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1Introduction

Tobias Heckmann, David Morche and Michael Becht

Abstract
Mountain regions are both sensitive to and
disproportionally affected by recent climate
change. Among the most important and most
visible changes is glacier retreat. The latter
entails the exposure of formerly glaciated
terrain to subaerial conditions, with implica-
tions for hydrological, geomorphic and eco-
logical processes. The geomorphic response to
deglaciation has been conceptualised in para-
glacial geomorphology, encompassing spatial
and temporal changes in the activity of geo-
morphic processes, slope instability, and the
build-up and depletion of sediment storage
landforms. The transitional character of these
adjustments to deglacial condition has been
highlighted in recent research. In this chapter,
we propose and discuss the definition of
proglacial areas as the area that has been
deglaciated since the glacial highstands at the

end of the Little Ice Age. We then summarise
the geomorphic response to deglaciation and
recent geomorphological research in proglacial
areas; based on this literature review, we
identify avenues of future research. These
include (i) investigations extending further
into the past based on historical imagery;
(ii) the assessment of the relative importance of
glacial vs. non-glacial processes; (iii) the role
of direct, local climate change impacts vs. the
transient response to deglaciation; and (iv) the
potential propagation of local geomorphic
changes (with connectivity being an important
system property moderating this propagation)
with potential downstream effects on hydro-
power generation, freshwater ecosystems and
natural hazards. Observing and understanding
past- and present-day changes may provide
templates for likely responses to future
changes. The PROSA project conducted from
2012–-2017 in the proglacial area of the
Gepatsch glacier, Central Austrian Alps, forms
the framework of several case studies pre-
sented in the present volume; therefore, we
briefly outline the joint project, its study area,
research problems and methods.
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1.1 Motivation

Mountain regions worldwide host complex and
fragile ecosystems, provide water and other
resources and have always been important for
mankind in terms of settlement, traffic and trade,
culture and religion (Körner and Ohsawa 2005;
FAO 2011). They have been shown to be dis-
proportionally affected by recent climate change
(Rangwala and Miller 2012; Beniston 2005).
Together with the sensitivity of mountain
ecosystems, their topographic and climatic con-
ditions entailing intensive morphodynamics
make mountains “sentinels of change” that allow
us to observe the consequences of climatic and
environmental changes more readily than else-
where (Beniston and Stoffel 2014). Shrinking
glaciers are one of the most emblematic mani-
festations of climate change today (Orlove et al.
2008; Smith and Joffe 2009), raising public
attention for scientific work on glacier fluctua-
tions. The latter have been observed on a global
scale; the corresponding records of glacier length
and mass balances are interpreted as conse-
quences of measured climate change (Barry
2006; Zemp et al. 2008, 2009, 2015; Leclercq
et al. 2014; Chap. 2). Dated evidence of past
glacier extents and dynamics (trimlines, moraine
landforms and sediments, varved lake sediments,
soils and vegetation remains, etc.) has been used
to infer climate changes of the past (Klok and
Oerlemans 2004; Oerlemans 2005; Joerin et al.
2006). Hewitt (2002) emphasises the significance
of mountain glaciers for water and sediment
fluxes that is “out of all proportion to their share
of the global ice cover. That applies to both
landscape development and human affairs” (see
also Milner et al. 2017 on the effects of glacier
shrinkage on ecosystem services).

Many mountain ranges were shaped by
Pleistocene glaciations. Their “glacial legacy”
includes a characteristic topography (Sternai
et al. 2011), including glacial cirques, U-shaped
valleys with steep sidewalls and a wide valley
bottom and large sediment stores (e.g. moraines,
valley infill); it is, however, not limited to
large-scale and long-term effects of multiple “Ice
Ages” on the appearance of the present-day

landscape. Deglaciation, both on the long and
short temporal scale, exposes formerly glaciated
terrain to subaerial conditions. In terms of land-
form and material properties, deglaciated terrain
is not at equilibrium with non-glacial conditions
and therefore prone to changes. Glacier retreat
that started in the second half of the nineteenth
century, after the end of a cold phase called the
“Little Ice Age” (LIA; Mann 2002; Grove 2004;
Matthews and Briffa 2005), has been accelerating
(e.g. Zemp et al. 2008, 2009, 2015). Since only
few decades ago, scientists have become
increasingly aware of the consequences of global
warming and deglaciation for “cold regions” at
high latitudes and high elevation. These include
changes of permafrost properties and distribution
(e.g. Kneisel and Kääb 2007), river runoff (e.g.
Moore et al. 2009), development of soil (e.g. Egli
et al. 2006a, b) and vegetation (e.g. Moreau et al.
2008; Klaar et al. 2015) and the activity of a wide
range of geomorphic processes (e.g. Ballantyne
2002b; Laute and Beylich 2014a; Beylich et al.
2016; Carrivick and Heckmann 2017).

Knight and Harrison (2014a) argue that
observing and understanding past and present-
day changes may provide templates for likely
responses to future changes; although there are
also differences between recent changes and those
that occurred during the Holocene, they highlight
the importance of the post-LIA transition for
geomorphological research. As we outline in
Sect. 1.2, the forefields of receding glaciers are
hotspots with respect to the consequences of cli-
mate change since the end of the LIA. If these
changes were to effectively propagate in the
downstream direction, they would not remain
restricted to the comparatively small proglacial
areas but add to the geoecological, hydrological
and geomorphic consequences of climate change
on a more regional scale, affecting densely pop-
ulated mountain ranges and entailing challenges
for risk management in these regions (Keiler et al.
2010; Milner et al. 2017). Knight and Harrison
(2014a) state that the geomorphic consequences
of deglaciation “will become the most significant
process controlling sediment supply and land-
scape change in the mid- to high latitudes over the
next few hundred years”.
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1.2 Proglacial Areas and Paraglacial
Dynamics

In alpine terrain, most glaciers are either cirque
or valley glaciers, some of them emanating from
larger plateaus. For a typical valley glacial
landsystem, Benn et al. (2003) identify as most
important controls (i) topography, (ii) debris
supply to glacier surfaces and (iii) the efficiency
of sediment transport from the glacier to the
proglacial environment by the glacifluvial sys-
tem. The elements of a (pro-)glacial landsystem
can be categorised according to their geomorphic
function as sediment sources, stores and sinks
(c.f. Ballantyne 2002a). These functions are
associated with geomorphic processes that
transfer glacigenic (and other) sediments towards
the outlet of the channel network.

Rockwalls, and glacigenic deposits on hill-
slopes and the valley floor, represent sediment
sources. Deglaciated rockwalls are subject to
different types of gravitational mass movements,
ranging from small-scale rockfall to deep-seated
gravitational deformations and rock avalanches
(e.g. Cossart et al. 2008; Kellerer-Pirklbauer
et al. 2010; McColl 2012; Chap. 8); evidence for
destabilisation after deglaciation has been col-
lected by studies that link measured rates of
rockfall, rock mass strength and time since
deglaciation (Vehling et al. 2016; Chap. 9). Mass
movements also occur in surficial materials, both
on massive moraine landforms (e.g. Hugenholtz
et al. 2008; Klimeš et al. 2016) and compara-
tively shallow drift-mantled hillslopes (e.g. Holm
et al. 2004). Especially steep lateral moraines are
reworked by slope wash, fluvial erosion and
debris flows (Palacios et al. 1999; Curry et al.
2006; Hürlimann et al. 2012; Haas et al. 2012;
Chaps. 10 and 11); debris flows also initiate in
steep proglacial gullies (Legg et al. 2014).
“Dirty” snow avalanches transferring sediment to
and within the proglacial area are another rele-
vant process (Cossart 2008; Laute and Beylich
2014b). These processes supply sediment to
storage landforms such as talus cones, debris
flow or alluvial fans, and valley fluvial deposits.
Sediment storage can be intermediate/short term,
and the corresponding landform can function as

sediment source for other processes—we may
refer to these as sediment stores, while long-term
storage landforms (e.g. a lake basin) are termed
sinks. Ballantyne (2002a) further distinguishes
primary and secondary sediment stores, with
primary stores being derived directly from sedi-
ment sources and secondary stores being pro-
duced by the reworking of primary sediment
stores.

The processes listed in the previous paragraph
are non-glacial; i.e., they are gravitational,
slope-aquatic, fluvial, periglacial, etc. In degla-
ciated terrain, however, the spatial domains and
dynamics of many of them are directly condi-
tioned by (de-)glaciation (Church and Ryder
1972; Ballantyne 2002a), that is, they “would
operate at different rates (or not at all) had
glaciation not occurred” (Ballantyne 2002a).
Several authors have explained the response of
geomorphic processes and sediment fluxes to
deglaciation in a similar fashion as the reaction to
a disturbance such as wildfires, developing a
family of conceptual models of “paraglacial
geomorphology” (Church and Ryder 1972;
Church and Slaymaker 1989; Ballantyne 2002a,
b; see also Church 2002). These models describe
how morphodynamics and sediment transfer
change over time: They highlight the transitional
character of the response to deglaciation as
topography adjusts, sediment stores are depleted,
and/or sediment waves propagate from degla-
ciated areas through the downstream catchment.
The response to deglaciation takes place on dif-
ferent temporal and spatial scales, reaching from
decades (at the hillslope scale; Curry et al. 2006;
Delaney et al. 2018) to millennia (at the catch-
ment scale; Church and Slaymaker 1989; Buechi
et al. 2014), and differs between deglaciated
environments (Ballantyne 2002a, b).

Here, we adopt the clarifications made by
Slaymaker (2009, 2011) in reaction to ongoing
confusion in terminology (proglacial vs. para-
glacial vs. periglacial): “Proglacial” refers to an
area, “periglacial” is a processual term like flu-
vial or gravitational, defining geomorphic pro-
cesses driven by frost. Finally, “paraglacial”
addresses the specific morphodynamics (includ-
ing their development over time) within a
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deglaciated landscape that were briefly sum-
marised in the previous paragraphs. However,
the area “close to the ice front” of a glacier, i.e.
the proglacial area as defined by Penck and
Brueckner (1909 fide Slaymaker 2011), is diffi-
cult to delineate in the field today. At present-day
rates of glacier melting, the glacier snout in one
year may be located tens of metres away from its
position in the previous year (see Chap. 2).
Moreover, under these conditions, the proglacial
area is no longer a system at equilibrium between
sediment delivery from the glacier and fluvial
reworking (Slaymaker 2011). Where it does
exist, this equilibrium is highly dynamic and
prone to fundamental changes in system config-
uration, for example in the glacifluvial domain
(c.f. Marren and Toomath 2014; Baewert and
Morche 2014; Curran et al. 2017; Shugar et al.
2017). Proglacial systems have therefore been
conceptualised as systems in transition from
glacial to non-glacial conditions (Johnson 2002),
or from an un- or metastable state (a state reached
with deglaciation) towards a new equilibrium
(periglacial or non-glacial conditions; Slaymaker
2011).

Regarding the delimitation of a present-day
proglacial landsystem, we argue that the con-
spicuous termino-lateral moraines formed by
many glaciers during the LIA serve as a rea-
sonable distal boundary. Curry et al. (2006)
observed that gullies on lateral moraines of a
Swiss valley glacier reached their maximum
level of incision approximately 50 years after
deglaciation, stabilising within the following
30–90 years. Delaney et al. (2018) report a
stabilisation of the Griesgletscher forefield
(Switzerland) that has been ice-free since 1986
towards the end of their study period (2014), thus
supporting a faster transition; however, the distal
boundary of their study area is a reservoir lake,
not the LIA maximum extent, which makes a
direct comparison difficult. Using the results of
Curry et al. (2006), the total of 80–140 years
required for this transition is roughly consistent
with the period after the end of the LIA (*1850;
although other dates have been suggested for the
LIA termination, see Matthews and Briffa 2005).
Hence, today, the area that has become ice-free

since the end of the LIA is characterised by
paraglacial dynamics, the most distal parts
approaching stability (Carrivick and Heckmann
2017). Under this assumption, the corresponding
termino-lateral moraines may be taken as the
boundary of a proglacial system, as implemented
by Schiefer and Gilbert (2007), Heckmann et al.
(2012a, b), Geilhausen et al. (2013), and Bosson
et al. (2015). Zasadni (2007) cite Kinzl (1932)
and Holzhauser (1982) to justify this definition of
proglacial areas (“glacier forefields”) by stating
that they are “clearly different from the sur-
rounding area in respect to geomorphic setting,
pedological characteristics, floristic succession
and the degree of weathering”. In the definition
adopted in this book, the ice-marginal criterion
still applies, but the transient character of para-
glacial adjustment in a deglaciating environment
is given more importance (c.f. the “paraglacial
landscape”; Slaymaker 2011). It has to be noted
though that paraglacial dynamics are not strictly
limited to the proglacial area; Church and Ryder
(1972) state that paraglacial dynamics occur
“around and within the margins of a former
glacier”.

The use of LIA glacier extent as a frequently
conspicuous boundary of proglacial landsystems
facilitates their delineation (Fig. 1.1), quantita-
tive analysis and comparison (Chap. 3). Glacier
inventories containing the LIA extents of glaciers
have been compiled on the basis of geomor-
phological evidence, for example in several parts
of the Alps (Austria: Fischer et al. 2015; Groß
and Patzelt 2015; Piedmont: Lucchesi et al.
2014; South Tyrol: Knoll et al. 2009; Trentino:
Zanoner et al. 2017) and the Pyrenees (reviewed
by Oliva et al. 2018).

Comparisons with present-day glacier extents
show that the distance by which many glaciers
have retreated since the end of the LIA is in the
order of 102 to 103 m, and the area deglaciated is
in the order of 103 to 106 m2 (Chaps. 2 and 3). It
should be noted, however, that moraine ridges
may be ambiguous or obliterated, making their
relation to former glacier dimensions difficult
(see Table 1 of Kirkbride and Winkler 2012;
Barr and Lovell 2014); moreover, the maximum
extent may be of different age in different regions
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of the world (Luckman 2000; Mann 2002; Mat-
thews and Briffa 2005). Another problem of our
delineation that is focused on post-LIA
deglaciation and recent paraglacial dynamics is
the neglect of the potentially very large area
between the limits of last glacial maximum
(LGM) glaciation and the LIA maxima that are
characterised by multiple Holocene glacial
advances and recessions (e.g. Zumbühl 1980;
Nicolussi and Patzelt 2001). This area used to be
close to the ice margin as well, experienced
associated paraglacial dynamics during and after
deglaciation, and may contain sediment sources
that affect the present-day proglacial area. Gla-
cier variations before and within the LIA (e.g. Le
Roy et al. 2015, 2017) also may have induced
multiple phases of paraglacial activity. However,
we expect hillslopes adjacent to the LIA glacier
forefields to be comparatively stable, given the
long period of adjustment since the previous
phase of deglaciation; in fact, historical paintings
and photographs of nineteenth-century glaciers
depict vegetated, even forested hillslopes in their

immediate vicinity (e.g. pictures collected by
Zumbühl 1980).

1.3 Recent Geomorphological
Research in Proglacial Areas

Research in proglacial areas has long been
focused on ecology (Matthews 1992). More
recently, there has been an increase in geomor-
phological interest, reflected for example in a
series of sessions at the EGU general assembly
(2013–2016), a special issue of Earth Surface
Processes and Landforms (Heckmann et al.
2016b), and last but not least in the publication of
the present volume. In this section, we provide an
overview of recent research in proglacial areas
and outline avenues of future research.

Proglacial areas are natural laboratories where
the initial development of soils and vegetation
can be observed (Matthews 1992). This has
mostly been based on the investigation of
chronosequences (e.g. Egli et al. 2006a for soil;

Fig. 1.1 Reconstruction of the LIA maximum glacier
extent and LIA and post-LIA glacial deposits (La Mare
glacier, Ortles-Cevedale group). a Analysis of archival
data and visual interpretation of the 2006 orthophoto;
b identification of the LIA moraine ridges (purple lines)
and trimlines on the hillshade relief map derived from a

LiDAR digital elevation model (DEM); c drawing of the
complete area occupied by LIA and post-LIA glacial
deposits (polygon areas with black fill symbol); and
d final reconstruction of the LIA maximum extent of La
Mare glacier (light-blue polygon area). Source Zanoner
et al. (2017), with permission from Elsevier

1 Introduction 5



Moreau et al. 2008 for vegetation). In this “er-
godic reasoning” approach, space (=distance
from present-day ice front) is substituting time
since deglaciation, and sequences of soil and
vegetation types and properties with increasing
distance from the ice front are interpreted as
representing temporal developments. More
recent research has identified factors other than
“just” time, and increasingly recognises the
complex interplay of morphodynamics and soil
formation (Temme and Lange 2014; Temme
et al. 2015; Chap. 18), and the mutual interac-
tions of vegetation development and geomorphic
processes (Eichel et al. 2013, 2015; Chap. 17)
that complicate chronosequence studies, partic-
ularly on smaller spatial scales (Burga et al.
2010). These disturbances to soil and vegetation
development can be caused by glacial and gla-
cifluvial dynamics, and non-glacial processes
initiating both within and outside of the progla-
cial area. Where disturbances are not linked to
glacial activity or deglaciation, they are conse-
quently not controlled by terrain age (Matthews
1999 fide Eichel, Chap. 19). In geomorphology,
chronosequences of landform morphological
properties have been investigated to infer the
development of morphodynamics (e.g. Curry
et al. 2006). However, the interaction of different
geomorphic processes, human impact and (dis-)
connectivity of sediment transfer lead to
site-specific and path-dependent behaviour that
may strongly affect the applicability of the ex-
haustion model at the scale of specific locations
or (sub-)catchments (Knight and Harrison
2014a). For example, repeated undercutting and
sediment removal from secondary paraglacial
storage landforms by the proglacial channel
network may lead to sustained incision of lateral
moraines because the accumulation of storage
landforms is impeded and slope gradients are
being kept high (c.f. Chap. 11). Cossart and Fort
(2008, Fig. 1.2) use chronosequences and his-
torical aerial photography to explain the geo-
morphic evolution of an alpine proglacial area;
they illustrate how moraines that acted as a bar-
rier to sediment flux at an earlier stage are
breached, overspilled, or even act as sediment
sources at a later stage. Thus, landforms can both

store and release sediment (at different spatial
and temporal scales), which adds complexity to
the deglaciation response (Chap. 10). The influ-
ence of topographic factors on channel patterns
in proglacial rivers through the modification of
discharge and sediment supply is highlighted by
Marren and Toomath (2014). Research projects
should aim at monitoring these systems with a
focus on the interaction of processes.

Changes in sediment fluxes occur on multiple
temporal scales, from sub-daily to decadal
(Hetherington et al. 2005; Milan et al. 2007; Mao
et al. 2014; Bechet et al. 2016; Guillon et al. 2018;
Geilhausen et al. 2012; Micheletti et al. 2015;
Chap. 11). This has implications for the temporal
scale, that is resolution and extent, of measure-
ments. Investigations in highly dynamic progla-
cial areas have been facilitated by the advent
and increased availability of high-resolution and
high-accuracy surveying data. Terrestrial and
airborne LiDAR and structure-from-motion
(Westoby et al. 2012) enable the detection and
quantification of surface changes and the com-
putation of morphological sediment budgets (see
recent review by Carrivick and Heckmann 2017;
Chaps. 11 and 17). Terrestrial radar interferom-
etry has proven capable of detecting subtle
changes of surface elevation (Caduff et al. 2015
and references therein, Rouyet et al. 2016). With
expected high rates of surface changes in pro-
glacial areas, these measurement techniques
allow for the detection of changes within com-
paratively short periods of time. A high temporal
resolution supports the distinction of surface
changes caused by different geomorphic pro-
cesses, especially where they occur in response to
events, or due to specific hydrometeorological
conditions. Longer inter-survey periods are more
likely to reflect the combined activity of multiple
processes. The temporal extent of investigations
has been expanded considerably by using his-
torical imagery as a basis for multitemporal
mapping (e.g. Ravanel and Deline 2011).
Photogrammetric methods such as structure-from-
motion are increasingly used to construct digital
elevation models from these sources, providing
new opportunities for quantitative appraisal
of morphodynamics on decadal timescales

6 T. Heckmann et al.

http://dx.doi.org/10.1007/978-3-319-94184-4_18
http://dx.doi.org/10.1007/978-3-319-94184-4_17
http://dx.doi.org/10.1007/978-3-319-94184-4_19
http://dx.doi.org/10.1007/978-3-319-94184-4_11
http://dx.doi.org/10.1007/978-3-319-94184-4_10
http://dx.doi.org/10.1007/978-3-319-94184-4_11
http://dx.doi.org/10.1007/978-3-319-94184-4_11
http://dx.doi.org/10.1007/978-3-319-94184-4_17


(Schiefer and Gilbert 2007; Micheletti et al. 2015)
and model testing (Staines and Carrivick 2015).
Future studies should use historical aerial photos
and DEMs derived from them to provide
present-day measurements with a context of
longer-term evolution, e.g. in order to explore
path-dependence. Present-day and historical
observations and measurements of geomorphic
processes and landforms can be complemented by

absolute and relative dating of deglaciated sur-
faces or sediments. However, the short timescale
and comparatively high temporal resolution nee-
ded to date post-LIA landforms and deposits
determine the range of suitable dating techniques.
Schimmelpfennig et al. (2014), for example, use
cosmogenic nuclides exposure dating (see also
Balco 2011) to distinguish pre-, within- and
post-LIA surfaces. Sediments in proglacial lakes

Fig. 1.2 Conceptual model
of the geomorphic evolution
of a recently deglaciated
proglacial landsystem. The
presence of moraines creates a
damming effect, hence a
fragmentation of the cascade
sedimentary system, as shown
by local aggradation of
sediments usptream of both
lateral and frontal moraines.
The duration of such
damming effects depends on
(i) the number, volume and
cohesion of moraines and
(ii) the erosion processes at
work on the moraine (note the
difference between dammed
meltwater cones and
undammed scree cones).
Source Cossart and Fort
(2008: 128), with permission
from Taylor and Francis
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have been dated using annual varve counts
[varves additionally yield sediment accumulation
rates and palaeoenvironmental and palaeoclima-
tological proxies; e.g. Guyard et al. (2007), see
also review by Zolitschka et al. (2015)] and
radionuclides such as 137Cs. Lichenometry has
been frequently used to date moraines or the
deposits of mass movements within proglacial
areas (e.g. Thompson and Jones 1986; Winkler
2004; Loso et al. 2016). Dendrogeomorphologi-
cal studies have been conducted to reconstruct
glacier advances (by establishing the time when a
tree was killed by the advancing glacier), but also,
more indirectly, to date paraglacial responses
further downstream (e.g. Hart et al. 2010).

Geomorphic change in proglacial areas is also
related to the subsurface, specifically the chang-
ing distribution of ground ice (e.g. Bosson et al.
2015; Ribolini et al. 2010; Chaps. 6 and 7). This
is typically investigated using geophysical
methods such as electrical resistivity tomography
(e.g. Kneisel and Kääb 2007) or ground-
penetrating radar (e.g. Schwamborn et al.
2008). Ground ice dynamics have implications
on measurements of changes in surface elevation
as they cause changes that may compensate or
add to changes that are due to erosion and de-
position, providing big challenges for the inter-
pretation of DEMs of difference and the
quantification of erosion or deposition (e.g. Sai-
ler et al. 2012; Micheletti and Lane 2016; Avian
et al. 2018). The presence of snowcover in DEMs
is another reason for the need to conduct such
analyses with care (e.g. Carrivick et al. 2013).

The relative importance of different
non-glacial processes occurring within proglacial
areas needs further investigation, especially in
order to compare them to glacial erosion (Harbor
and Warburton 1993; O’Farrell et al. (2009) and
references therein, Laute and Beylich 2014a,
Chaps. 15 and 17). Delaney et al. (2018) con-
clude that denudation rates in the proglacial area
of Griesgletscher, Switzerland, are almost 40
times the rates in the remaining catchment; they
also highlight the importance of subglacial ero-
sion for sediment export from the proglacial area.
Using a cosmogenic nuclides and geomorpho-
logical mapping approach, Delunel et al. (2014)

found that more than 75% of fluvial sediments in
the glaciated Etages catchment, French Alps,
were derived from glaciers (see also Guillon
et al. (2015) with a 50–90% proportion derived
from subglacial erosion). Other studies found a
dominance of non-glacial processes (e.g. O’Far-
rell et al. 2009), highlighting persistent research
needs regarding factors that control the relative
importance (e.g. lithology, glacier dynamics,
catchment area, glaciated area, relief, connectiv-
ity; see Guillon et al. 2018). Proglacial areas with
glaciers remaining are judiciously the main focus
of present-day research, because the glacial
component of the runoff regime maintains high
transport capacities and thus enhances the
(potential) transfer of sediment beyond the pro-
glacial area. In contrast, former proglacial areas
whose glaciers have already disappeared
(Chaps. 2 and 3), allow to study the assumed
stabilisation of surface sediments and its impli-
cations for downstream fluvial systems where
this component has already ceased to exist,
which is arguably the fate of most catchments in
the Alps that are still glaciated today (Haeberli
et al. 2013). As the influence of glacial meltwater
(see Chap. 3 for an assessment of spatial pat-
terns) declines, the relative influence of snow
melt and precipitation is bound to increase.
Direct, local impacts of climatic change (e.g.
changing intensity and/or frequency of forcing
events such as heavy rain) may enhance or
attenuate the effects of transient changes such as
paraglacial dynamics—the onset and evolution
of these does not require climate change except
as the reason for deglaciation. Knight and Har-
rison (2014a) point out that, in case of
deglaciation after the LIA, climate change and
consequences of deglaciation are coeval rather
than subsequent.

Proglacial areas are part of larger systems that
have been described as cascading systems (Burt
and Allison 2010; Chap. 15). Consequently,
enhanced morphodynamics in proglacial areas
may lead to increased sediment loads down-
stream (Knight and Harrison 2014a), represent-
ing a sedimentary disturbance that is being
propagated through the system (Church 2002;
Milner et al. 2017). These “off-site” effects
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include issues associated with reservoir
sedimentation (Einsele and Hinderer 1997;
Geilhausen et al. 2012) and natural hazards
(O’Connor and Costa 1993; Richardson and
Reynolds 2000; Moore et al. 2009). The propa-
gation of geomorphic changes through mountain
catchments, however, may be buffered by poor
connectivity (Beylich et al. 2009; Lane et al.
2017; Chap. 16): Specific landforms and their
topographic and material properties impede sed-
iment transfer and consequently moderate the
(transmission) sensitivity of catchments (Fryirs
2017) to climate and geomorphic change.
Cossart et al. (2013) review the effects of land-
slides on sediment fluxes in deglaciated moun-
tain slopes, stating that their importance as
sediment source may be counteracted by dis-
connectivity: Landslides may not be coupled to
other processes, sediments being stored in stor-
age landforms; moreover, landslide deposits fre-
quently construct barriers to sediment flux. At a
large spatial and temporal scale, Bernhardt et al.
(2017) investigated the propagation of sedimen-
tary signals from the (deglaciating) Andes to
marine sediment sinks on the Southern American
continental shelf and in the deep ocean. While
they inferred a maintained high connectivity in
the north-central part of Chile that facilitated the
propagation of decreasing sediment flux, the
formation of piedmont lakes following
deglaciation abruptly led to a decrease of sedi-
mentation in the ocean. Connectivity, however,
is not a time-invariant system property. Structural
changes such as the re-direction of drainage, lake
formation and drainage (Geilhausen et al. 2013;
Bogen et al. 2015; Chap. 14), de- or recoupling
of system components with the catchment outlet,
and those affecting the interaction of processes
are found more frequently within a limited area
than in other geomorphic systems (c.f. Fig. 1.2).
Such system-internal changes are likely to affect
sediment yield as well, independent of, or in
addition to, climate change. Shugar et al. (2017)
describe how the retreat of Kaskawulsh glacier
(Alaska) triggered a complete reorganization of
the drainage network, which affects, among
others, river discharge and sediment transport,
water level and sediment influx of a lake. Lane

et al. (2017) highlight that connectivity is not
only influenced by topography and topographic
change but also by the evolution of grain sizes
and their implications for sediment transfer (see
also Cossart 2008). They also recommend the
investigation of the historical evolution of con-
nectivity using historical data (e.g. DEMs
reconstructed from historical aerial photos).

To conclude, more data from multiple progla-
cial areas across different mountain ranges and
alpine regions are needed to explore the influence
of local/regional (climate, lithology, etc.) versus
contingent factors on the evolution of proglacial
areas and off-site effects of proglacial morpho-
dynamics. Datasets may include “documentary,
geologic, sedimentary, radiocarbon and cosmo-
genic dating, dendrochronometric, instrumental
climate and ecological data types” (Knight and
Harrison 2014a: 1). Standardised sampling
schemes and techniques should warrant compa-
rability (Milner et al. 2017; see e.g. Beylich et al.
2007). Based on improving understanding of
proglacial dynamics, knowledge gained from
present-day and historical studies should be
combined with the results of regional climate
models in order to assess future trajectories of
sediment fluxes (Micheletti and Lane 2016). In
some study areas, long-standing records of
glaciological, hydrological and geomorphological
data exist that need to be organised and published
(see Strasser et al. 2018 for an excellent example)
in order to be leveraged for such endeavours.

1.4 The PROSA Project

The PROSA project (high-resolution measure-
ments of morphodynamics in rapidly changing
PROglacial Systems of the Alps) was designed to
employ state-of-the-art techniques to quantify
and analyse morphodynamics and sediment
budgets in proglacial areas. It was run during the
years 2012–2017 by five working groups at the
universities of Eichstätt-Ingolstadt, Erlangen,
Halle (Germany) and Vienna (Austria) and
jointly funded by the German Research Foun-
dation (DFG) and the Austrian Science Fund
(FWF) (Fig. 1.3).
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The overarching research objective of the
PROSA project was to set up a holistic sediment
budget of the proglacial area of an Alpine glacier
(see Heckmann et al. (2012a, b) for a project
description). Sediment budgets are “quantitative
statement[s] of the rates of production, transport,
and discharge of detritus” (Dietrich et al.
1982: 6), and establishing a budget requires “(1)
recognition and quantification of transport pro-
cesses, (2) recognition and quantification of
storage elements and (3) identification of link-
ages among transport processes and storage ele-
ments” (ibidem). In rough high-mountain terrain,
the measurement of sediment fluxes is still a
challenge and requests coordinated interdisci-
plinary research efforts. Hence, the PROSA team
members worked in five research groups from
different disciplines, including geomorphology,
glaciology, geophysics, applied geology and
geodesy. Although proglacial landsystems are
regarded as highly dynamic, the short time scale
of a publicly funded research project, and the low
rate of surface change induced by the majority of

geomorphic processes on a monthly scale require
the reliable detection of subtle surface changes.
The PROSA project aimed to take advantage of
the advent of high-resolution, highly accurate
and precise surveying techniques that have made
such measurements possible since c. 15 years
ago. The contribution of geodesy was to harness
these techniques for geomorphological, geologi-
cal and glaciological investigations, including
accurate registration of both area-wide airborne
and local terrestrial surveys and rigorous error
assessment to distinguish significant changes
from noise.

The upper Kaunertal (Kauner valley), defined
as the catchment area of the river Fagge where it
enters the Kaunertal reservoir (c. 62 km2;
Fig. 1.4), was selected as study area. The
Kaunertal is a tributary valley of the river Inn,
located in the Ötztal Alps, Tyrol, Austria, just
north of the Italian border. It has experienced
extensive glacier recession and features large,
morphologically different proglacial areas
(Fig. 1.5). Ample information is available

Fig. 1.3 Structure of the
PROSA project. The main
objectives are addressed from
the perspectives of (i) partial
objectives referring to
processes in proglacial
systems (top) and (ii) research
disciplines taking part in the
joint project, with their
specific tasks (bottom)
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regarding historical glacier extent (e.g. Hartl
2010, and the Austrian Glacier Inventories, e.g.
Groß and Patzelt 2015; Fischer et al. 2015). In
the upper Kaunertal, glaciers covered 20.55 km2

in 2006; the proglacial area, i.e. the area that has
become ice-free after the end of the Little Ice
Age, amounts to 13.3 km2. The proportion of
glaciated area decreased from c. 55% in 1850 to
34% in 2006. The tongue of the Gepatschferner
retreated by c. 2.2 km, with only two short
periods of stability or re-advance in the 1920s
and 1980s (Nicolussi and Patzelt 2001). The
large LIA lateral moraines deposited by the

Gepatschferner reach over 200 m of height
above the valley floor; they are characterised by
intense geomorphodynamics that can be quanti-
fied using repeat surveys. The climate of
Kaunertal is characteristic of the dry Central
Alpine region; mean annual precipitation is
between 920 and 1100 mm (at Weißsee and
Gepatschalm gauges, respectively, data courtesy
of TIWAG, Innsbruck), with a pronounced
summer maximum and winter minimum. The
mean annual temperature is between 2.8 °C
(Gepatschalm, 1941 m elevation) and −0.9 °
C (Weißsee, 2516 m).

Fig. 1.4 Map of the study
area showing the glacier
extent at the end of the LIA
(1850; Groß and Patzelt 2015)
and 2006 (Fischer et al. 2015)
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In addition to the case studies collated in this
book, PROSA members have published papers in
following fields of research:

• Quantification of rates of geomorphic pro-
cesses, for example debris flows (Haas et al.
2012), rockfall (Vehling et al. 2016; Heckmann
et al. 2016a; Vehling et al. 2017) and fluvial
sediment dynamics (Morche et al. 2012;
Baewert andMorche 2014;Morche et al. 2015).

• Rapid disintegration of glaciers (Stocker-
Waldhuber et al. 2017).

• Genesis and dynamics of rock glaciers and their
interaction with glaciers (Dusik et al. 2015).

• Radiometric calibration (Briese et al. 2012)
and strip adjustment (Glira et al. 2015) of
airborne LiDAR data. The modules “ICP”
and “StripAdjust” of the airborne laserscan-
ning processing software OPALS (http://geo.
tuwien.ac.at/opals) were developed within the
PROSA project.

• Use of DEMs of difference from airborne
LiDAR to investigate snow cover on glaciers
(Helfricht et al. 2014) and sediment delivery
on hillslopes (Heckmann and Vericat 2018).

• Soil development and its interplay with geo-
morphodynamics (Temme et al. 2016).

1.5 Scope and Structure
of This Book

This book focuses on the forefields of alpine
glaciers as showcases of both climate-driven
glacier retreat and the subsequent reaction of
affected geomorphic and geoecological systems,
at the small spatial and short temporal scale. The
collection contains papers that deal with different
aspects of geomorphic change and dynamics in
high-mountain proglacial areas, specifically tar-
geting areas that have become ice-free since the
end of the LIA. It is intended as an “update” and
complement of existing literature on proglacial
areas (and paraglacial dynamics), namely
Matthews (1992), Hewitt et al. (2002), Ballantyne

Fig. 1.5 Photographs from the Kaunertal study area.
Top: Aerial photograph taken during the airborne LiDAR
acquisition campaign on 18 July 2012. The dotted white
lines show LIA lateral moraines of Gepatschferner and
Weißseeferner glaciers. Contrary to the Gepatschferner,
the proglacial area of Weißseeferner shows strong human
impact (buildings, roads and construction works associ-
ated with ski runs). Photograph: TU Vienna. Middle: A
terrestrial laserscanner surveys the unstable rock slope of
“Schwarze Wand” on 12 August 2012 including the fresh
scar (a) and deposits of a major rockfall (see Chap. 9).
b and c denote LIA lateral moraines of Gepatschferner
and a tributary glacier, respectively. Photograph: Morche.
Bottom: c 200 m high section of the LIA right-hand
lateral moraine of Gepatschferner with bedrock outcrops.
The very steep slope is heavily dissected (d) by fluvial
erosion and debris flows, the eroded sediment being
partially deposited on alluvial/debris cones (e). The latter
are being undercut by the proglacial river Fagge (f). Data
from this section are also published in Chap. 10, Haas
et al. (2012), Heckmann and Vericat (2018). Photo: Dusik
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(2002b), Knight and Harrison (2009, 2014b).
Furthermore, it contributes to the science of
glaciers and environmental change (Knight 2006;
Martini et al. 2011).

The book is structured by five parts, namely

1. Glaciers and ground ice in the proglacial zone
(Chaps. 2–7).

2. Hillslope processes (Chaps. 8–11).
3. Proglacial rivers and lakes (Chaps. 12–14).
4. Proglacial sediment cascades and budgets

(Chaps. 15–17), and
5. The role of time andmorphodynamics in soil and

vegetation development (Chaps. 18 and 19).

The parts and chapters are ordered along
virtual sediment cascades (or more generally,
cascades of processes), starting from glaciers and
adjacent hillslopes (Chaps. 2–11), continuing
along the glacifluvial system or ending on tem-
porary or long-term sinks (Chaps. 12–14). The
rates of geomorphic processes, and the way they
interact spatially and functionally (that is, con-
nectivity) determine the sediment budget of the
proglacial area and sediment yield at its outlet
(Chaps. 15–17). Soil formation and vegetation
development (Chaps. 18 and 19) interact with
morphodynamics and may exert considerable
influence on these cascades.

Several chapters review the state of science in
the respective field of research (Chaps. 2, 4, 6, 8,
10, 12, 14, 15, 16, 18 and 19), while others
represent case studies (Chaps. 3, 5, 7, 9, 11, 13
and 17), most of which are derived from the
PROSA joint research project (Sect. 1.4).
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2Glacier Changes Since the Little
Ice Age

Frank Paul and Tobias Bolch

Abstract
The majority of glaciers are currently retreating
globally but had been in an advanced position
for several hundred years during the so-called
Little Ice Age (LIA). During this period, the
lateral accumulation of rock and debris created
impressive moraine walls. Between these LIA
moraines and the actual terminus position is the
glacier forefield, which is growing as glaciers
retreat. Whereas the forefields are constantly
changing (e.g. due to the transport of sediment
and rock, lake formation and growth, plant
colonization), the outer boundary marked by
the moraines changed little and has widely been
used to reconstruct maximum LIA extents and
volume for numerous glaciers around the
world. Together with field and satellite mea-
surements, a detailed time series of glacier
fluctuations since the LIA has been obtained for
hundreds of glaciers that indicate some regional
and glacier-specific variability, but also robust
global trends of shrinkage and volume loss.
Overall, the kilometre-scale retreat and upward
shift of glacier termini by several 100 m since

the end of the LIA confirm a global temperature
increase by about one degree. As most glaciers
have not yet adjusted their geometry to current
climatic conditions, they will further shrink
while forefields will continue to grow.

Keywords
Climate change � Little Ice Age � Glacier
fluctuations � Glacier mass balance
Glacier inventory

2.1 Introduction

In most regions of the world, glaciers reached a
Holocene maximum extent at the end of the
so-called Little Ice Age (LIA) and decreased in
size more or less continuously afterwards (Grove
2004). This maximum extent was not reached
everywhere at the same point in time. For
example, in the Alps this was during the seven-
teenth to nineteenth century (often around 1820
or 1850), in Scandinavia in the mid-eighteenth
century and in New Zealand or parts of Alaska in
the early eighteenth century (Rabatel et al. 2008).
The LIA is understood as a slightly cooler period
in the Holocene, lasting from about 1300 to 1850
that is often explained by a reduced solar activity
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(e.g. the Maunder Minimum) along with
increased volcanism and internal climatic vari-
ability over this period (Grove 2004; Wanner
et al. 2008). However, the period was neither
geographically nor temporarily homogenous at a
global scale and details of the precise timing are
still a matter of research (Matthews and Briffa
2005). Dating of moraines and reconstructions
from a variety of sources such as pictorial and
written documents revealed a detailed chronol-
ogy of glacier fluctuations over the LIA period
for selected glaciers in the Alps (e.g. Zumbühl
and Holzhauser 1988; Nussbaumer et al. 2007),
Norway (Nussbaumer et al. 2011a) or Patagonia
and South America (Masiokas et al. 2009a, b). In
general, terminus fluctuations during the period
of maximum extent were within a few hundred
metres. The exact timing and amplitude of these
fluctuations are glacier-specific, e.g. a function of
glacier size and slope as well as topographic
conditions (e.g. hypsometry and shading) and
mass balance sensitivity.

After 1850 however, glaciers globally
decreased in size and volume and their fronts
retreated by up to a few kilometres for the largest
(land-terminating) glaciers (Oerlemans 2005;
Vaughan et al. 2013) in response to a general
increase in temperature. For smaller and more
quickly adjusting glaciers, intermittent phases of
re-advance were observed in several regions in
the 1920s and 1980s (e.g. Alps, Alaska, Tropics)
and 1990s (e.g. Norway, New Zealand, Cauca-
sus), but the specific reasons for these fluctuations
might have been different (Chinn et al. 2005;
UNEP 2007; Zemp et al. 2015). In the Alps, some
glaciers advanced several hundred metres during
these periods, but none reached again the LIA
maximum extent. Moreover, the 1970s advances
did by far not reach the one from the 1920s
advance so that glacier forefields (i.e. the ice-free
terrain between the current glacier terminus and
the 1850s maximum extent) show two further
terminal moraine walls within the 1850s extent, a
bigger one from the 1920s and a smaller one from
the 1970s to 1980s (Fig. 2.1). Outside but very
close to the extent from around 1850, glaciers in
the Alps and elsewhere have further lateral or
terminal moraines from the LIA period. They

reveal larger glacier extents before 1850 as they
were not buried by the latest advance. In the Alps,
these are seldom well preserved and are only
slightly larger than the 1850 extent (Fig. 2.2) so
that the latter is often taken as a synonym for the
maximum extent of the entire LIA. In other
regions, however, this is wrong, as former extents
(e.g. mid-eighteenth century in Scandinavia or
mid-seventeenth century in Patagonia) were
much larger than the mid-nineteenth-century
extents (Nussbaumer et al. 2011a; Masiokas
et al. 2009a). Hence, the ‘1850s maximum extent’
mentioned above and in the following is only the
latest LIA maximum extent, but often not the
largest one in absolute terms. As the lateral LIA
moraines from the latest advance are still com-
parably well preserved and often have
vegetation-free inner sides, they can be identified
on medium resolution (Landsat-type) optical
satellite imagery and related extents can be
mapped (Paul and Kääb 2005; Wolken 2006).

In response to a strong increase in global
temperature around 1985 (Beniston 2006; Wild
et al. 2007; Reid et al. 2016), glacier mass loss
increased in many regions of the world (Zemp
et al. 2009). As an immediate reaction, glaciers
lost mass by surface lowering in the ablation area
(Paul and Haeberli 2008). Additionally, several
glaciers also started thinning in their upper parts,
indicating a disequilibrium response where gla-
ciers will ultimately melt away completely (Pelto
2010). For the time being, the accumulation area
of glaciers is too small to sustain their current size
and they will thus continue shrinking (Carturan
et al. 2013b). This so-called committed area and
volume loss will reduce the size of current glaciers
by a further 30–60% within the next few decades,
even without a further increase in temperature
(Dyurgerov et al. 2009; Zemp et al. 2015).

With constantly shrinking glaciers, their
forefields constantly grow (Heckmann et al.
2016). If not taken over by lakes that form
between the glacier terminus and the LIA mor-
aine or in local overdeepenings of the bedrock
(e.g. Haeberli et al. 2016b; Loriaux and Casassa
2013; Chap. 14), the forefields provide new land
where soil can develop (Egli et al. 2006;
Chap. 18) and vegetation can grow (Chap. 19).
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Despite a large amount of studies that have
reconstructed LIA glacier extents, little is known
about the geomorphological and geomorphome-
tric characteristics of the glacier forefields and
their genesis over the past century, maybe apart
from a few well-studied cases (see Chap. 3).

As a more glaciological background to glacier
forefields, this study provides an overview on the
response of glaciers to climate change with a
focus on the centennial timescale (Sect. 2.2),
observation of glacier fluctuations from the
ground and from space (Sect. 2.3), the observed
glacier changes since the LIA on a global scale
and for the Alps (Sect. 2.4), and a discussion on
potential future changes and related develop-
ments of glacier forefields (Sect. 2.5).

2.2 Glacier Response to Climate
Change

2.2.1 Glacier Formation and Climate

As glaciers originate from compressed snow, they
can be found where climatic conditions allow
snow to survive summer melting and later accu-
mulation over several decades. This results in
three main factors required to build a glacier:
temperatures must be sufficiently low so that
precipitation falls in solid form and accumulates,
precipitation must be sufficiently high that snow
survives the summer melting (higher amounts can
compensate higher temperatures), and there must

Fig. 2.1 Glacier forefields of Mutt (inset left) and
Damma Glacier with moraines from the latest LIA
maximum extent around 1850 (solid white arrows), the
1920s (light yellow) and the 1980s (black). Dotted black
lines indicate current glacier extents. Short arrows in light
blue for Damma Glacier (upper right corner) indicate a
possible larger extent before 1850. The inset map in the

lower right shows the location of Mutt (M), Damma
(D) and Findelen Glacier (F), and the latter being
displayed in Fig. 2.2. The image of Mutt Glacier is a
satellite image (screenshot from Google Earth), and the
Damma Glacier image is based on aerial photography
(screenshot from map.geo.admin.ch)
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