.

Teachers might challenge their students to try finding mistakes in this book. The
author will give $25 to the first person/group to find a logical, algebraic, physics or
engineering mistake in this book. Spelling, punctuation, grammar, fuzzy incon-
sistencies, typographical errors and broken links do not count. Send discoveries to
Terry Bahill, 1622 W. Montenegro, Tucson AZ, USA 85704-1622.

Tucson, AZ, USA A. Terry Bahill
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Note on the Mathematics Used in This Book

Most of the mathematics in this book is simple high school algebra. If the reader
prefers to just skip the equations, then my advice is to simply do so. Just read the
text and you will still get a robust description of the dynamic physical interaction at
work in hitting a baseball. The mathematics is there to illustrate the quantitative
aspects of the phenomena described in this book.

Here is an example of a simple algebraic equation.

y ¼ mxþ b

This is the equation of a straight line. It has two variables and two constants. It
says that the output variable, y, (plotted on the vertical axis in Fig. 1) is equal to the
input variable, x, (plotted on the horizontal axis) multiplied by the slope, m, plus the
intercept, b. A different way of writing this equation is

f ðxÞ ¼ mxþ b

Fig. 1 Graph of a straight
line
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Here we have replaced y with f ðxÞ, because we want to emphasize that the
equation is a function of x. The naming is that the value of the dependent variable,
y, depends on the value of the independent variable, x. Sometimes there can be two
independent variables, like this:

x ¼ wyyþwzz

This equation states that the variable x equals some weight
wy times y plus wz times z. To emphasize the functionality, we could write it like
this:

f ðy; zÞ ¼ wyyþwzz:

Variables and constants in equations are set in an Italic font.
OK, here is a big hairy equation. But it isn’t scary.

vball-after ¼ vball-before � ðvball-before � vbat-cm-beforeÞð1þCoR1aÞmbat

mball þmbat

It states that the velocity of the ball after its collision with the bat is equal to the
velocity of the ball before its collision plus some other stuff. That other stuff
includes the difference in velocities of the bat and ball before the collision times a
bunch of constants. Now, that wasn’t so scary, was it?

The next step up in mathematics is calculus and differential equations. However,
whenever I used such equations, I ‘hid them’ from the reader—except for the partial
differentials that were used in sensitivity functions.

Sometimes we want to know what change in the output would result from a
small change in the input. For example, we want to know, if we change the input by
a small amount, say Dx, what will be the change in the output, Dy. The Greek Delta,
Δ, indicates change in a quantity expressed by a variable. Using simple rules that

Fig. 2 Graph of a parabola
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we look up in a table of derivatives on the Internet, we find that for this equation
y ¼ mxþ b, DyDx ¼ m; the slope of the line: For small changes, we write Dy

Dx ¼ dy
dx ¼ m.

For a more complicated equation, let us consider the parabola

y ¼ ax2 þ bxþ c

shown in Fig. 2.
Once again, using rules that we look up in a table of derivatives, we find that

dy
dx

¼ 2axþ b:

In some parts of this book, we use statistics. The following example will show
the most common statistics that we use. Consider the following two sets of num-
bers: Set-1 = {3, 4, 5, 6 and 7} and Set-2 = {1, 3, 5, 7 and 9}.

Set 1 Set 2

1

3 3

4

5 5

6

7 7

9

Mean 5 5

Standard deviation 1.6 3.2

Both sets of numbers have the same mean or average. Set-1 is clustered, whereas
Set-2 is spread out: it has more variation. A statistic that we use to model variation
is the standard deviation. We put the numbers for Set-1 and Set-2 into a calculator
and it produces the standard deviations in the above table. The standard deviation
(or variance) is a measure of the spread or variation in the data. It is also used to
prove that two distributions are statistically different.

We will now show an example of the most complicated mathematics that
appears in this book. We will start with the equation for the ball velocity after the
collision, v1a, Eq. (4.8).

v1a ¼ v1b � v1b � v2b � x2bdð Þ 1þCoR2bð Þm2I2
m1I2 þm2I2 þm1m2d2

The subscript b is for before the bat–ball collision and a is for after the collision.
The subscript 1 is for the ball and 2 is for the bat. To do a sensitivity analysis, we
need the partial derivatives of v1a with respect to the variables v1b and v2b.
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To simplify let K ¼ m1I2 þm2I2 þm1m2d
2

� �

and C ¼ 1þCoR2bð Þm2I2
Therefore,

v1a ¼ v1b � v1b � v2b � x2bdð ÞC
K

The following partial derivatives of the function v1a with respect to the variables
v1b and v2b are easy to derive using a table of differentials. Substituting numerical
values gives

@v1a
@v1b

¼ 1� C
K

¼ 1� 1:2 ¼ �0:2

@v1a
@v2b

¼ C
K

¼ 1:2

This means that the velocity of the ball after the collision is influenced more by
bat velocity before the collision than it is by ball velocity. That is the most com-
plicated mathematics that we do in this book.

Just remember, the mathematics is there merely to prove that the text is correct.
If you don’t care about the proofs, then skip the equations. I wrote this book so that
you can skip the equations and still understand the phenomena at hand using only
the narrative description.
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