
Springer Series on
atomic, optical, and plasma physics 42



Springer Series on
atomic, optical, and plasma physics
The Springer Series on Atomic, Optical, and Plasma Physics covers in a comprehen-
sive manner theory and experiment in the entire field of atoms and molecules and
their interaction with electromagnetic radiation. Books in the series provide a rich
source of new ideas and techniqueswithwide applications in fields such as chemistry,
materials science, astrophysics, surface science, plasma technology, advanced optics,
aeronomy, and engineering. Laser physics is a particular connecting theme that has
provided much of the continuing impetus for new developments in the field. The
purpose of the series is to cover the gap between standard undergraduate textbooks
and the research literature with emphasis on the fundamental ideas, methods, tech-
niques, and results in the field.

36 Atom Tunneling Phenomena in Physics, Chemistry and Biology
Editor: T. Miyazaki

37 Charged Particle Traps
Physics and Techniques of Charged Particle Field Confinement
By V.N. Gheorghe, F.G. Major, G. Werth

38 Plasma Physics and Controlled Nuclear Fusion
By K. Miyamoto

39 Plasma-Material Interaction in Controlled Fusion
By D. Naujoks

40 Relativistic QuantumTheory of Atoms and Molecules
Theory and Computation
By I.P. Grant

41 Turbulent Particle-Laden Gas Flows
By A.Y. Varaksin

42 Phase Transitions of Simple Systems
By B.M. Smirnov and S.R. Berry

43 Collisions of Charged Particles with Molecules
By Y. Itikawa

44 Collisions of Charged Particles with Molecules
Editors: T. Fujimoto and A. Iwamae

45 Emergent Non-Linear Phenomena in Bose–Einstein Condensates
Theory and Experiment
Editors: P.G. Kevrekidis, D.J. Frantzeskakis, and R. Carretero-González

46 Angle and Spin ResolvedAuger Emission
Theory and Applications to Atoms and Molecules
By B. Lohmann

Vols. 10–35 of the former Springer Series on Atoms and Plasmas are listed at the end of the book



Boris M. Smirnov ċ R. Stephen Berry

Phase Transitions
of Simple Systems

With 81 Figures and 32 Tables

123



Prof. Boris M. Smirnov
Russian Academy of Sciences
Institute of High Temperatures
Izhorskaya ul. 13/19
127412 Moscow, Russia

Prof. Dr. R. Stephen Berry
University of Chicago
Department of Chemistry
929 East 57th Street
Chicago, Illinois 60637
USA

ISSN 1615-5653

ISBN 978-3-540-71513-9 Springer Berlin Heidelberg New York

Library of Congress Control Number: 2007933847

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specif ically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be obtained from Springer-
Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media.

springer.com

© Springer-Verlag Berlin Heidelberg 2008

The use of general descriptive names, registered names, trademarks, etc. in this publication does not im-
ply, even in the absence of a specif ic statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typesetting and prodcution: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany
Cover design: eStudio Calamar S.L., F. Steinen-Broo, Girona, Spain

Printed on acid-free paper SPIN: 11921653 57/3180/YL – 5 4 3 2 1 0



Preface

Thermodynamic concepts of aggregate states and their phase transitions de-
veloped during the 19th Century and are now the basis of our contempo-
rary understanding of these phenomena. Thermodynamics gives an universal,
macroscopic description of the equilibrium properties of phase transitions in-
dependent of the detailed nature of the substances. However understanding
the nature of phase transitions at the microscopic level requires a different
approach, one that takes into account the specifics of the interparticle inter-
actions. In this book, we lay the groundwork that connects the microscopic
phenomena underlying phase changes with the macroscopic picture, but in
a somewhat restricted way. We deal only with systems in which electronic
excitations are not important, only with atomic systems, and only with ho-
mogeneous systems. We also restrict our analysis to systems in which only
pairwise interactions need be included, and, in many parts of the treatment,
to systems in which one need consider only the interactions between nearest
neighbor atoms. In establishing these restrictions, we can be guided by the
solid and liquid states of inert gases and the phase transitions between them,
although the subsequent analysis is relevant and applicable for a series of other
physical systems.

To study the behavior of a system of many interacting identical parti-
cles, we work extensively with its potential energy surface (PES), a surface
in a many-dimensional space whose independent variables are the monomer
coordinates or some transformation thereof. A central property of any mul-
tidimensional PES is its large number of local minima. We can think of the
evolution of a system described by this surface as the trajectory taken by the
system as it passes from the neighborhood of one local minimum to another.
At moderate and low temperatures, the system remains in each of these neigh-
borhoods for a time long compared with the period of atomic oscillations. This
allows us to distinguish two forms of the system’s excitation: thermal or vibra-
tional excitation corresponds to the energy of oscillations of individual atoms;
configurational excitation is that associated with location and change of lo-
cation among the neighborhoods of the local minima of the PES. From this
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perspective, a phase transition corresponds to a change of the configurational
excitations of the system.

The approach treats both bulk systems and small systems, and their dif-
ferences and similarities. One can gain insights into the properties of bulk
phase transitions by seeing how they evolve from the equilibria of phase-like
forms of systems of only tens of atoms, for example. Some of the information
comes from analysis of simple model systems; some comes from simulations,
by molecular dynamics for example; some, especially for bulk systems, comes
from experimental data.

One particularly illustrative phenomenon is the apparent paradox that,
while bulk systems show sharp phase transitions and satisfy the Gibbs phase
rule, with two phases in equilibrium at only one pressure if the temperature
is fixed, atomic clusters can coexist in two or more phases over a range of
temperatures and pressures. The analysis presented here shows how the be-
havior of bulk systems evolves from the behavior of very small systems, as the
number of particles comprising the system grows larger. In the course of the
analysis, one encounters surprises that resolve themselves when one comes to
understand some of the tacit assumptions underlying traditional development
of thermodynamics and kinetics for bulk systems. We learn, by examining
microscopic behavior as well as traditional properties such as caloric curves,
how the fundamentals of thermodynamics remain valid even when some of
those tacit assumptions are not.

Much of the development is based on the model of a simple dense material
consisting of particles and voids. We introduce the void as an elementary
configurational excitation. In a lattice, a void is very much like a vacancy, but
here, “void” implies that the neighbors of the vacancy can relax to a stable
form. In an amorphous material, the void need not have a specified shape
and may even change its size. The void concept, together with the distinction
between configurational and vibrational degrees of freedom, opens the way
to analytic and combinatorial approaches to elucidating the phase behavior
of small and large systems alike. The liquid and solid, for example, differ in
the density of their voids. In small systems, they can coexist over a range of
conditions because the solid is stabilized by its low energy with few voids, and
the liquid is stabilized by its high entropy with many voids.

This book, devoted as it is to various aspects of the nature of the phase
transitions in simple systems, addresses some aspects of the kinetics of phase
changes as well as their thermodynamics and equilibrium properties. We hope
that this approach will enable colleagues to go further, to extend these ideas to
more complex systems, and to apply them in the expanding field of nanoscale
materials.

Chicago, R. Stephen Berry
Moscow, Boris M. Smirnov
August 2007
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Introduction

To consider phase states and phase transitions, we must look first to ther-
modynamic concepts. According to classical thermodynamics, the phase or
aggregate state of an ensemble of interacting atoms or molecules is a uniform
spatial distribution of atoms or molecules that is restricted by boundaries.
A transition between two phases of a macroscopic system has a stepwise char-
acter and results from variation of thermodynamic parameters, typically (but
not necessarily) the temperature. Most commonly, the variable controlling the
phase and phase change is an intensive variable. A thermodynamic descrip-
tion of phase transitions has advantages and disadvantages. The advantage
of this description is its universal character; it is suitable for many kinds of
systems with different interactions between atoms or molecules. But for this
reason, a thermodynamic description of aggregate states and phase transitions
is formal and does not allow one to exhibit the nature of phenomena under
consideration at a microscopic level.

Computer simulation of clusters and bulk ensembles of interacting atoms
opens the possibility for us to understand the nature of the phase transitions
at that molecular level. But the microscopic character of this phenomenon de-
pends on the form of interatomic interaction. In analyzing this phenomenon
from the microscopic standpoint, we will consider ensembles of atoms inter-
acting via a pairwise force; this corresponds to the simplest model and, apart
from ionic materials such as alkali halide, represents the predominant interac-
tion. This allows us to understand at a level deeper than the phenomenological
that thermodynamics gives us, the nature of an aggregate state of an ensem-
ble of interacting atoms. This approach provides a microscopic description
to connect the true phase transition between equilibrium states with related
phenomena, in particular, with the glass transition.

A real example of a system with pairwise interaction between atoms is
a condensed inert gas. Indeed, because the atoms of inert gases have completed
electron shells, the exchange interaction between such atoms and hence the
short-range interatomic forces are repulsive in this case. Hence at equilibrium
interatomic distances in condensed inert gases, the interaction potential of
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two atoms is small in comparison with typical electronic energies. As a result,
interactions between two atoms do not influence the interactions of these
atoms with other atoms in condensed inert gases. In other words, two-body
interactions dominate the behavior of such systems; we can neglect three-
body and higher interactions and retain a reasonably accurate picture of the
behavior of such systems.

Next, because the exchange interaction between two atoms is dominated
by electron coordinates near the axis connecting the atoms, the pairwise char-
acter of interaction is conserved at high pressures, and is primarily a repulsive
interaction. Therefore inert gases are objects that satisfy models based on
a pairwise interaction. Consequently, in the following discussion, we make use
of the properties of condensed inert gases in detail. We restrict our discussion
only to the “heavy” inert gases Ne, Ar, Kr and Xe, whose atoms may be con-
sidered as classical particles under the conditions of phase changes. Ignoring
quantum effects simplifies the analysis of an ensemble of identical particles
yet retains the essential characteristics of such systems. The study of a bulk
ensemble of classical atoms together with known properties of inert gases gives
rich insights about these atomic systems and their phase transitions. More-
over we bring the properties of bulk systems into a common context with their
very small counterparts, the nanoscale particles and clusters composed of the
same inert gas atoms.

To study the phase changes of an ensemble of classical particles, one can
separate excitations of such systems into two groups. The first group relates
to thermal motion of particles, specifically their oscillations in the total sys-
tem; the second group consists of configurational excitations, which include
diffusion and translational motions because the high density of the systems re-
quire configurational excitation for translational motion to be possible. Phase
transitions are closely related to configurational excitation of a particle ensem-
ble, and therefore configurational excitation is the principal object of study
of this book. At zero temperature the first, vibrational excitations disappear;
hence it is convenient to study the configurational excitation of an ensemble
of classical particles at zero (vibrational) temperature, to be free from ther-
mal motion of particles. An effective way to characterize the behavior of such
a system is to cast that behavior in terms of motions on its potential energy
surface (PES) in a many-dimensional space of particle coordinates. The im-
portant property of the PES, that is the basis of understanding of the nature
of configurational excitation, is that the PES has many local minima which
are separated by barriers. Just this fact allows us to separate the thermal and
configurational degrees of freedom. Indeed, assuming a typical barrier height
is large compared to thermal energy, we find that an ensemble has many os-
cillations near a given local minimum of the PES before the transition to the
neighboring minimum. The first kind of excitations are motions within the
region of a single local minimum on the many-dimensional surface; the second
kind correspond to motions from one local minimum to another.
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Classical thermodynamics, being intrinsically phenomenological, does not
allow us to understand phases and phase transitions at the microscopic level.
Fortunately, it is possible to study a simple ensemble of classical particles with
pairwise interaction to reach a level of understanding at that level. Indeed,
we define a phase as a group states of configurational excitations with similar
excitation energies if these excitations are realized with roughly similar prob-
abilities. For the dense particle ensembles under consideration, in the present
context we have only two phase states, the solid or ordered state and the
liquid or disordered state. Of course, one can go to a more detailed descrip-
tion to recognize different solid structures as different phases, and, for small
systems at least, distinguish liquid character or liquid-like phases in terms
of the behavior of different shells. We shall study these problems in detail
later.

By analyzing some phenomena exhibited by an ensemble of classical atoms
from the standpoint of the local minima of the PES, we obtain a depend
understanding of these phenomena. In reality, one can simplify the concept
of the PES by introducing voids as elementary configurational excitations. If
we assume individual voids to be identical, the void concept simplifies the
understanding and description of the properties of the phase states.

It is convenient to start the void concept from formation of vacancies in
a crystal structure of classical particles. Suppose the system contains n par-
ticles and v voids. Indeed, assume the number of classical particles of an
ensemble n+ v is so large that surface particles of this particles give a negligi-
ble contribution to its parameters. In the ground configurational state these
particle form a close-packed crystal structure, face-centered cubic or hexag-
onal, that follows from the pairwise interaction between the particles. Each
internal particle of this structure has 12 nearest neighbors. In order to pre-
pare a configurationally excited cluster consisting of n particles and v internal
vacancies, v internal particles are removed to the outside. If newly-formed
vacancies do not border one another (i. e. a number of vacancies v < n/12),
this system is stable and its state corresponds to a local minimum of the PES.
At large excitation (v > n/12) such a state is unstable; the system formed
by removing atoms and creating site vacancies relaxes by shrinking under its
own attractive van der Waals forces. As a result, vacancies are converted into
voids. These are free spaces between particles that vary their shape and size
in time. We consider and use average parameters of voids. Of course, during
relaxation, vacancies can join into bubbles – large empty constituents inside
a system of particles. However usually (and in any case, for condensed inert
gases) vacancies convert into voids and not into large bubbles. Moreover, the
number voids is equal approximately to the number of initial vacancies. This
method of generation of voids inside a particle ensemble is convenient for the
void analysis.

Describing the phase state of a system of identical classical particles within
the framework of the void concept simplifies our understanding of various phe-
nomena connected with configurational excitation and phase transitions. In
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particular, displacement of elementary configurational excitations in terms of
voids describes some key properties and phenomena in these systems. A void
can transfer to a neighboring site; this is precisely the transition between two
neighboring local minima of the PES. Because neighboring local minima of
the PES are separated by barriers, this transition has an activation character,
so it proceeds only slowly at low temperature. A sum of transitions between
local minima of PES, each considered as the motion of independent voids, de-
termine diffusion of voids inside the particle ensemble. Naturally the diffusion
coefficient of voids decreases sharply with decreasing temperature. Hence at
low temperatures, one can prepare an unstable configurational state of this
system with voids frozen inside it. The transition into a stable configuration
state consists of diffusion of voids to the boundaries, and since this time is
long, these states are characterized by long lifetimes at low temperatures.
These states are total analogous with glassy states, so we have a possibility
to analyze the glassy states for simple systems.

Because the phase states of a system of classical particles differ by the
presence or absence the voids inside the system, a phase transition is char-
acterized by displacement of those voids. Hence, growth of nuclei of a new
phase inside the system, the nucleation process, can be considered as a result
of diffusion of voids in a space separated into two regions by the phase bound-
ary. Considering the growth of nuclei of a new phase as a result of diffusion
of voids allows us to analyze some aspects of this phenomenon in a simple
manner.

Thus, this book is devoted the analysis of ensembles of classical particles
with pairwise interaction between particles and configurational excitations of
these ensembles which include the phase transitions and adjacent phenom-
ena. Because we consider simple systems, ensembles of classical particles with
pairwise interaction and not at low particle densities, this allows us to de-
scribe these phenomena in a simple manner that conserves the strictness of
the analysis.
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1

Excitations in Simple Atomic Ensembles

1.1 Thermodynamics and Dynamics
of Particle Ensembles

We consider systems of large numbers of identical particles. From the ther-
modynamic standpoint, this system can form an aggregate state or a phase.
According to the definition [1–5], a phase is a uniform distribution of parti-
cles in a region restricted by a boundary. Thermodynamics determines stable,
equilibrated aggregate states that correspond to the minima of an appropri-
ate thermodynamic potential in accordance with external conditions [2, 4,
6–8]. In particular, if an ensemble of identical particles is in equilibrium at
a certain temperature and pressure, a corresponding equilibrium volume per
particle follows from the minimum of the Gibbs thermodynamic potential (or
the Gibbs free energy). This means that if an initial volume per particle dif-
fers from the equilibrium one, the system will compress or expand until this
equilibrium volume is attained.

An ensemble of simple particles, of atoms for example, can be in the solid
or liquid state; these aggregate states are characterized by different thermody-
namic parameters. At almost any given temperature, one of theses aggregate
states is stable and the other one is metastable. The stable state is charac-
terized by a lower Gibbs thermodynamic potential. However, at the melting
point, the Gibbs thermodynamic potentials for these states are identical. If
the distribution of particles differs from that in a stable aggregate state, the
ensemble relaxes to a stable aggregate state. This means that parameters of
the space and velocity particle distribution tend to those of aggregate states.
The final state may be stable or metastable, depending on which locally stable
atomic distribution is “closer”, i. e. more kinetically accessible to the initial
distribution.

In addition to the stable aggregate states or phases, the distribution of
particles of many systems can form a glassy state. From the thermodynamic
standpoint, a glassy state does not ordinarily correspond to the global min-
imum of a thermodynamic potential (i. e. it is not a stable aggregate state,
according to our usage here), but the relaxation time for a glassy state is
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very long compared to the relaxation time of vibrations. Because relaxation
typically involves some activation step, the relaxation time increases dramat-
ically with a temperature decrease, so glassy states are typically realized at
low temperatures.

The thermodynamic description of aggregate and glassy states is universal
and is valid for any ensemble of many identical particles. Therefore we use it
below as a basis and will characterize these states by thermodynamic param-
eters. But for a deep understanding of the nature of these states when we
include in consideration interaction between particles, the connection between
the form of interaction between particles and aggregate or glassy states of a
particle ensemble may depend on the nature of the interparticle interactions.
Moreover, we must leave the realm of thermodynamics when we describe the
process of relaxation of an ensemble of particles from a thermodynamically
unstable state [9]. Indeed, first, relaxation of such states typically has a non-
exponential character [10, 11] although at small deviation from equilibrium,
this deviation varies in time in an exponential way. Second, the relaxation
time τrel typically has an Arrhenius temperature dependence,

τrel ∼ exp
(

Ea

T

)
, (1.1)

if the relaxation process proceeds from one local equilibrium state to another
and occurs by transition over a barrier. Here Ea is the activation energy to
cross the barrier, T is the temperature which, here and below, is expressed
in energy units. Relaxation of glassy states may be non-Arrhenius [12–15].
Third, relaxation of glassy states may be non-linear [9], that is, the relaxation
time need not be proportional to the degree of excitation. These all exhibit
the complexity of this problem.

For this reason a large number of models exist to describe various aspects of
phase and glassy transitions. Each model for change of a particle configuration
can be connected with certain real objects and hence has a phenomenological
character. Therefore although we have a strict thermodynamic description of
equilibrium states for ensembles of identical particles, this description loses
its universality when we move to discussing the evolution of non-equilibrium
ensembles.

Dynamics of particle ensembles may be analyzed by methods of com-
puter simulation for specified interactions between particles and external con-
straints. In each case, we deal with a specific landscape of the potential energy
surface (PES) in a many-dimensional space of particle coordinates; evolution
of the particle ensemble corresponds to motion of a point in this space along
the PES. In this manner, one can describe dynamics of the particle ensem-
ble. This approach is productive at low temperatures (or low kinetic energies
of particles) when the character of the PES landscape is important for the
evolution of the system. In the course of evolution, the configuration of the
particles varies; simulation allows us to study transitions between different
particle configurations.
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The objects of our consideration are ensembles of classical atoms with
simple interactions between them. In analyzing these ensembles, we will be
guided by clusters and bulk systems of inert gases excluding helium, so the
atoms can be treated as classical, and we apply the above general princi-
ples to these objects. We also treat model systems of particles that interact
through Lennard-Jones potentials which have been analyzed widely by nu-
merical methods of computer simulation. Because of its simplicity, various
aspects of the phase and glassy transitions for these objects may be analyzed
in simpler and more transparent assumptions than for very realistic represen-
tations of the rare gas atoms. This allows us to exhibit the essences of the
nature of phenomena under consideration.

1.2 Interaction of Inert Gas Atoms

Because ensembles of inert gas atoms are the objects we are using as our
guides, we consider interaction of inert gas atoms in detail. In all the cases
under consideration, the interaction potential of two inert gas atoms is small
compared to a typical value of any electronic excitation energy of the system,
in particular, the ionization potentials of these atoms. Figure 1.1 gives the
separation dependence of the interaction potential for two inert gas atoms, and
Table 1.1 contains the parameters of the minimum of the interaction potential
for two identical atoms of inert gases that are examined in this analysis [16–
19]. The Table presents various data governing the interactions and collisions
of inert gas atoms which are determined by their interaction potential. We
note again that the depth of a typical attractive interatomic potential well
De is small compared to the ionization potentials for inert gas atoms, and the
equilibrium distance between two atoms in a diatomic molecule Re exceeds
considerably any typical atomic size ao. Although the potential well depth De

differs from the dissociation energy Do of the corresponding diatomic molecule
due to zero-point vibrations of the atoms, for a system of many interacting
atoms the contribution of zero-point vibrations to the dissociation energy is
small and we shall ignore this.

Fig. 1.1. A typical interaction poten-
tial between two atoms as a function
of the distance between atoms, and
the parameters of Table 1.1
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Table 1.1. Parameters of the pair interaction potential for inert gas atoms. Re, De

are the parameters of the interaction potential minimum, γ =
√

2meI/�, C is the
parameter of the asymptotic expression (1.2) for the exchange interaction potential;
parameters k, Ro [20] correspond to variables in the formula (1.3), where U(Ro) =
0.3 eV, and the parameter k′ are given by formula (1.4).

Ne Ar Kr Xe

Re, Å 3.09 3.76 4.01 4.36
De, meV 3.64 12.3 17.3 24.4
De, K 42 143 200 278
γao 1.26 1.08 1.03 0.944
C 15 51 54 14
Ro, Å 2.07 2.85 2.99 3.18
k 7.6 8.1 7.7 5.9
2Roγ 9.9 11.6 11.6 11.3
k′ 7.1 9.4 9.2 8.6

At relatively large distances between atoms where the interaction poten-
tial is relatively small, the interaction can be represented as a sum of long-
range and short-range interactions. A long-range interaction is a result of
interaction of induced atomic dipoles (Fig. 1.2) and is determined by re-
distribution of electrons in the region around their parent atoms. One can
consider this interaction as an electrostatic interaction of two polarizable
charge distributions that leads to a small change in their mean spatial distri-
butions.

The short-range, repulsive part of the interaction is due to the combina-
tion of the exchange interaction of the electrons and the Coulomb repulsion
of the nuclei. The exchange interaction is determined by overlapping of the
wave functions of valence electrons of the neighboring atoms. The exchange
interaction effectively drives electrons away from the internuclear axis, un-
shielding the positive cores from one another and hence producing a repulsive
force. As the internuclear distance is made smaller, that force grows, not at
the rate given by Coulomb’s law but by the rate at which the unshielding
occurs. As a consequence, at moderate to large distances between interacting
atoms, their exchange interaction Δ(R) is characterized by a dependence [21–
24] Δ(R) ∼ exp(−2γR), where �

2γ2/(2me) is the atomic ionization potential,
� is the Planck constant, and me is the electron mass. A more precise expres-

Fig. 1.2. The regions occu-
pied by valence electrons in
atoms (solid circles) and those
responsible for the long-range
interaction between atoms
(dotted circles)
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sion for the exchange interaction potential at those distances is [25, 26]

Δ(R) = CR
7
2γ −1 exp(−2γR) , γR� 1 . (1.2)

Table 1.1 lists the parameters of this formula. Since the exchange interaction
between two atoms is determined by the overlap of the wave functions of
their valence electrons, it is generated predominantly in the region close to
the internuclear axis, as shown in Fig. 1.3. The ratio of the volume of this
region to the entire volume of valence electrons is ∼ (γR)2.

The exchange interaction determines the interatomic repulsion over a range
of distances R in which the repulsive interaction potential U(R) is still small
compared with the ionization potential I of the atoms, but is large compared
with the dissociation energy of the weakly-bound diatomic molecule De of
rare gas atoms,

De � U(R)� I .

We can infer that the repulsive interaction potential of two inert gas atoms
is ∼ 1 eV in the distance range of interest here from measurements of the
differential cross section of scattering on small angles for incident atoms of
KeV-energies. Because this interaction potential varies sharply with the dis-
tance R between atoms, it is convenient to approximate it by the relation

U(R) = U(Ro)
(

Ro

R

)k

=
A

Rk
, k � 1 , (1.3)

and Table 1.1 contains parameters of this formula which are taken from the
review [20]. Together with this, Table 1.1 contains the parameter

k′ = 2γRo −
(

7
2γ
− 1
)

(1.4)

that characterizes the exchange repulsion interaction potential at a separa-
tion Ro. As the data of Table 1.1 show, the asymptotic behavior of the repul-
sive interaction potential (1.2) corresponds also to a sharp increase of repulsion
when atoms approach this range of interaction energies.

If several inert gas atoms partake in interaction, their potential energy
is a sum of pair interaction potentials of the atoms, within the approxi-
mations we use here. Indeed, in the case of a long-range interaction, any

Fig. 1.3. The region occupied by valence
electrons in atoms (1,2 ) and that responsible
for the exchange interaction between those
atoms (3 )
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induced dipole moment is relatively small, enough to justify our dropping
three-body and higher multibody interaction terms. The exchange interac-
tion potential that leads to repulsion and follows from the overlapping of
wave functions of valence electrons is created mostly in a spatial region close
to the axis that joins the atoms. Because of the small and very localized
volume of the region of the overlapping wave functions (its ratio to the to-
tal valence electron volume is ∼ (Roγ)−2), one can ignore three-body ex-
change interactions. Hence, the potential energy U of an ensemble of inert gas
atoms can be represented as a sum of the pair interaction potentials for these
atoms

U =
∑
i,k

U (|Ri −Rk|) , (1.5)

where Ri, Rk are coordinates of the atoms of this ensemble. Moreover, since
at longer ranges the pair interaction potential of inert gas atoms drops sig-
nificantly with increasing interatomic distance, one can, for many purposes,
restrict the discussion to interactions between neighboring atoms. Thus, in
considering an ensemble of inert gas atoms, we deal with interaction between
neighboring atoms only and this interaction has a pairwise form. (An ex-
ception that can serve as an example is determining the relative stabilities
of the two close-packed lattice structures, the face-centered cubic or fcc and
the hexagonal close-packed or hcp structures. To determine the relative ener-
gies of these correctly, one must include second- and third-nearest neighbor
atoms.)

One more characteristic of the interaction of many inert gas atoms is large
values of their electronic excitation energies; these exceed by orders of magni-
tude the typical energies of interatomic interaction. Hence transitions between
electronic levels of a system of interacting inert gas atoms are not relevant to
describing the course of evolution of the system; we need consider only the
system in its ground electronic state. Thus the development of this system
corresponds to its motion in a many-dimensional space of atomic coordinates
along the potential energy surface of the ground electronic state. From another
perspective, this system is a strong dielectric, a consideration that simplifies
its analysis.

A strong and convenient method for analyzing ensembles with simple
atomic interactions is based on the scaling or similarity law. The concept
of the scaling law is based on composing a quantity of each dimensionality
from three dimensional parameters [27–29]. Dimensionality or scaling analysis
is used widely in hydrodynamics and gas dynamics [28, 30, 31]. In the case of
inert gas systems, the three natural, basic parameters are the atomic mass m,
the equilibrium distance between atoms ro = Re and the well depth for the
pair interaction potential of atoms εo = D. These parameters are given in
Table 1.2 together with typical values of some quantities constructed from
these parameters for inert gases [32]. One then uses the basic parameters to
define new variables, scaled by these parameters, to derive relations that apply
“universally” for an entire family of substances.
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Table 1.2. Reduced parameters of an ensemble of interacting inert gas atoms
(1a.u.m. = 1.6606 · 10−24g)

Ne Ar Kr Xe

ro, Å 3.09 3.76 4.01 4.36
εo, meV 3.64 12.3 17.3 24.4
m, a.u.m. 20.18 39.95 83.80 131.3
po = D/R3

e , MPa 20.2 37.1 43.0 47.1
Vo = R3

e , cm3/mol 17.8 32.0 38.8 49.9

ρo = m
√

2/R3
e , g/cm3 1.606 1.764 3.051 3.718

1.3 Similarity Law for Simple Atomic Ensembles

Note that the scaling analysis based on the parameters of Table 1.2 assumes
that an analyzing parameter or process is determined mostly by attractive
interaction of atoms in the range of their maximum attraction. The scaling
analysis is effective for processes and phenomena that are determined by col-
lective interaction of atoms when each atom interacts simultaneously with
several surrounding atoms. In such cases, the parameter under consideration
follows from many simultaneous interactions that would often create a diffi-
culty when one must sum these interactions in an unscaled representation. In
the scaling analysis, we effectively circumvent this summation by using the
result of an experiment or computer simulation. Scaling makes it possible to
use the result from one system to determine this parameter for other related
ensembles. Because of the identical inherent character of their interactions,
the parameters for two different systems are connected by the scaling law.

1.4 Evolution of Particle Ensembles

We now consider the evolution of an ensemble of classical particles, using sys-
tems of a finite number of inert gas atoms – clusters of inert gases – as our
guide. The pair interaction between atoms dominates, and the basic interac-
tion for a test atom is that with neighboring atoms (in contrast to electrolytes
with their Coulomb interactions). The limiting case of this system is a cluster
with a short-range interaction of a test atom with surrounding ones in which
only nearest neighbors interact. In this case, the form of the interaction po-
tential between nearest neighbors can have almost any form consistent with
our assumptions.

The evolution of this ensemble of classical atoms is considered as motion
of a point along the potential energy surface in a phase space of atomic co-
ordinates. The potential energy surface for a cluster contains many minima
separated by saddles; the number of these local minima increases sharply



14 1 Excitations in Simple Atomic Ensembles

with cluster size [33–38]. The number of geometrically distinct locally sta-
ble structures increases approximately exponentially, with the number n of
particles, and the number of permutational isomers of each increases approx-
imately as n! [36, 38, 35]. Hence, one can describe the cluster’s evolution
as a result of transitions between local minima of the extremely complex
potential energy surface. These motions correspond to saddle-crossing dy-
namics [38–42]. Within the framework of this description, a rare gas cluster
remains near a given minimum of the potential energy surface for a rela-
tively long time interval, since its average total kinetic energy is lower than
typical saddle heights. By that, we can infer that the vibrational modes
within the vicinity of the local minimum can come to thermal equilib-
rium [43].

The saddle character of the potential energy surface was first revealed in
computer calculations of the cluster energy [33, 34]. In order to find the global
minimum of a cluster’s internal energy and the optimal configuration of its
atoms, one can start from any atomic configuration, calculate the cluster’s
energy for this configuration, and then move to a new atomic configurations
with lower energy. In this manner one can hope to reach the global minimum
of the cluster’s effective potential energy and the optimal atomic configura-
tion at zero temperature. But this method is virtually impossible to realize
because a typical cluster’s PES has so many local minima. For example, the
Lennard-Jones cluster of 13 atoms (a cluster with the Lennard-Jones inter-
action potential between atoms) was characterized by 988 local minima on
its potential energy surface [33, 34]; a later, more detailed analysis [39] found
1478 local minima and 17,357 saddle points of the potential energy surface
for this Lennard-Jones cluster of 13 atoms; still more recently, that number
has reached 1509 [38]. The number of geometrically distinct local minima of
the cluster PES increases roughly exponentially with increasing the number
of cluster atoms [35, 36, 42].

Understanding the behavior of such a cluster is a natural subject for sim-
ulation by molecular dynamics or Monte Carlo methods. Evolution of this
system consists of passage of classical particles from the vicinity of an initial
local minima of the PES to any of its neighboring minima [37, 38, 42, 40,
44]. Studying the corresponding saddle-crossing dynamics [41] is a convenient
method for analyzing cluster evolution. Figure 1.4 demonstrates the character
of transitions between neighboring minima of the potential energy surface. In
Fig. 1.4 schematic projections of a potential energy surface on planes are given
in a space of atomic coordinates. Only one coordinate is used for each tran-
sition, the coordinate that corresponds to the lowest energy path connecting
the two local minima of the potential energy surface for that given transition.
These (curvilinear) coordinates are of course different for each transition. En-
ergy levels for each well indicate an average atomic energy along a coordinate
of the transition. Because this average energy is often significantly less than
the barrier height, such transitions occur infrequently, only when the kinetic
energy of atoms in the transition degree of freedom exceeds its average energy
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Fig. 1.4. Evolution of an ensemble of atoms in the ground electron state as prop-
agation of a point in the multidimensional space of atomic coordinates, resulting
from a transition between neighboring local minima of the potential energy surface.
The x-coordinate lies along the axis joining the positions of two neighboring local
minima of the potential energy surface; hence this direction is different for each pair
of neighboring local minima

adequately. Of course having energy enough to cross a saddle is a necessary
but not sufficient condition for a system to find its way across that saddle. If
the saddle is very narrow and in some obscure corner of the surface, passage
over it may occur extremely infrequently. Hence a cluster typically has many
oscillations inside a given well until it passes to another local minimum of
the potential energy surface. Then identifying a given local (but not global)
minimum of the potential energy surface as a configurational excitation of
a cluster, one can separate it from thermal motion associated with atomic
oscillations.

We divide the cluster excitation into two parts, thermal and configura-
tional, assuming those to be independent. We characterize a configurational
state of this system by the local minimum of the potential energy surface
around which the system vibrates. Assuming the dwell time of a system near
one minimum of the potential surface is long compared with the period of
atomic vibrations in that local minimum, one can separate the energy into
two parts [43]. The first is the thermal energy of particle vibrational (and
rotational) motion, and the second, configurational part is that of the local
minimum of the potential surface in whose region the system resides. At zero
temperature, the only energy of the system is the configurational energy of the
system at its global minimum on the PES. Next, since the dwell time is high,
thermodynamic equilibrium for thermal motion of atoms is established during
cluster location in a given configuration state. This means that the thermal
motion of the atoms can be characterized by a temperature. If a cluster is
isolated, this temperature is dependent of the configurational state. Note that
this temperature refers only to thermal motion of atoms, while the character
of excitation of configurational states in general need not be connected with
this temperature. This implies that one may well find a non-equilibrium dis-
tribution of configurational excitations in a thermodynamic analysis of atomic
ensembles. This is of course particularly so if the system is undergoing any
kind of relaxation.

Figure 1.5 shows the possibility of dividing degrees of freedom for cluster
atoms into the configurational and vibrational, with a simple example of 13
atoms and a short-range interaction between atoms, i. e. the total potential
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Fig. 1.5. Two types of cluster
excitations: cluster oscillations
due to thermal motion of
atoms (a) and configurational
excitation (b)

energy of the cluster is determined by interaction between nearest neighbors
predominantly. In the lowest configurational state, the atoms of this cluster
form an icosahedron with one central and 12 surface atoms, and all the sur-
face atoms are equivalent. In addition, distances between neighboring surface
atoms are equal also, so that joining of the centers of neighboring surface
atoms gives a surface consisting of 20 equilateral triangles. Then if we exclude
three degrees of freedom for motion of the cluster as a whole (its center-of-mass
motion) and another three degrees of freedom associated with the rotation of
the cluster about its center, we find 33 remaining vibrational degrees of free-
dom. These appear for each configurational cluster state. These vibrations or
thermal motion of atoms are shown in Fig. 1.5a for the ground configurational
state, the regular icosahedron.

As we see, the central atom of the icosahedral cluster forms 12 bonds
with surface atoms. Each surface atom has 5 bonds with neighboring surface
atoms and one bond with the central one. Hence, there are 30 bonds between
surface atoms and the total number of bonds of this cluster is 42 for the ground
configurational state. The lowest configurationally excited state corresponds
to transition of one surface atom to a face of the cluster surface as shown in
Fig. 1.5b. In this configurational state, the promoted atom has only 3 bonds
with surface atoms, so the total number of bonds for this state is 39; this
configurational excitation yields a loss of three bonds. Note that this state is
separated by a barrier from the ground state in a space of atom coordinates.
Indeed, exciting the cluster from the ground configuration into this excited one
by promoting a surface atom, we can conserve at most only two of the bonds
between this atom and its neighbors during the course of the transition, while
in the final state this atom has three bonds. Hence the transition between
these two configurations proceeds through any of the saddle points located on
the top of a barrier or saddle that separates these configurational states.

One more peculiarity relates to this symmetric system. If we enumerate
atoms, we have one ground configurational state when each atom occupies
a certain position, and this configuration corresponds to a certain point in the
many-dimensional space of the potential energy surface. In this case we ob-
tain 180 equivalent points in this space that correspond to this lowest excited
configurational state. Indeed, this excited state can be obtained by promot-
ing any of the 12 surface atoms of the cluster, and this promoted atom can


